

Workshop on Resistive Coatings for Gaseous Detectors

DLC films deposited by Laser Ablation for gaseous detectors: first experiments

Anna Paola Caricato

Department of Mathematics and Physics "E. De Giorgi" University of Salento Lecce, Italy

Bari, 14 May, 2019

IstitutoNazionale di FisicaNucleare SEZIONE DI LECCE

Outline

Introduction

PLD for DLC films

DLC properties for MPGD

DLC films deposited in Lecce

First set of samples: properties and discussion Second set of samples: properties and discussion Third set of samples: properties and discussion

Conclusions and Future work

Introduction

Carbon forms different hybridizations (sp³, sp² and sp¹)

Diamond and **Graphite** are forms of pure carbon, however, the physical properties, hardness and cleavage are quite different for the two minerals

Graphite

 Tetrahedral atomic arrangement of C atoms: stable atomic structure

C-C bonding is strong in all directions

C atoms arranged in sheets or layers

C-C bonding is strong within the layers and is weak between the layers

Introduction

DLC is characterized by clusters of sp^2 and sp^3 bonded atoms in the material. The size and distribution of these clusters depend on the sp^3/sp^2 fraction.

This bond configuration is such to confer to DLC particular properties intermediate between that ones of diamond and graphite which can be modulated by the sp³/sp² fraction.

DLC main properties: high hardness, scratch resistance, smooth surface morphology, chemical inertness, good thermal conductivity, high electrical resistance, and optical transparency

Introduction

PLD for DLC films growth

The DLC (ta-C) formation requires very high energy carbon species: 100 eV

Low-energy atoms preferentially condense into the thermodynamically favored, sp^2 coordinated, graphitic structure. High-energy atoms can penetrate the surface, and condense under a compressive stress into the metastable sp^3 coordinated, tetrahedral geometry

High-energy atoms, already condensed into the sp^3 -coordinated system, may relax back to the sp^2 -coordinated system if the excess energy is not quickly removed from the system

Low substrate temperatures and high thermal diffusivity of the substrate are essential for DLC film growth.

PLD for DLC films

Pulsed laser deposition is a "unique" technique for the deposition of hydrogen-free diamond-like carbon films.

During deposition, amorphous carbon is evaporated from a solid target by a highenergy laser beam, ionized, and ejected as a plasma plume. The plume expands outwards and deposits the target material on a substrate.

PLD for DLC films

Advantages

- ✓ Stoichiometric transfer of material from target to substrate;
- ✓ Good control of the thickness (0.1 monolayer/pulse);
- ✓ Very few contaminants;
- ✓ High particles energies Low substrate temperatures;
- ✓ Multilayer deposition in a single step;
- ✓ Deposition on flat and rough substrates;
- ✓ Many independent parameters

Drawbacks

 \checkmark Low uniformity of the deposited film;

 \checkmark Presence of droplets and particulates on the film surface.

DLC films by PLD for MPGD

GOALS TO REACH

- ✓ Uniformity on a $2 \times 2 \text{ cm}^2$
- ✓ Good adhesion on polyimide substrates
- \checkmark Sheet resistance values in the range 10 \div 100 MΩ/sq

Experimental (first set of samples)

Experimental: Charatcerization techniques

Raman spectroscopy (excitation wavelength: 514 nm 20 mW)

Electrical characterization (Four Point Probe Van der Pauw Biorad 5500)

Transmission electron microscopy (TEM Hitachi 7700 120 keV)

Raman spectroscopy

Under visible laser excitation

G peak (bond stretching of all pairs of sp² atoms in both rings and chains) \rightarrow 1560 cm⁻¹

D peak (breathing modes of sp² atoms in rings) \rightarrow 1360 cm⁻¹

A. C. Ferrari and J. Robertson, Phil. Trans. R. Soc. Lond. A 2004 362, 2477-2512

First problem: which fluence to reach the desidered sheet resistence value!

Influence of laser fluence (J/cm²)

Samples	ρ _{sheet} (Ω/sq)	Fluence (J/cm²)
#7	9.62x10 ⁴	2,5
#8	1.2x10 ⁵	3,3
#9	1.02x10 ⁸	5
#10	1.2x10 ⁹	5.5
#11	1.35x10 ⁸	5

First problem: which fluence to reach the desidered sheet resistence value!

Influence of laser fluence (J/cm²): laser fluence vs sheet resistence

First problem: which fluence to reach the desidered sheet resistence value!

sheet resistence stability

First problem: which fluence to reach the desidered sheet resistence value!

Influence of laser fluence (J/cm²): laser fluence vs I_D/I_G

The intensity of I_G increases compatible with the presence of bigger sp₃ concentration $*\rho$ = sheet resistence

Influence of laser fluence (J/cm^2) : laser fluence vs I_D/I_G

First problem: which fluence to reach the desidered sheet resistence value!

Two rings are clearly visible which are compatible with both the diffraction maxima 111 and 220 of the diamond, and with the diffraction maxima 101 and 110 of the graphite.

This can be interpreted as an overlapping of nano-graphene (missing the ring corresponding to the planes 002 of the graphite) and nanodiamond.

Second problem: how to obtain uniform films?

Off-axis configuration and substrate motion (circular vs elliptical trajectory)

Sample s	ρ _{sheet} (Ω/sq)	Fluence (J/cm²)	Substrate movement
#12	0.128x10 ⁸	5	Circle (diameter: 2 cm)
#13	0.13x10 ⁸	5	Circle (diameter: 2 cm)
#15	3.38x10 ⁶	5	Circle (diameter: 1,6 cm)
#14	9.95x10 ¹⁰	5	Circle (diameter: 1 cm)

For a fixed laser fluence value, the sheet resistence is strongly dependent on the substrate trajectory

Fluence value selected by first set of experiment

Non uniform distribution of elements in the plasma plume produced by the lasergraphite interaction

Samples to investigate the behaviour during etching conditions for detectors fabrication with differnt sheet resistence values (10-1000 Mohm/sq)

Sample	Sheet Resistence (Ω/sq)
#20	1.54 x 10^8
#19	1.29 x 10^8
#18	1.1 x10^9
#17	1.01 x 10^9
#16	1.35 x 10^7
#13	7.63 x 10^6

Reason for non uniform films

C. Ursu, P. Nica, C. Focsa, Applied Surface Science 456 (2018) 717–725

Raman analysis

Sample region	I _D /I _G	r (Ω/sq)
1	0.56	5.7x10 ⁷
2	0.50	
3	0.63	1.7X10 ⁸
4	0.60	
5	0.51	4.6x10 ⁷

Figura composizione plume

Third set of samples

(off-axis + substrate rotation; small spot area)

Target: pyrolytic graphite KrF excimer laser: wavelength λ = 248 nm, pulse width τ = 20 ns, frequency: f=10 Hz Laser Fluence: 5,5 ÷ 20 J/cm² Target-substrate distance: d_{TS}: 55 ÷ 45 mm Background pressure: ~ 10⁻⁵ Pa Laser spot area: ~ 1 mm² Substrates: <100> Si, Number of laser pulses: 28000 ÷ 35000

GOOD UNIFORMITY ON A "BIG AREA"

Samples	Fluence (J/cm ²)	Sheet resistance (Ω/sqr)	I _D /I _G	
# 36	5.5	>10^12	0.5	F
# 38	6.8	7.0*10^5	1.5	
# 33	9.6	5.0*10^4	1.54	
# 34	18.3	3.8*10^4	2	

Increasing the laser fluence values sheet resistance and graphite contribution increase

Decreasing the laser fluence values below 5,5 J/cm² is such to have very low deposition rate!!

Raman map

Sample #38 ρ= 7.0*10^5 ID/IG=1,5

Incident Ion Energy (eV)

To better understand film properties:

Electrical measurements (transport measurements);

XPS (X-ray Photoelctron Spectroscopy) to evaluate the exact sp³ content

Micro Raman;

AFM (Atomic Force Microscopy) to evaluate sample topography

CONCLUSIONS

Films of DLC have been deposited by PLD. The laser fluence is the most critical laser parameters

What about our goals?

- ✓ Uniformity
- ✓ Adhesion

✓ Sheet resistance values

Near to the desidered values for MPGD but a very narrow fluence window to obtain the desidered sheet resistence value!

Next depositions changing the laser wavelenght: ArF laser beam (193 nm) + annealing procedure to try to relax the stress