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Introduction

Superstring field theory is one of the approaches to define superstring theory
nonperturbatively.

We need a complete superstring field theory including both the Neveu-
Schwarz and Ramond sectors.

Open superstring: There are three complemantary approaches.

· WZW-like approach: (Berkovits (1995))
Kunitomo and Okawa (2016)

· Homotopy algebraic approach: (Erler, Konopka and Sachs (2014))
Erler, Okawa and Takezaki (2016)

· Sen’s approach: (Sen (2016))
Konopka and Sachs (2016)
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Closed superstring

⋄ Sen’s approach: Sen (2016)

No complete theory based on the remaining two approaches so we should
construct them.

We first consider the heterotic string field theory.
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Homotopy algebraic formulation (Erler-Konopka-Sachs 2014)

String fields: Φ = ΦNS +ΦR ∈ H = HNS(2,−1)
small +HR(2,−1/2)

small .

Constraints: b−0 Φ = L−
0 Φ = 0 , XY ΦR = ΦR .

X and Y are defined by

X = −δ(β0)G0 + δ′(β0)b0 , Y = −2c+0 δ
′(γ0) ,

which satisfy
[Q,Ξ] = X , XY X = X .

ΦR is restricted in the form

ΦR = ϕR − 1

2
(γ0 + 2c+0 G)ψR , (G = G0 + 2γ0b0) ,

which we denote Φ ∈ Hres .
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Note that ϕR and ψR are field and anti-field, respectively, in BV formalism
(gauge-fixed basis).

Symplectic form:

Ω(Φ1 ,Φ2) = ωs(Φ1NS ,Φ2NS) + ωs(Φ1R , Y Φ2R)

= ⟨⟨ϕ1R|ψ2R⟩⟩+ ⟨⟨ψ1R|ϕ2R⟩⟩ .(
ωs(Φ1 ,Φ2) = (−1)|Φ1|⟨Φ1|c−0 |Φ2⟩

)

String products:

Ln(Φ1 , · · · ,Φn) ∈ Hres , (n ≥ 2) ,

L1Φ = QΦ .
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If L1 = Q, L2, L3, · · · is a cyclic L∞ algebra satisfying

∑
σ

n∑
m=1

(−1)ϵ(σ)

m!(n − m)!
Ln−m+1(Lm(Φσ(1) , · · · ,Φσ(m)) ,Φσ(m+1) , · · · ,Φσ(n)) = 0 ,

Ω(Φ1 , Ln(Φ2 , · · · ,Φn+1)) = −(−1)|Φ1|Ω(Ln(Φ1 , · · · ,Φn) ,Φn+1) ,

with proper ghost and picture numbers,

Action:

S =

∞∑
n=0

1

(n+ 2)!
Ω(Φ , Ln+1(Φ , · · · , Φ︸ ︷︷ ︸

n+1

))

is invariant under

Gauge tf.:

δΦ =

∞∑
n=0

1

n!
Ln+1(Φ , · · · , Φ︸ ︷︷ ︸

n

, Λ) .
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How to construct {Ln} with proper ghost/picture numbers?

We know “bosonic” products {L(0)
n } , which is an L∞ algebra with proper

ghost number but no picture number.

Construct {Ln} by suitably putting X and ξ0 in {L(0)
n } so as

to be proper picture number.

For NS sector: Erler-Konopka-Sachs (2014)

We modify EKS construction and extend it to the one for both
NS and Ramond sectors.
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Proper picture number: p(ΦNS) = −1 , p(ΦR) = −1
2

Picture number of Ln+2 is determined so that L
(p)
n+2 is closed

in HNS(−1)
small ⊕HR(−1/2)

small :

p((L
(p)
n+2(· · · ))NS) = −1 , p((L

(p)
n+2(· · · ))R) = −1

2
.

Consider L
(p)
n+2|2r with 2r =(Ramond #)=(# of R inputs)−(# of R outputs).

(1) Output is NS state when 2r of n+ 2 inputs are R states:(
−
1

2

)
× 2r + (−1) × (n + 2 − 2r) + p = −1

(2) Output is R state when 2r + 1 of n+ 2 inputs are R states:(
−
1

2

)
× (2r + 1) + (−1) × (n + 1 − 2r) + p = −

1

2

We find p = n− r + 1 or L
(p)
p+r+1|2r .
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Cyclicity: Ramond # is not suitable to consider cyclicity. Instead

cyclic Ramond # = (# of R inputs) + (# of R outputs) (denoted as |2r) is useful:

Ω
(
ΦNS1 , L

(p)
n |2r2r(ΦNS2 , · · · ,ΦR(n+1))

)
∼ Ω

(
ΦR(n+1) , L

(p)
n |2r2r−2(ΦNS1 ,ΦNS2 , · · · )

)
So first consider B

(p)
p+r+1|2r (p + r + 1 ≥ 2)

(1’) Output is NS when 2r inputs are R, B
(p)
p+r+1|2r2r :(

−
1

2

)
× 2r + (−1) × ((p + r + 1) − 2r) + p = −1 , (p# deficit = 0)

(2’) Output is R when 2r − 1 inputs are R, B
(p)
p+r+1|2r2r−2 :(

−
1

2

)
× (2r− 1)+ (−1)× ((p+ r+1)− 2r+1)+p = −

1

2
− 1 , (p# deficit = 1)

Bn+2 cannot be Ln+2 but such a combination often appears as difference
of (nonlinear extension of) Q and η . First order EoM (Berkovits)(HK), general
form of WZW-like theory (Erler), Democratic theory (Kroyter), etc.
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Coalgebraic representation

Symmetrized tensor product: (Φi ∈ H)

Φ1 ∧ Φ2 ∧ · · · ∧ Φn =
∑
σ

(−1)
ϵ(σ)

Φσ(1) ⊗ Φσ(2) ⊗ · · · ⊗ Φσ(n) ∈ H∧n

Symmetrized tensor algebra: SH = H∧0 ⊕ H ⊕ H∧2 ⊕ · · ·

Linear map: Ln : H∧n → H w/ Ln(Φ1 ∧ · · · ∧ Φn) = Ln(Φ1, · · · ,Φn)

Coderivation: Ln : SH −→ SH

Ln Φ1 ∧ · · · ∧ Φm = 0 , for m < n ,

Ln Φ1 ∧ · · · ∧ Φm = Ln(Φ1 ∧ · · · ∧ Φm) , for m = n ,

Ln Φ1 ∧ · · · ∧ Φm = (Ln ∧ Im−n)Φ1 ∧ · · · ∧ Φm , for m < n .

Then we can consider coderivation L =
∑∞

n=0Ln+1 . The L∞ relation is
represented as nilpotency for a (degree odd) coderivation L :

[L ,L ] = 0 .
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Consider nonlinear extensions of Q and η :

π1D = π1Q+ π0
1B , π1C = π1η − π1

1B ,

satisfying [D,D] = [C,C] = [D,C] = 0 , where π0
1 and π1

1 are the projectors
onto NS and R components, respectively. The dierence of these two L∞ algebra

D −C = Q− η +B , B =

∞∑
p,r=0

B
(p)
p+r+1|2r ,

is also an L∞ algebra
[D −C ,D −C ] = 0 ,

which can be cyclic (w.r.t. ωl defined by BPZ inner product of Hlarge ) :

Note: All of these D , C and D −C are not closed in Hsmall .
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We first construct cyclic D −C , then transform (D,C) to (L,η) :

F̂
−1

DF̂ = π1L , F̂
−1

CF̂ = π1η ,

with F̂
−1

= π1ISH − Ξπ1
1B , where

π1L = Q+ π0
1b+Xπ1

1b ,

with π1b = π1BF̂ . Now (L,η) are two (anti)commutative L∞ algebras

[L ,L ] = [η ,η ] = [η ,L ] = 0 ,

and thus L is closed in Hsmall . We can show that if B is cyclic w.r.t. ωl then
b is cyclic w.r.t. ωs which implies L is cyclic w.r.t. Ω:

Ω(Φ1 , Ln(Φ2 , · · · ,Φn+1)) = ωs(Φ1 , bn(Φ2 , · · · ,Φn+1)) .
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How to construct B

R number is additive in commutator but cyclic R number is not:

[ l|2r , l′|2s ] = [ l|2r , l′|2s ]|2r+2s ,

[ l|2r , l′|2s ] = [ l|2r , l′|2s ]|2r+2s + [ l|2r , l′|2s ]|2r+2s−2 .

We define [· , ·]1 and [· , ·]2 by

[ l|2r , l′|2s ]1 ≡ [ l|2r , l′|2s ]|2r+2s ,

[ l|2r , l′|2s ]2 ≡ [ l|2r , l′|2s ]|2r+2s−2 .

If l =
∑

r l|2r and l′ =
∑

s l
′|2s

[ l , l′ ] = [ l , l′ ]1 + [ l , l′ ]2

=
∑
r,s

[ l|2r , l′|2s ]|2r+2s +
∑
r,s

[ l|2r , l′|2s ]|2r+2s−2 .
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Preparation: Bosonic products L
(0)
n+1|2r :

(1)

(
−
1

2

)
× 2r + (−1) × (n + 1 − 2r) = −(n − r) − 1 ,

(2)

(
−
1

2

)
× (2r + 1) + (−1) × (n + 1 − 2r − 1) = −(n − r + 1) −

1

2
.

So they have “p # deficit”m = n − r(+1). We define a generating function
counting the p # deficit:

L(0)(s) = Q+

∞∑
m,r=0

smL
(0)
m+r+1|2r ≡ Q+L

(0)
B (s) ,

which reduces to the bosonic L∞ algebra as L(0) = L(0)(s = 1) : [L(0),L(0)] = 0 .

L
(0)
B (s) satisfies

[Q ,L
(0)
B (s) ] +

1

2
[L

(0)
B (s) ,L

(0)
B (s) ]1 +

s

2
[L

(0)
B (s) ,L

(0)
B (s) ]2 = 0 ,

[η ,L
(0)
B (s) ] = 0 .

(1)
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On the other hand, if we introduce a generating function

B(t) =

∞∑
p,r=0

tpB
(p)
p+r+1|2r , (B0

0|0 ≡ 0)

[D −C,D −C] = 0 is equivalent to

[Q ,B(t) ] +
1

2
[B(t) ,B(t) ]1 = 0 ,

[η ,B(t) ]− t

2
[B(t) ,B(t) ]2 = 0 .

(2)
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Further if we extend B’s to those with arbitrary p # deficit and define a
generating function

B(s, t) =

∞∑
m,p,r=0

smtpB
(p)
m+p+r+1|2r ≡

∞∑
p=0

tpB(p)(s) ,

the ralation (2) can be extendet to

I(s, t) ≡ [Q ,B(s, t) ] +
1

2
[B(s, t) ,B(s, t) ]1 +

s

2
[B(s, t) ,B(s, t) ]2 = 0 ,

J(s, t) ≡ [η ,B(s, t) ]− t

2
[B(s, t) ,B(s, t) ]2 = 0 .

Here B(t) = B(0, t) ,B = B(0, 1) and B(0)(s) = B(s, 0) .
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Differential equation: If we introduce a degree even coderivation (gauge
products)

λ(s, t) =

∞∑
m,p,r

s
m
t
p
λ

(p+1)
m+p+r+2|

2r ≡
∞∑
p=0

t
p
λ

(p+1)
(s) ,

and postulate differential equations

∂tB(s, t) = [Q,λ(s, t)] + [B(s, t),λ(s, t)]1 + s[B(s, t),λ(s, t)]2 ,

[η,λ(s, t)] = ∂sB(s, t) + t[B(s, t),λ(s, t)]2 .
(3)

Then we can show

∂tI(s, t) = [ I(s, t) ,λ(s, t) ]1 + s [ I(s, t) ,λ(s, t) ]2 ,

∂tJ(s, t) = − ∂sI(s, t)− t [ I(s, t) ,λ(s, t) ]2

+ [J(s, t) ,λ(s, t) ]1 + s [J(s, t) ,λ(s, t) ]2 .

Therefore if I(s, 0) = J(s, 0) = 0 then I(s, t) = J(s, t) = 0 . However

equations I(s, 0) = J(s, 0) = 0 are the same as (1), those for L
(0)
B (s) , and

thus satisfied by taking B(0)(s) = L
(0)
B (s) .
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Differential eqs. (3) can be written as

(n+ 1)B(n+1)(s) = [Q ,λ(n+1)(s) ] +

n∑
n′=0

[B(n−n′)(s) ,λ(n′+1)(s) ]1

+

n∑
n′=0

s [B(n−n′)(s) ,λ(n′+1)(s) ]2 ,

[η ,λ(n+1)(s) ] = ∂sB
(n)(s) +

n−1∑
n′=0

[B(n−n′−1) ,λ(n′+1)(s) ]2 ,

and can be solved iteratively.
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Consistency:

If we read (3) as

[Q,λ(s, t)] = N(s, t) , [η,λ(s, t)] = K(s, t) ,

N(s, t) = ∂tB(s, t)− [B(s, t),λ(s, t)]1 − s[B(s, t),λ(s, t)]2 ,

K(s, t) = ∂sB(s, t) + t[B(s, t),λ(s, t)]2 ,

(4)

the “integrability”conditions

[Q ,N(s, t) ] = [η ,K(s, t) ] = 0 ,

[η ,N(s, t) ] + [Q ,K(s, t) ] = 0 ,

follow from I(s, t) = J(s, t) = 0 .
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For n = 0 we have

B(1)(s) = [Q ,λ(1)(s) ] + [L
(0)
B (s) ,λ(1)(s) ]1 + s [L

(0)
B (s) ,λ(1)(s) ]2 , (5a)

[η ,λ(1)(s) ] = ∂sL
(0)
B (s) . (5b)

(5b) can be solved as

π1λ
(1)

(s) =

∞∑
m,r=0

(m + 1)s
m 1

m + r + 3

(
ξL

(0)
Bm+r+2|

2r − L
(0)
Bn+r+2|

2r
(ξ ∧ Im+r+1)

)
≡ π1ξ ◦ ∂sL

(0)
B (s) .

Then B(1)(s) is obtained by substituting this into (5a).
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Similarly B(n)(s) for ∀n can be determined recursively:

λ(n+1)(s) = ξ ◦

(
∂sB

(n)(s) +

n−1∑
n′=0

[B(n−n′−1) ,λ(n′+1)(s) ]2

)
,

(n+ 1)B(n+1)(s) = [Q ,λ(n+1)(s) ] +

n∑
n′=0

[B(n−n′)(s) ,λ(n′+1)(s) ]1

+

n∑
n′=0

s [B(n−n′)(s) ,λ(n′+1)(s) ]2 .
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WZW-like formulation
(Berkovits 1995, Berkovits-Okawa-Zwiebach 2004)

Gauge invariant action in WZW-like formulation can also be obtained by
“field redefinition”.

First we note that if we project B(s, t) and λ(s, t) onto the pure NS sector,

B(s, t)|0 ≡
∞∑

m,n=0

smtnB
(n)
m+n+1|0 =

∞∑
m,n=0

smB[m](t) ,

λ(s, t)|0 ≡
∞∑

m,n=0

smtnλ
(n+1)
m+n+2|0 =

∞∑
m,n=0

smλ[m](t) ,

diff. eqs. (3) reduces to those introduced by EKS, and thus, by construction,
B(s, t)|0 and λ(s, t)|0 , reduce to those of EKS.

22



This implies that the L∞ algebra restricted to the pure NS sector, Q+B[0]|0 ,
can be written in the form of a similarity tf.

Q+B[0]|0 = ĝ−1Qĝ ,

generated by the cohomomorphism

ĝ = P⃗ exp

(∫ 1

0

dtλ[0](t)|0
)
.

Then L is transformed by (the inverse of) this similarity transformation as

π1L̃ ≡ π1ĝ L ĝ−1 = π1Q+ π0
1b̃+Xπ1

1b̃ ,

where
b̃ = ĝ (b−B[0]|0) ĝ−1 .

Here ĝ preserves the cyclicity, and thus b̃ is also cyclic w.r.t ωl.
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By this transformation, the small Hilbert space condition ηΦ = 0 is mapped
to

0 = π1ĝη(e
∧(ΦNS+ΦR)) = π0

1L
η(e∧π0

1ĝ(e
∧ΦNS)) + π1

1ηΦR ,

with Lη ≡ ĝηĝ−1 .

The NS component has the same form as the Maurer-Cartan eq. for the
pure-gauge string field Gη(V ) in the WZW-like formulation:

Lη(e∧Gη(V )) = 0 .

This suggests the identification

π0
1ĝ(e

∧ΦNS) = Gη(V ) , ΦR = Ψ . (6)

between (ΦNS,ΦR) and string fields (V,Ψ) in the WZW-like formulation.
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If we identify the associated fields Bd(V (t)) (d = t, δ) with

Bd(V (t)) = π0
1ĝξd(e

∧ΦNS(t)) ,

where ξδ is the one coderivation ξδ derived from ξδ , then the identities

dGη(V (t)) = π0
1L

η(e∧Gη(t) ∧Bd(V (t))) ,

∂tBδ(V (t))− δBt(V (t))

+ π0
1L

η(e∧Gη(t) ∧ Bt(V (t)) ∧ Bδ(V (t))) = 0 .

characterizing the associated field follows from the identification (6).
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The action in homotopy algebraic formulation can be written in the WZW-
like form by using ΦNS(t) with ΦNS(1) = ΦNS and ΦNS(0) = 0 . Using the
cyclicity we find

S =

∫ 1

0

dt ωl

(
ξ∂tΦNS(t) , π

0
1L(e∧ΦNS(t))

)
+

1

2
ωs(ΦR , Y QΦR) +

∞∑
r=0

1

(2r + 2)!
ωs

(
ΦR , π

1
1b(e

∧ΦNS ∧ ΦR
∧2r+1

)
,

which can be mapped to the complete WZW-like action

S =

∫ 1

0

dt ωl

(
Bt(V (t)) , QGη(V (t))

)
+

1

2
ωs(Ψ , Y QΨ) +

∞∑
r=0

1

(2r + 2)!
ωs

(
Ψ , π1

1b̃(e
∧Gη(V ) ∧Ψ∧2r+1)

)
.

through the identification (6), using the identity for odd coderivations l1,2 :

ωl(π1ĝl1(e
∧Φ) , π1ĝl2(e

∧Φ)) = ωl(π1l1(e
∧Φ) , π1l2(e

∧Φ)) .
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Gauge tf.: Since
δGη(V ) = DηBδ(V ) ,

the identification (6) is not one-to-one. We have an extra gauge invariance
under

Bδ(V ) = DηΩ , δΨ = 0 , (7)

in the WZW-like formulation. In addition the gauge tf. in homotopy algebric
formulation,

π1δ(e
∧(ΦNS+ΦR)) = π1L(e∧(ΦNS+ΦR) ∧ (ΛNS + ΛR)) ,

is mapped to the gauge tf. in the WZW-like formulation, except for the terms
which can be absorbed into the tf. (7), as

Bδ(V ) =π0
1L̃(e∧(Gη+Ψ) ∧ (Λ− ξλ)) = QΛ + π0

1b̃(e
∧(Gη+Ψ) ∧ (Λ− ξλ)) ,

δΨ =ηπ1
1L̃(e∧(Gη+Ψ) ∧ (Λ− ξλ)) = Qλ+Xηπ1

1b̃(e
(Gη+Ψ) ∧ (Λ− ξλ)) ,

with the identification of gauge parameters Λ = −π0
1ĝ(e

∧ΦNS ∧ ξΛNS) and
λ = ΛR . We can independently show the gauge invariance.
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Summary

⋄ We have constructed complete actions and gauge tfs. for heterotic string
field theory in both homotopy algebraic formulation and WZW-like formulation.

⋄ We have also confirmed that tree level four point amplitudes are correctly
reproduced.

⋄ The extension to the type II superstring field theory is straightforward.

⋄ Construction of complete action is not the end of the story but just
the beginning. SFT provides a solid foundation to study various interesting
properties of heterotic string.
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