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Introduction

Carbon forms different hybridizations (sp3, sp? and sp?)

Diamond and Graphite are forms of pure carbon, however, the physical
properties, hardness and cleavage are quite different for the two minerals

Diamond Graphite

Strong Bonding

Sheets

atoms: stable atomic structure

J

+* C-C bonding is strong within the

+* C-C bonding is strong in all directions layers and is weak between the layers



Introduction

DLC is characterized by clusters of sp? and sp® bonded atoms in the material. The
size and distribution of these clusters depend on the sp3/sp? fraction.

Graphite.| 100% sp?
bonded carbon. Amorphous carbon. Diamond. | 100% sz

Mix between sp” and sp’ bonded carbon.
bonded carbon atoms

This bond configuration is such to confer to DLC particular properties intermediate between
that ones of diamond and graphite which can be modulated by the sp3/sp? fraction.

DLC main properties: high hardness, scratch resistance, smooth surface morphology,
chemical inertness, good thermal conductivity, high electrical resistance, and optical
transparency
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Ternary phase diagram of bonding in amorphous
# C-H alloys: the physical properties of DLC films
! depend on H-concentration and the sp3/sp2 ratio




PLD for DLC films growth

The DLC (ta-C) formation requires very high energy carbon species:
100 eV

Low-energy atoms preferentially condense into the

thermodynamically favored, sp? coordinated, graphitic structure.
High-energy atoms can penetrate the surface, and condense under a
compressive stress into the metastable sp3 coordinated, tetrahedral

geometry

High-energy atoms, already condensed into the sp3-coordinated
system, may relax back to the sp?-coordinated system if the excess
energy is not quickly removed from the system

Low substrate temperatures and high thermal diffusivity of the
substrate are essential for DLC film growth.




PLD for DLC films

Pulsed laser deposition is a “unique” technique for the deposition
of hydrogen-free diamond-like carbon films.

During deposition, amorphous carbon is evaporated from a solid target by a high-
energy laser beam, ionized, and ejected as a plasma plume. The plume expands
outwards and deposits the target material on a substrate.

Target

UV laser beam



PLD for DLC films

Advantages

v’ Stoichiometric transfer of material from target to substrate;
v' Good control of the thickness (0.1 monolayer/pulse);

v Very few contaminants;

v High particles energies - Low substrate temperatures;

v Multilayer deposition in a single step;

v Deposition on flat and rough substrates;

v’ Many independent parameters

Drawbacks

v Low uniformity of the deposited film;
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v Presence of droplets and particulates on the film surface.



DLC films by PLD for MPGD

GOALS TO REACH

v Uniformity on a 2x2 cm?

v' Good adhesion on polyimide substrates

v’ Sheet resistance values in the range 10 + 100 MQ/sq



Experimental (first set of samples)

Target: pyrolytic graphite

KrF excimer laser: wavelength A = 248 nm, pulse width t = 20 ns, frequency: f=10 Hz
Laser Fluence: 2,5+ 5,5 J/cm?

Target-substrate distance: d: 55 + 45 mm

Background pressure: ~ 10~ Pa

Laser spot area: ~ 4 mm?

Substrates: Si/SiO,, Polymide (50 um polymide + 5 Cu pm)

Number of laser pulses: 8000 On-axis configuration
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Experimental: Charatcerization techniques

Raman spectroscopy (excitation wavelength: 514 nm 20 mW)

Electrical characterization (Four Point Probe Van der Pauw
Biorad 5500)

Transmission electron microscopy (TEM Hitachi 7700
120 keV)



Raman spectroscopy

Under visible laser excitation
G peak ( bond stretching of all pairs of sp? atoms in both rings and chains) 2 1560 cm™

D peak (breathing modes of sp? atoms in rings) 2 1360 cm™

Under UV laser excitation
T peak (C—C sp?3 vibrations)=>1060 cm™!
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Excitation wavelength : 325
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First set of samples (on-axis; big spot area)

First problem: which fluence to reach the desidered sheet resistence
value!

Influence of laser fluence (J/cm?)

Psheet Fluence
(Q2/sq) | (J/cm?)

#7 9.62x10* 2,5
#8 1.2x10° 3,3
#9 1.02x108 5

#10 1.2x10° 5.5

#11 1.35x108 5



First set of samples (on-axis; big spot area)

First problem: which fluence to reach the desidered sheet resistence
value!

Influence of laser fluence (J/cm?): laser fluence vs sheet resistence
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First set of samples (on-axis; big spot area)

First problem: which fluence to reach the desidered sheet resistence
value!

sheet resistence stability
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First set of samples (on-axis; big spot area)

First problem: which fluence to reach the desidered sheet resistence
value!

Influence of laser fluence (J/cm?): laser fluence vs I/l
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First set of samples (on-axis; big spot area)

Influence of laser fluence (J/cm?): laser fluence vs I/l
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First set of samples (on-axis; big spot area)

First problem: which fluence to reach the desidered sheet resistence
value!

Film structures (sample #9)
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Two rings are clearly visible which are compatible with both the diffraction maxima 111 and
220 of the diamond, and with the diffraction maxima 101 and 110 of the graphite.

This can be interpreted as an overlapping of nano-graphene (missing the ring
corresponding to the planes 002 of the graphite) and nanodiamond.



Second set of samples
(off-axis + substrate motion; big spot area)

Second problem: how to obtain uniform films?

Off-axis configuration and substrate motion (circular vs elliptical
trajectory) A

Substrate

Target



Second set of samples
(off-axis + substrate motion; big spot area)

Peheet (€2/sd) | Fluence | Substrate movement
(J/cm?)

#13
#15
#14

0.128x108 5 Circle (diameter: 2 cm)
0.13x108 5 Circle (diameter: 2 cm)
3.38x10° 5 Circle (diameter: 1,6 cm)
9.95x1010 5 Circle (diameter: 1 cm)

Fluence value selected by first set of

experiment

For a fixed laser
fluence value, the
sheet resistence is

strongly dependent
on the substrate
trajectory

<

Non uniform
distribution of elements
in the plasma plume
produced by the laser-
graphite interaction



Second set of samples
(off-axis + substrate motion; big spot area)

Samples to investigate the behaviour during etching conditions
for detectors fabrication with differnt sheet resistence values
(10-1000 Mohm/sq)

Sample  Sheet Resistence (Q/sq)

#20 1.54 x 10”8
#19 1.29 x 10”8
#18 1.1 x1079

#17 1.01 x 1079
#16 1.35x 1077

#13 7.63 x 10”6



Second set of samples
(off-axis + substrate motion; big spot area)

Reason for non uniform films

& Unusual plasma shape: V shape
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V- shape plasma: how to recover the usual
plasma shape?

4 v

Decreased laser spot area: Substrate configuration :
from4to 1 mm? off axis and rotation

But low \
deposition rate

U

‘l’ plasma plume

Substrate
Target



Third set of samples
(off-axis + substrate rotation; small spot area)

Target: pyrolytic graphite

KrF excimer laser: wavelength A = 248 nm, pulse width t = 20 ns, frequency: f=10 Hz
Laser Fluence: 5,5 + 20 J/cm?

Target-substrate distance: d.¢: 55 + 45 mm

Background pressure: ~ 10~ Pa

Laser spot area: ~ 1 mm?

Substrates: <100> Si,

Number of laser pulses: 28000 +~ 35000



Third set of samples
(off-axis + substrate rotation; small spot area)

Dot for thickness
measurements

GOOD UNIFORMITY ON A “BlG AREA”



Third set of samples
(off-axis + substrate rotation; small spot area)

#36 5.5 510012 0.5 F
#38 6.8 7.0%1075 1.5

#33 9.6 5.0%10°4 1.54

#34 18.3 3.8*10M 2

Increasing the laser fluence values sheet resistance and graphite
contribution increase

Decreasing the laser fluence values below 5,5 J/cm? is such to have very low deposition
rate!!



Third set of samples
(off-axis + substrate rotation; small spot area)

Raman map
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Third set of samples
(off-axis + substrate rotation; small spot area)

Intensity (a.u.)
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Third set of samples
(off-axis + substrate rotation; small spot area)

To better understand film properties:

Electrical measurements (transport measurements);

XPS (X-ray Photoelctron Spectroscopy) to evaluate the
exact sp3 content

WORK
IN
PROGRESS

e

Micro Raman;

AFM (Atomic Force Microscopy) to evaluate
sample topography




CONCLUSIONS

Films of DLC have been deposited by PLD. The laser fluence is the
most critical laser parameters

What about our goals?

v’ Uniformity g@

v' Adhesion %@

. £
v’ Sheet resistance values @@-_

Near to the desidered values for MPGD but a very narrow fluence
window to obtain the desidered sheet resistence value!

¢

Next depositions changing the laser wavelenght: ArF laser beam
(193 nm) + annealing procedure to try to relax the stress



