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D-branes in bosonic string theory are unstable. What is the nature
of the decay process?
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For the light-like deformation, the endpoint of the decay process is
the tachyon vacuum.

Paradox:

How can the decay continuously evolve towards a final state which
does not admit physical deformation?



In the conventional description of string theory, it is difficult to
think clearly about physics near the tachyon vacuum, since there is
no worldsheet theory there.

In open string field theory, the tachyon vacuum is a finite field
configuration. Physics near the tachyon vacuum (if there is any)
should be described by perturbations of this field configuration.



Exact Solution (B0 gauge)
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The leading contribution to the late time expansion is Schnabl’s
solution for the tachyon vacuum. Subleading contributions
represent “fluctuations” of Schnabl’s solution

However, the tachyon vacuum has no fluctuations. The subleading
corrections represent time-dependent gauge transformations of the
tachyon vacuum.

What to make of this?

Some possibilities:

I The decay process ends at the tachyon vacuum in finite time,
exactly when the late time expansion becomes convergent.

I Early/late time expansions represent two consistent but
incompatible interpretations of the same algebraic expression.

I
...



What actually happens:

1. The decay process smoothly connects the unstable D-brane to
the tachyon vacuum.

2. The late time expansion around the tachyon vacuum has
vanishing radius of convergence. Therefore, while the
fluctuations of the tachyon vacuum are order-by-order pure
gauge, it does not follow that the solution is equivalent to the
tachyon vacuum at any finite time.

3. The late time asymptotic expansion is hiding a
nonperturbative effect, representing a physical fluctuation of
the tachyon vacuum which persists through the decay process
and finally vanishes in the infinite future.



1. The final state

Exact Solution (different gauge)
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σ, σ = boundary condition
changing operators connecting unstable
D-brane to copy of itself in process of decay.

x+ → −∞: σ = σ = 1, implies Ψ = 0

x+ → +∞: σ = σ = 0, implies Ψ = tachyon
vacuum



We can expand solution in a basis of eigenstates of L0:

Ψ =

∫
d2k

(2π)2
T (k) ce ik·X (0)|0〉+ ...,

The coefficient of the state with lowest L0 eigenvalue for a given
momentum is the tachyon field T (x).

This is how the tachyon evolves in lightcone time:
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The higher m2 fields show similar behavior.

The solution really does approach the tachyon vacuum in the
infinite future.



2. The late time expansion
Ghost number zero model (makes life easier):

Γ =
1

1 + K
− σ 1
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σ

The rational function of K can be written as a continuous
superposition of star-algebra powers of the CFT vacuum (wedge
states):

1

1 + K
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The integration variable t > 0 is a “Schwinger parameter.”

t → 0: Ωt approaches the identity string field

t →∞: Ωt approaches the sliver state

Complex t ∈ C will be called the Schwinger plane. From the point
of view of the perturbative expansion at late times and
nonperturbative effects, the Schwinger parameter plays a role
analogous to a field variable in the path integral.



Expand in a basis of L0 eigenstates:

Γ =

∫
d2k

(2π)2
γ(k) e ik·X (0)|0〉+ ...,

The coefficient of the state with lowest L0 eigenvalue for a given
momentum will be called the ghost number zero tachyon γ(x).

Exact formula:

γ(x) = 1−
∫ ∞

0
dt e−t exp [−ατ(t)]

t
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I α ∝ ex
+

is an expansion parameter.
α = 0 is the infinite past.
|α| → ∞ is the infinite future.

I τ(t) is a function of t > 0
which monotonically increases from 0 to 1.



γ(x) = 1−
∫ ∞

0
dt e−t exp [−ατ(t)]

Comments:

I In the infinite past (α = 0) the two terms cancel, giving γ = 0
representing the original unstable D-brane.

I In the infinite future (α =∞) the second term vanishes,
giving γ = 1. This is the ghost number zero analogue of the
expectation value at the tachyon vacuum.

I For large α, the integrand is highly suppressed except near
t = 0, where τ(t) vanishes. Therefore the late time behavior
near the tachyon vacuum is characterized by the identity
string field.



Expansion around α = 0:

γ(x) = −
∞∑
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1
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Therefore the early time expansion has infinite radius of
convergence.

Furthermore, the late time expansion has vanishing radius of
convergence.

Transform integration variable from t to τ :

γ(x) = α

∫ 1

0
dτ e−t(τ)e−ατ

τ ∈ C is the Borel plane.



γ(x) = α

∫ 1

0
dτ e−t(τ)e−ατ

The factor e−t(τ) in the integrand is the Borel transform of the
late time expansion of the ghost number zero tachyon in inverse
powers of α.

Since the late time expansion has vanishing radius of convergence,
expansion of t(τ) around τ = 0 must have finite radius of
convergence.

t(τ) will have a singularity for any finite τ = τ(t) where t is
infinite. In particular, it must be singular at τ = 1.



A full analysis of the singularities of e−t(τ) in the Borel plane
reveals:
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The singularity at τ = 1 implies that the late time expansion
around the tachyon vacuum is not Borel resummable.

The late time behavior of the solution must receive important
contribution from nonperturbative effects.



3. Nonperturbative effects I: Rolling to the wrong side of
the potential.
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The effective potential for the tachyon
field can roughly be visualized as a cubic curve.

The solution we have been discussing
corresponds to pushing the tachyon in the
positive direction, towards the local
minimum of the effective potential.

What happens if we push the tachyon
to negative values, where the tachyon effective
potential is unbounded from below?

Pushing towards negative values corresponds to switching the sign
in front of the marginal operator ex

+
, or equivalently considering

negative α.

The formal argument given at the beginning suggests that the
string field will still condense to the tachyon vacuum.



Field theory model:
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Note the linear dilaton coupling and cubic potential.

Solution:

φ(x) = 1− 1

1± ex+

with ± rolling in positive or negative direction from unstable
maximum.
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Same as string field theory solution
after setting K = 0.

Rolling in negative direction, the field hits a
singularity at finite time. After we can continue
to another branch where the field approaches
the local minimum in the infinite future.



The finite time singularity in the field theory model is possible since
the expansion in powers of ex

+
has finite radius of convergence.

In string field theory, the expansion in powers of ex
+

has infinite
radius of convergence, so a finite time singularity is not possible.



What happens in string theory is quite different

For α << 0 the late time behavior ghost number zero tachyon

γ(x) = 1−
∫ ∞

0
dt e−t exp [−ατ(t)]

is dominated by a sliver-like critical point at

t ∝ (−α)1/3

which leads to the asymptotic behavior

γ(x) ∼ ee
x+

The solution diverges super-exponentially at late times as it rolls
down the unbounded side of the tachyon effective potential.



Strangely, the late time behavior near the tachyon vacuum still
makes sense as an asymptotic expansion even if α < 0.

(a)

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

1.5

(b)

(c)

original 
D-brane

tachyon 
vacuum

"mystery" 
vacuum

The asymptotic expansion
is actually Borel resumable
for α < 0, so we can we
can derive a curious solution
which rolls to the tachyon
vacuum from the “other
side” of the local minimum of
the tachyon effective potential.



Nonperturbative effects II: Steepest descent

Nonperturbative effects are related to saddle points of the “action
functional” defining the ghost number zero tachyon:

S(t) = t + ατ(t)

The Schwinger parameter is analogous to a field in the path
integral, and α−1 is analogous to a coupling constant.
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For α < 0 the singularities
and saddle points of the action
functional are shown to
the left. The red dot on the real axis
is the sliver-like critical point which
determines the superexponential
growth when the tachyon rolls
to the wrong side of the potential.



It is natural to guess that the sliver-like critical point for α < 0 is
related to a saddle point contribution to the late time behavior
when α > 0.

To see this we consider complex α

α = −e iθ|α|

and track the saddle point contribution to the asymptotics as θ
increases from 0 to π.



The saddle point contribution to the late time behavior is defined
by the method of steepest descent.

Idea: Decompose the contour t ∈ [0,∞] into a homotopically
equivalent contour consisting of segments which follow paths of
steepest descent. Each segment will produce a distinguished
contribution to the late time behavior.

One can show that t ∈ [0,∞] is homotopically equivalent to a
steepest descent contour consisting of two segments:

Cend : Im(S(t)) = 0, Csaddle : Im(S(t)) = Im(S(tsaddle))

Cend is the steepest descent contour emanating from the origin
t = 0, and Csaddle is the steepest descent contour passing through
the sliver-like saddle point at

tsaddle ∝ e iθ/3|α|1/3



Rolling (in a complex direction) towards the side of the tachyon
effective potential which is unbounded from below corresponds to
θ ∈ [0, π/2]. In this case the steepest descent contour looks like
this:
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The saddle point contour produces the dominant super-exponential
growth at late times. The contribution from the endpoint contour
is vanshingly insignificant.

The endpoint contour, however, is exactly the same as the strange
solution which approaches the tachyon vacuum from the opposite
side of the local minimum.



Crossing θ = π/2 the saddle point contribution switches from
super-exponentially dominant to super-exponentially suppressed.
This is an anti-Stokes line.

For π/2 < θ . .65π we have some complicated transitional Stokes
phenomena from other saddle points. This is unphysical and we do
not care about it.



Rolling (in a complex direction) towards the tachyon vacuum
corresponds to .65π . θ < π. In this case the steepest descent
contour looks like this:
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The real decay process towards the tachyon vacuum occurs at
θ = π. This is a Stoke’s line, where the relevant saddle point
suddenly shifts from above to below the real axis. This is a
reflection of the fact that the late time expansion for α > 0 is not
Borel resummable.



Transform from the Schwinger to the Borel plane:
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saddleτ∘Cτ∘Cend

The image of the endpoint contour represents an upper lateral
Borel sum of the late time asymptotic series. The image of the
saddle point contour partially cancels this to produce the correct
integration 0 < τ < 1.

In the context of resurgence theory, nonperturbative corrections
corresponds to whatever needs to be added to a lateral Borel
transform to obtain the correct nonperturbative result.



In this way we have identified the nonperturbative fluctuation
hiding underneath the pure gauge asymptotic expansion around the
tachyon vacuum.



More...

I Through its contribution to the boundary state, it is possible
to show that the nonperturbative effect is not gauge trivial,
but represents a physical fluctuation of the tachyon vacuum.

I The strange solution which approaches the tachyon vacuum
from the “other side” has no nonperturbative corrections,
since it is defined by Borel summation. Therefore this solution
is gauge trivial. → The tachyon effective potential terminates
at the tachyon vacuum.

I Using resurgence, it is possible to show that the asymptotic
expansion around the tachyon vacuum—though formally
gauge trivial—uniquely determines the form of the physical
nonperturbative fluctuation around the tachyon vacuum.



Thank you!


