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Introduction

Superstring field theory is one of the approaches to define superstring theory
nonperturbatively.

We need a complete superstring field theory including both the Neveu-
Schwarz and Ramond sectors.

Open superstring: There are three complemantary approaches.

- WZW-like approach: (Berkovits (1995))
Kunitomo and Okawa (2016)

- Homotopy algebraic approach: (Erler, Konopka and Sachs (2014))
Erler, Okawa and Takezaki (2016)

- Sen’s approach: (Sen (2016))
Konopka and Sachs (2016)



Closed superstring

o Sen's approach: Sen (2016)

No complete theory based on the remaining two approaches so we should
construct them.

We first consider the heterotic string field theory.



Homotopy algebraic formulation (Erler-Konopka-Sachs 2014)
String fields: ~ ® = Byg+ Pr € H=Ho o2~ L R 1/2)
Constraints: by P =L, =0, XYPr = Op.

X and Y are defined by

X = —(B0)Go+6'(Bo)bo Y = —2¢;6' (),
which satisfy
Q. 2] =X, XYX=X.

® r Is restricted in the form
1
Pr = ¢r— 5(% + 2¢5 G)Yr (G = Go + 2vbo) ,

which we denote & € H"°s5.



Note that ¢r and g are field and anti-field, respectively, in BV formalism
(gauge-fixed basis).

Symplectic form:

QP ,P2) = ws(Pins, Pans) +ws(Pir, Y Par)
= {(@1r|Y2R) + (Y1R|D2R)) -

(ws(@1,@2) = (1) (@1]c5 | @)

String products:

Ln(®1,-- @) € H™®, (n>2),
[L1® = Q.



If L1 =@, Lo, L3, --- is a cyclic Lo, algebra satisfying

"L (-1

Z Z1 m'(n — m)' Lon— m—H(Lm(CDU(l) o ’(I)U(m)) ) (I)U(?"H-l) » T 7(I)U(n)) = 0,
Q((I)l ’Ln(q)2 » ’(I)n+1)) — _(_1)|¢1|Q(Ln(q)l y T 7(I)n) ) (I)n-|-1) )

with proper ghost and picture numbers,

Action:
> 1
S = AP, Ly (P, -+, P
> O L@ @)
n= n+1

IS invariant under

Gauge tf.:
=1
0P = E ELTH-l(EI)v T (Izv A)

v/
n




How to construct {L,,} with proper ghost/picture numbers?

We know “bosonic” products {L%O)}, which is an L., algebra with proper
ghost number but no picture number.

Construct { L, } by suitably putting X and & in {L( )} SO as
to be proper picture number.

For NS sector: Erler-Konopka-Sachs (2014)

We modify EKS construction and extend it to the one for both
NS and Ramond sectors.



Proper picture number: p(®ys) = —1, p(®r) = —3

Picture number of L,, ;2 is determined so that Lf,bpsz is closed

n NS g R(-1/2).

small small

p(LE,(- Nns) = =1,  p(LEP,(-+)g) = _%.

Consider Lq(lplﬂgr with 2r =(Ramond #)=(# of R inputs)—(# of R outputs).
(1) Output is NS state when 2r of n + 2 inputs are R states:

(—%) X2r+(—=1)Xx(n+2—-2r)4+p=-—1
(2) Output is R state when 2r 4+ 1 of n + 2 inputs are R states:

(—%) ><(27“—|—1)—|—(—1)><(n—|—1—2r)—|—p:—%

Wefindp=n—r+1or LI()Z_)QT+1’2T.



Cyclicity: Ramond # is not suitable to consider cyclicity. Instead

cyclic Ramond # = (# of R inputs) + (# of R outputs) (denoted as ]2T) Is useful:

Q(CI>NS1 , Lﬁf)lgi(@m R (I)R(n+1))> ~ ((I)R(n+1) : Lgbp)@:_g((bNSl , PNs2, ))

So first consider BI(f:L)TH]Q"" (p+7r+1>2)

(1') Output is NS when 27 inputs are R, B](f:L)TH ar:

(%) X2r+(—1) X ((p+r+1)—2r)+p=—1, (p# deficit = 0)

(2') Output is R when 2r — 1 inputs are R, Bz(fi)rﬂg;f_z:

1 1
(—5) X2r—D)+(-1)x((p+r+1)—2r+1)+p = —5—1, (p# deficit = 1)
B,, 12 cannot be L, 1o but such a combination often appears as difference

of (nonlinear extension of) ) and 7. First order EoM (Berkovits)(HK), general
form of WZW-like theory (Erler), Democratic theory (Kroyter), etc.



Coalgebraic representation

Symmetrized tensor product: (®; € H)

PLADPIA - AND, = Z(_l)e(a)q)a(l) X (I)o(z) R - ® (I)J(n) c ?_[/\n

Symmetrized tensor algebra: SH=H"YOHOH?* P - --
Linear map: L, : H"" — H w/ L,(®1A---A®,) = L(Py1, -+ ,P,)

Coderivation: L,, : SH — SH

L,®1N---ND,, =0, for m < n,
L,>1N--- NP, = Ly(P1A---ANDPy,), for m = n,
L,>1N--- NPy, = (LpyALp_p)P1 A+ APy, for m < n.

Then we can consider coderivation L = ZZOZO L,.1. The L relation is
represented as nilpotency for a (degree odd) coderivation L :

[L,L] = 0.
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Consider nonlinear extensions of Q and 7n:
mD = mQ +7)B, mC = mn— 7B,

satisfying [D, D] = [C,C] = [D,C] = 0, where 7! and 7 are the projectors
onto NS and R components, respectively. The dierence of these two L. algebra

D-C=Q-n+B, B=Y BY |”,

p,r=0

is also an L. algebra
' D-C,D-C)| = 0,

which can be cyclic (w.r.t. w; defined by BPZ inner product of H;grge ) :

Note: All of these D, C and D — C are not closed in Hgail -

11



We first construct cyclic D — C', then transform (D, C') to (L,n):

F'DF = nL, F 'CF = mn,

L1
with F' = m1lsy — En{ B, where

mL = Q+ b+ Xmib,
with mb = 7, BF . Now (L,mn) are two (anti)commutative L, algebras

|L,L] = [n,n] = [n,L] =0,

and thus L is closed in Hg,,q011 - We can show that if B is cyclic w.r.t. w; then
b is cyclic w.r.t. ws which implies L is cyclic w.r.t. €

Q<(I)17Ln(q)27'” 7(I)n—l—1)) — ws(q)lab’n(q)Qa'” 7(I)n—l—1>)-
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How to construct B

R number is additive in commutator but cyclic R number is not:

[l|27“ ) l/|28] — [”27“ ; l/|2s”2r—|—2s 9
[l|27~ 7 l/|23]

[l‘ZT ’ l/|2s”2r—|—2s i [l‘Qr ’ l/|2s]|2r—|—23—2 .
We define [, ]! and [, -]* by

[l|2r,l/|28]1
[l|2r,l/|28]2

[l‘Z'r 7 l/|2s]|2r—|—2s

Y

[l‘Qr 7 l/|2s]|2r—|—2s—2 .

Fl=5 12" and 1/ = Y )%

U] =LV + (1,172

_ Z[HQT, l/‘QS]‘2r+2S—|—Z[l‘2T, l/‘Zs]‘Zr—l—Qs—Q.
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Preparation: Bosonic products Lf,(w)rl\?'“:
(1) (—%>X2r+(—1)x(n—|—l—2’r):—(n—r)—l,

1 1
(2) <—§>><(27“—|—1)—|—(—1)><(n—|—1—27“—1):—(n—r—i—l)—E.

So they have “p # deficit”m = n — r(+1). We define a generating function
counting the p # deficit:

L0 = @+ Y L =@+ L),

m,r=0

which reduces to the bosonic L, algebra as L® = LO(s =1): [L®, L] = 0.
L(O)(s) satisfies
B

QL)) + 5[ L8(5), L9 (5)) + 5[ L), LY () * = 0,

(0, LY (s)] = 0.

(1)
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On the other hand, if we introduce a generating function

Bt) = Y #BY) P,  (B)°=0)
p,r=0

D —C,D — C] =0 is equivalent to

Q. B()]+ 5[ B(1), B()]' =0,

. B(t)] - S[B(0), BO)I =0.

(2)
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Further if we extend B's to those with arbitrary p # deficit and define a
generating function

B(s,t) = Y s™*BY_ 7 = Y 'BP(s),
m,p,r=0 p=0

the ralation (2) can be extendet to

I(5,1) = Q. B(s.0)] + 5 B(s.0), Bls,0)) +3[B(s,1), B(s,)]* = 0.

[n.B(s,t)] — [ B(s.t), B(s,t)]2 = 0.

J(s,1) 5

Here B(t) = B(0,t), B = B(0,1) and BY(s) = B(s,0).
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Differential equation: If we introduce a degree even coderivation (gauge
products)

m +1 _ 1
A(s,t) = > sMPAPTD P = DT Palt(s),
m,p,r p=0

and postulate differential equations

O.B(s,t) = [Q,\(s,t)] + [B(s,t), X(s,t)]* + s[B(s, 1), A(s, t)]?,

3
1, A(s,t)] = 0sB(s,t) +t[B(s,t), A(s,1)]*. (3)

Then we can show

0l (s,t) = [L(s,t), A(s,1)]' + s [I(s,),A(s,1)]*,
OpJ (s,t) = — 0.I(s,t) —t[I(s,t),A(s,t)]?
+[J(s, ), A(s,t) M + s [T (s, 1), A(s,1)]%.
Therefore if I(s,0) = J(s,0) = 0 then I(s,t) = J(s,t) = 0. However

equations I(s,0) = J(s,0) = 0 are the same as (1), those for Lg)(s), and
thus satisfied by taking B?)(s) = Lg)(s) .
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Differential egs. (3) can be written as
(n+ 1B (s) = [Q A"V (s)] + Z B () X () ]!

+Z BT (s), A" ()12,

n—1

(7, A" ()] = 9,B™(s) + Y [BM D A (5)12,

n’=0

and can be solved iteratively.
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Consistency:

If we read (3) as

[Q, A(s,t)] = N(s,1), 7, A(s,1)] = K(s,1),
N(s,t) = 0;B(s,t) — [B(s,t), X( t)]l — s|B(s,t), A(s, t)]
K(s,t) = 0,B(s,t) +t[B(s,t),A(s,1)]*

the “integrability” conditions

Q. N(s,t)] = [n,K(s,t)] =0,
[’I’],N(S,t)]—l—[Q,K(S,t)] = 0,

follow from I(s,t) = J(s,t) =0.

(4)
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For n = 0 we have

BW(s) = [Q,AV(s)]+[LY(s), AV ()] + s [LE (s), AV (5) ]2, (5a)
(7, A0 (s)] = 9.LY(s). (5b)

(5b) can be solved as

7Tl>\(1)(8) = i (m 4+ 1)s™

m,r=0

(0) 2r (0) 2r
m + r + 3 (gLBm+r+2 - LBn—|—r—|—2| (&N Hm—l—r+1)>
= mé&o 88Lg)(s) .

Then B (s) is obtained by substituting this into (5a).
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Similarly B™(s) for Yn can be determined recursively:

n—1

A(n—i—l)(s) _ 50 <8SB(n)(S) 4+ Z [B(n_n’_l) ,A(n/+1)(8)]

n'=0

(n+1)B"(s) =[Q, A"V (s)] + Z [ B (s

+Z (B (s

), AT (g) ]!

), AT () ]2,

2>,
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WZW-like formulation
(Berkovits 1995, Berkovits-Okawa-Zwiebach 2004)

Gauge invariant action in WZW-like formulation can also be obtained by
“field redefinition”.

First we note that if we project B(s,t) and A(s,t) onto the pure NS sector,

B(s,t)* = Y s™"BY, L0 = > smBM@),
m,n=0 m,n=0
myny (n+1 my [m
As. 00 = D AL = Y smal),
m,n=0 m,n=0

diff. egs. (3) reduces to those introduced by EKS, and thus, by construction,
B(s,t)|" and X(s,t)|", reduce to those of EKS.
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This implies that the L., algebra restricted to the pure NS sector, Q+B[O] °,
can be written in the form of a similarity tf.

Q+B"’=g¢g"'Qg,

generated by the cohomomorphism

1
g = Pexp (/ th[O](t)\O) .
0

Then L is transformed by (the inverse of) this similarity transformation as

~

mL = mgLg ' =mQ +7'b+ Xrib,
where 3
b= gb-BY")g "

Here g preserves the cyclicity, and thus b is also cyclic w.r.t wy.
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By this transformation, the small Hilbert space condition n® = 0 is mapped
to
0 = mgn(e\ s = ADLIAHICDD) gy,

with L" = gng .

The NS component has the same form as the Maurer-Cartan eq. for the
pure-gauge string field G,,(V') in the WZW-like formulation:

L")y = 0.
This suggests the identification
mg(e"*Ns) = G, (V), @rp = V. (6)

between (P g, Pr) and string fields (V, V) in the WZW-like formulation.
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If we identify the associated fields B;(V (t)) (d = t,6) with
Ba(V(t)) = mg€a(e*Ns),
where &5 is the one coderivation &5 derived from &0, then the identities

dG,(V(t)) = m{ L") A By(V (1)),
8, Bs(V (t)) — 6B, (V(¢))
+ 7L (" A B(V (1) A Bs(V () = 0.

characterizing the associated field follows from the identification (6).
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The action in homotopy algebraic formulation can be written in the WZW-
like form by using ®ng(t) with ®ng(1) = Png and Pns(0) = 0. Using the
cyclicity we find

1
S = / dt w (€0, @ Ns(t) , 7Y L(e P Vsh)y)
0

1 00
~ W, b YO (I) lb /\CIDNS/\ d N2r+1
‘|‘2w( R Q R +rz::0 2T—|—2 Ry T (6 R )7

which can be mapped to the complete WZW-like action

5 = / dt o (Bu(V (1)), QGy(V (1))

1
+ 5 ws(V YQ@-+§:

r= O

0 b NGp(V) A \PA2T+1
(2r + 2) ( ™ b(e ))

through the identification (6), using the identity for odd coderivations 15 5 :

wl(mgll(e/\@) ,nglg(eA(I))) = wl(mll(e/@) ,7T1l2(€/\cb)) .
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Gauge tf.: Since
0Gy(V) = DyBs(V),

the identification (6) is not one-to-one. We have an extra gauge invariance
under

Bs(V)=D,Q, &¥ =0, (7)

in the WZW-like formulation. In addition the gauge tf. in homotopy algebric
formulation,

m16(eMNENSTOR)Y — 7 [(eMENSTPR) A (Ang + AR)),

is mapped to the gauge tf. in the WZW-like formulation, except for the terms
which can be absorbed into the tf. (7), as

Bs(V) =rL(e™M ) A (A = €X) = QA + 7b(eMETY) A (A - €N)),
SU =nmiL(e™MGnTY) A (A — X)) = QA+ Xnmib(elGrtY) A (A — EN)),

with the identification of gauge parameters A = —7{g(e"®Ns A EAns) and
A = Agr. We can independently show the gauge invariance.

27



Summary

¢ We have constructed complete actions and gauge tfs. for heterotic string
field theory in both homotopy algebraic formulation and WZW-like formulation.

¢ We have also confirmed that tree level four point amplitudes are correctly
reproduced.

¢ The extension to the type |l superstring field theory is straightforward.

¢ Construction of complete action is not the end of the story but just
the beginning. SFT provides a solid foundation to study various interesting
properties of heterotic string.
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