COSMOS Cosmic Orbital and Suborbital Microwave ObservationS

4th ASI/COSMOS Workshop: Ground-based CMB experiments Milano, March 2019

Foreground at low frequency:

a brief overview

Nicoletta Krachmalnicoff

Outline

Planck results on foregrounds
Status of current experiments
Overview of S-PASS results
Open problems for forthcoming experiments

There exist **high Galactic regions clean enough** to detect B-modes without performing

any FG cleaning

BICEP/Keck/Planck analysis

There exist high 2014 Galactic regions clean enough to

detect B-modes without performing any FG cleaning Thermal Dust emission is a strong contaminant everywhere and it must be taken in to account before claiming any detection of B-modes

BICEP/Keck/Planck analysis

Planck 2015 release

There exist **high** 2014 **Galactic regions** clean enough to

detect B-modes without performing any FG cleaning

Thermal Dust emission is a strong contaminant everywhere and it must be taken in to account before claiming any detection of B-modes

COSMOS workshop, Milano, March 2019

Synchrotron emission is also dominant over Bmodes and needs to be characterize

BICEP/Keck/Planck analysis

Planck 2015 release

There exist high 2014 Galactic regions clean enough to

detect B-modes without performing any FG cleaning Thermal Dust
emission is a2strong
contaminant4everywhere and it
must be taken in to
account before4claiming any
detection of B-modes4

COSMOS workshop, Milano, March 2019

Planck 2018 release S-PASS results Preliminary C-BASS results

Synchrotron emission is also dominant over Bmodes and needs to be characterize

2018-2019 a

Foregrounds are complex

and high sensitivity monitor channels are necessary

Foreground contamination to B-modes

Foreground contamination to B-modes

COSMOS workshop, Milano, March 2019

Multipole Moment, ℓ

S4 Science Book

Planck results

COSMOS workshop, Milano, March 2019

Planck IV, 2018

Planck results

Spectral indices variation in the sky, FWHM=5° for synch, 3° for dust

Planck results

Planck XI, 2018

$$\beta_d = 1.53 \pm 0.02$$

 $\beta_s = -3.13 \pm 0.13$

- The majority of current and planned CMB experiments are focusing mostly on the high frequency obervations:
 - **BICEP/Keck**: 95, 150, 220 GHz + 30 GHz being installed
 - **POLARBEAR/Simons Array**: 95, 150, 220, 270 GHz

 - **LSPE**: **43**, 140, 220, 240 GHz
 - **QUBIC**: 90, 150 GHz
 - **CLASS:** 38, 93, 148, 217 GHz
 - Simons Observatory: 27, 39, 93, 145, 225, 280 GHz

COSMOS workshop, Milano, March 2019

Foreground observations

• ACTpol/advACT: 95, 145, 220 GHz + 28, 41 GHz being designed

LiteBIRD specification

Sync	ivity	Pol. Sensit	Beam Size	Frequency
scaling	nin]	$[\mu K \cdot arcn$	[arcmin]	[GHz]
	10.17	36.1	69.2	40
law as	5.21	19.6	56.9	50
spectra	3.05	20.2	49.0	60
	2.12	11.3	40.8	68
Faual	1.44	10.3	36.1	78
Lyuar	1	8.4	32.3	89
of sync	1.24	7.0	27.7	100
~	1.75	5.8	23.7	119
	2.50	4.7	20.7	140
	3.77	7.0	24.2	166
	5.88	5.8	21.7	195
Ther	10.70	8.0	19.6	235
sca	20.88	9.1	13.2	280
modifi	48.82	11.4	11.2	337
emiss	129.51	19.6	9.7	402

COSMOS workshop, Milano, March 2019

chrotron as a power ssuming a l index -3.1

contribution ch and dust at •90 GHz

mal dust ling as a ied BB with sivity 1.54

LiteBIRD specification

Sync	ivity	Pol. Sensit	Beam Size	Frequency
scaling	nin]	$[\mu K \cdot arcn$	[arcmin]	[GHz]
	10.17	36.1	69.2	40
law as	5.21	19.6	56.9	50
spectra	3.05	20.2	49.0	60
	2.12	11.3	40.8	68
Faual	1.44	10.3	36.1	78
Lyuar	1	8.4	32.3	89
of sync	1.24	7.0	27.7	100
~	1.75	5.8	23.7	119
	2.50	4.7	20.7	140
	3.77	7.0	24.2	166
	5.88	5.8	21.7	195
Ther	10.70	8.0	19.6	235
sca	20.88	9.1	13.2	280
modifi	48.82	11.4	11.2	337
emiss	129.51	19.6	9.7	402

COSMOS workshop, Milano, March 2019

chrotron as a power ssuming a l index -3.1

contribution :h and dust at •90 GHz

mal dust ling as a ied BB with sivity 1.54

60	
57	
54	
51	
48	
45	
42	(2
39	GH
36	89
33	at
30	zed
27	nali
24	IOL
21	e (n
18	iois
15	to-r
12	-ler
ი	Sigr
9	• /
ო	

Low frequency observations

- To reach high sensitivity in synchrotron observations very low frequency (<30 GHz) observations are needed:
 - **QUIJOTE**: 11, 13, 17, 19, 30, 40 GHz
 - **C-BASS**: 5 GHz
 - **S-PASS**: 2.3 GHz

COSMOS workshop, Milano, March 2019

North North & South South

QT-1 and QT-2: Cross-Dragone telescopes, 2.25m primary, 1.9m secondary.

QT-1. Instrument: MFI. 11, 13, 17, 19 GHz. FWHM=0.92°-0.6° In operations since 2012.

OSMOS workshop

ano, March 2019

From José Alberto Rubiño-Martin slides (Tenerife, Oct. 2018)

QT-2. Instruments: TGI & FGI 30 and 40 GHz. FWHM=0.37°-0.26° In operations since 2016.

🛛 dom

QUIJOTE overview

From José Alberto Rubiño-Martin slides (Tenerife, Oct. 2018)

First release of papers and data in 2019, will include:

- Synchrotron spectral index, curvature, correlation with dust
- Component separation of polarized synch, combined with Planck+WMAP
- Constrainints on AME in more than 40 regions
- Radiosources
- Characterization of the North Polar Spur and FAN region

C-BASS overview

Sky-coverage

Angular resolution

Sensitivity

Stokes coverage

Frequency

Northern site

Southern site

	All-sky
	0.75 deg (45 arcmin)
	< 0.1mK r.m.s in 1 deg beam (confusion limited in I)
	6000 μK-arcmin @ 5GHz == 0.75 μK- arcmin @ 100 GHz, β = -3
	I, Q, U, (V)
	1 (0.5) GHz bandwidth, centered at 5 GHz
No.	OVRO, California
and the second sec	Latitude, 37.2 deg
	MeerKAT/SKA site, Karoo, South Africa Latitude -30.7 deg

From Angela Taylor slides (Tenerife, Oct. 2018)

C-BASS polarized intensity map @5 GHz

WMAP-K polarized intensity map @23 GHz

The S-PASS survey

PARKES radio telescope: 64 m
Frequency: 2.3 GHz (224 MHz BW)
Sky coverage ~ 50% (South hemisphere)
Angular resolution ~ 9 arcmin

S-PASS science:

- Galactic Magnetic field
- Fermi Bubbles and Galactic structure
- ISM turbulence
- Gum Nebula
- ICM of galaxy clusters
- Extragalactic source properties
- CMB foregrounds

• ...

COSMOS workshop, Milano, March 2019

S-PASS team:

G. Bernardi	S. Brown
E. Carretti (PI)	R. Crocker
B. Gaensler	J. Farnes
M. Haverkorn	J. Malereki
M. Kesteven	C. Purcell
S. Роррі	D. Schnitzele
L. Staveley-Smith	X. Sun
	A BEAT

Nicoletta Krachmalnicoff

2

S-PASS polarized intensity map @2.3 GHz

WMAP-K polarized intensity map @23 GHz

COSMOS workshop, Milano, March 2019

SISSA Nicoletta Krac

Constant along the multipole range and for E and B-modes In agreement with constraints coming from WMAP and Planck COSMOS workshop, Milano, March 2019

Constraints on curvature

$$un \log(\nu_1/\nu_0) \left(\frac{\nu_2}{\nu_0}\right)^{\beta_s + s_{run} \log(\nu_2/\nu_0)}$$

Strong degeneracy between β_s and s_{run}

Gaussian prior on spectral index from WMAP and Planck: $\beta_s = -3.13 \pm 0.13$ s_{run} compatible with zero, with 1σ errors between 0.07 and 0.14

More data at intermediate frequencies are needed (C-BASS in south, QUIJOTE and

Power spectrum of spectral index map

COSMOS workshop, Milano, March 2019

Noise realizations:

S-PASS maps @ 2.3 GHz

Nicoletta Krachma

Synch x Dust

Ievel of correlation between 2.3 and 353 GHz is compatible with what measured with WMAP and Planck channels

 $\rho_{\ell} = \frac{C_{\ell}(2.3 \times 353)}{\sqrt{C_{\ell}(2.3)C_{\ell}(353)}}$

Conclusions and open questions

- In the recent years great progress in the analysis and characterization of synchrotron
- Very low frequency (< 20 GHz) observations are needed
- More data are coming soon
- Open problems:
 - Synchrotron spectral index variation: decorrelation, impact on component separation
 - Cuvature?