

Classical solutions in string field theory

a review

Martin Schnabl Czech Academy of Sciences

International Conference on String Field Theory and String Perturbation Theory
GGI Florence, May 6, 2019

Motivation

- There are many problems in string theory which can be addressed most naturally and possibly only within the context of *string field theory*
- This talk will focus on constructions of classical backgrounds which are needed to understand fate of unstable systems, relationships between backgrounds, time-dependent processes etc.

Open bosonic SFT

Open supersymmetric SFT

Closed bosonic SFT

Closed supersymmetric SFT

Open bosonic SFT

Numerical: Sen and Zwiebach and many others (1999-2018); (non-)universal solutions of all sorts

Analytic: wedge based, KBc algebra and generalizations

Open supersymmetric SFT

Closed bosonic SFT

Closed supersymmetric SFT

Open bosonic SFT

Numerical: Sen and Zwiebach and many others (1999-2018); (non-)universal solutions of all sorts

Analytic: wedge based, KBc algebra and generalizations

Open supersymmetric SFT

Numerical: tachyon vacuum, lumps, D0/D4 (mostly 2000-2001)

Analytic: Tachyon vacuum - Erler 2013, Marginal deformations (see talk by Ivo Sachs)

Closed bosonic SFT

Open bosonic SFT

Numerical: Sen and Zwiebach and many others (1999-2018); (non-)universal solutions of all sorts

Analytic: wedge based, KBc algebra and generalizations

Open supersymmetric SFT

Numerical: tachyon vacuum, lumps, D0/D4 (mostly 2000-2001)

Analytic: Tachyon vacuum - Erler 2013, Marginal deformations (see talk by Ivo Sachs)

Closed bosonic SFT

Numerical: Belopolsky, Zwiebach, Okawa, Yang, Moeller (1994-2008)

Tachyon vacuum, lumps, twisted tachyon condensation

Open bosonic SFT

Numerical: Sen and Zwiebach and many others (1999-2018); (non-)universal solutions of all sorts

Analytic: wedge based, KBc algebra and generalizations

Open supersymmetric SFT

Numerical: tachyon vacuum, lumps, D0/D4 (mostly 2000-2001)

Analytic: Tachyon vacuum - Erler 2013, Marginal deformations (see talk by Ivo Sachs)

Closed bosonic SFT

Numerical: Belopolsky, Zwiebach, Okawa, Yang, Moeller (1994-2008)

Tachyon vacuum, lumps, twisted tachyon condensation

Closed supersymmetric SFT

Analytic: marginal deformation to 2nd order – see talk by Xi Yin

Outline of this talk

- 1-slide OSFT review
- Universal solutions: numerical approaches
- Non-universal solutions:
 BCFT-OSFT relation and numerical approaches
- Analytic solutions in OSFT
- Comment on defects

Bosonic OSFT: Witten's version

Open string field theory is defined using the following data

$$\mathcal{H}_{BCFT}, \quad *, \quad Q_B, \quad \langle . \rangle.$$

Witten (1986) proposed the following action

$$S = -\frac{1}{g_o^2} \left[\frac{1}{2} \left\langle \Psi * Q_B \Psi \right\rangle + \frac{1}{3} \left\langle \Psi * \Psi * \Psi \right\rangle \right],$$

This action has a huge gauge symmetry

$$\delta\Psi = Q_B\Lambda + \Psi * \Lambda - \Lambda * \Psi,$$

provided certain natural axioms are obeyed (DGA with trace)



Universal solutions

- numerical approaches

20 years of Sen-Zwiebach calculation

- In 1999 Sen and Zwiebach decided to test a conjecture by Sen, that the value of the OSFT action at the critical point corresponding to the condensed tachyon exactly cancels the tension of a D-brane.
- For a string field truncated to e.g. level 2 in the universal subspace of the underlying BCFT we take

$$|T\rangle = tc_1|0\rangle + uc_{-1}|0\rangle + v \cdot \frac{1}{\sqrt{13}}L_{-2}c_1|0\rangle$$

and one has to find stationary points of the OSFT action

20 years of Sen-Zwiebach calculation

The OSFT action equals in this case

$$f^{(4)}(T) = 2\pi^{2} \left(-\frac{1}{2}t^{2} + \frac{3^{3}\sqrt{3}}{2^{6}}t^{3} - \frac{1}{2}u^{2} + \frac{1}{2}v^{2} + \frac{11\cdot3\sqrt{3}}{2^{6}}t^{2}u - \frac{5\cdot3\sqrt{39}}{2^{6}}t^{2}v + \frac{19}{2^{6}\sqrt{3}}tu^{2} + \frac{7\cdot83}{2^{6}\cdot3\sqrt{3}}tv^{2} - \frac{11\cdot5\sqrt{13}}{2^{5}\cdot3\sqrt{3}}tuv \right).$$

They found a critical point

$$t_c \simeq 0.542, \ u_c \simeq 0.173, \ v_c \simeq 0.187$$

for which the D-brane tension is cancelled within 95%

20 years of Sen's conjectures

 First evidence, however, has been provided by a numerical approach – level truncation

Tricks for level truncation

Critical ingredients for a useful computerized level truncation

- 1. Convenient basis of states universality, twist condition, gauge condition, SU(1,1) condition,...
- 2. Conservation laws for vertex computation
- 3. Finding a good starting point for Newton's method
- 4. Algorithmic tricks (parallelism)
- 5. Having good observables
- Fits to infinite level

Observables for universal solutions

- Energy computed from the action E=V+1
- The only independent Ellwood invariant

$$E_0 = -4\pi i \langle E[c\bar{c}\partial X^0\bar{\partial} X^0]|\Psi\rangle + 1$$

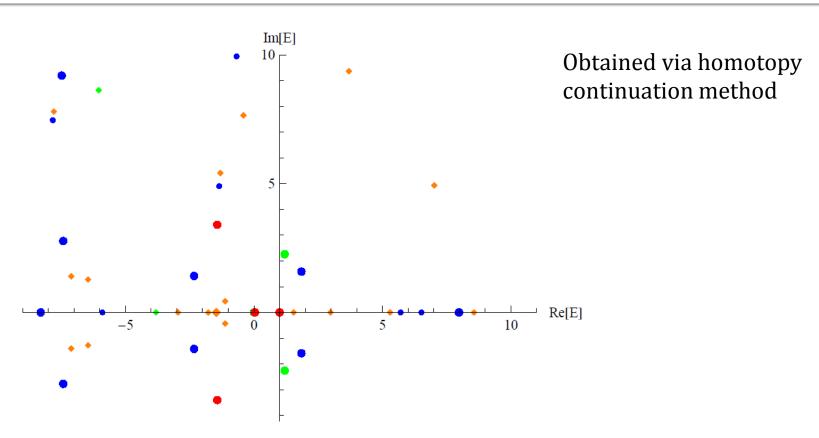
For solutions equals *E*, see Baba, Ishibashi 2012

Out-of-Siegel-gauge equations (we take just the first one)

$$\Delta_S = \left| \langle 0 | c_{-1} j_2^{gh} | Q \Psi + \Psi * \Psi \rangle \right| = \left| \langle 0 | c_{-1} c_0 b_2 | Q \Psi + \Psi * \Psi \rangle \right|$$

Ratios
$$R_n = (-1)^n \frac{54}{65} \frac{\langle \Psi | c_0 L_{2n}^m | \Psi \rangle}{\langle \Psi | c_0 L_0 | \Psi \rangle}$$

Siegel gauge universal solutions



Solutions (starting points) at level 2, level 4, level 5, level 6. Twist even •, non-even ♦ , SU(1,1) singlets: bigger symbols

Siegel gauge universal solutions

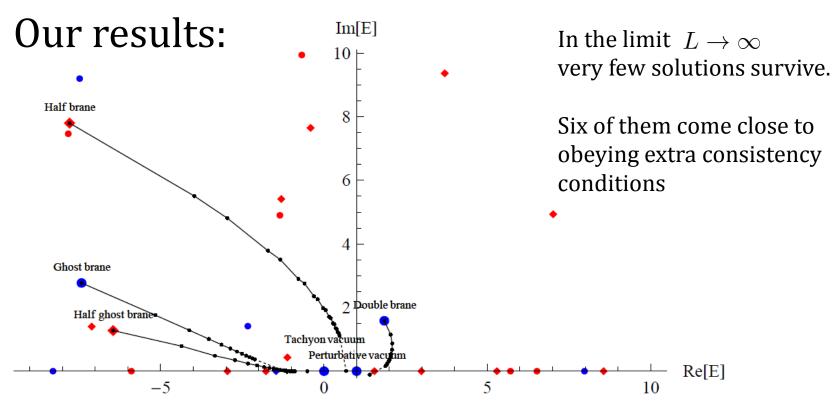


Figure 1: Twist even solutions at level 6 and twist non-even solutions at level 5 represented as dots or diamonds respectively in the energy complex plane. SU(1,1) singlet solutions are represented by blue color, non-singlet solutions by red. By black line and dots we show the improvement of the interesting solutions to higher levels, the dashed part of the line is infinite level extrapolation.

Siegel gauge universal solutions

Our results:

Solution	$\mathrm{Energy}^{L=\infty}$	$E_0^{L=\infty}$	$\Delta_S^{L=\infty}$	Reality	Twist even	SU(1,1) singlet
tachyon vacuum	-8×10^{-6}	0.0004	-7×10^{-6}	yes	yes	yes
single brane	1	1	0	yes	yes	yes
"ghost brane"	-1.13 + 0.024i	-1.01 + 0.11i	0.08	no	yes	yes
"double brane"	1.40 + 0.11i	1.23 + 0.04i	0.20	possibly*	yes	yes
"half ghost brane"	-0.51	-0.66	0.17	$pseudoreal^{**}$	no	no
"half brane"	0.68 - 0.01i	0.54 + 0.1i	0.23	no	no	no

^{*} as $L \to \infty$

Unphysical objects fortunately do not obey reality condition, not even asymptotically. Could the ghost and meronic branes play a role in non-perturbative OSFT?

^{**} for $L \ge 22$

Non-universal solutions - numerical approaches

Kudrna, Maccaferri, MS, JHEP 1307 (2013) 033; Kudrna, Rapčák, MS, : arXiv:1401.7980; Kudrna, MS, arXiv:1812.03221; Kudrna, Schnabl, Vošmera, to appear

 String field theory is a great tool to learn new things about BCFT from a novel perspective.

■ Let us consider OSFT for strings 'propagating' in a background given by $\mathrm{BCFT}_c \otimes \mathrm{BCFT}_{26-c}$ and look for classical solutions which do not excite any primaries in BCFT_{26-c} . Such solutions will describe new BCFT_c^* .

 The full boundary state can be constructed rather explicitly as

$$|B_{\Psi}\rangle = \sum_{\alpha} B_{\Psi}^{\alpha} |V_{\alpha}\rangle\rangle$$

where $|V_{\alpha}\rangle$ are the Ishibashi states and

$$B_{\Psi}^{\alpha} = 2\pi i \langle I | \mathcal{V}^{\alpha}(i, -i) | \Psi - \Psi_{TV} \rangle^{\text{BCFT}_c \otimes \text{BCFT}_{26-c} \otimes \text{BCFT}_{\text{aux}}}$$

$$\mathcal{V}^{\alpha} = c\bar{c}V^{\alpha} e^{2i\sqrt{1-h_{\alpha}}Y} w$$

See: Kudrna, Maccaferri, M.S. (2012)

Alternative attempt:

Kiermaier, Okawa, Zwiebach (2008)

 Side comment: the OSFT formula for the boundary state makes manifest the BCFT relation

$$\frac{B_x^{\beta} B_y^{\beta}}{B_0^{\beta}} = \sum_z N_{xy}^z B_z^{\beta}$$

• To see that, let us assume that the solution $|\Psi\rangle$ describes the boundary state $||B_x\rangle\rangle$ as seen from $||B_0\rangle\rangle$. Assuming that the Verma modules "turned on" are present also on $||B_y\rangle\rangle$ and the structure of boundary operators is identical, the claim readily follows.

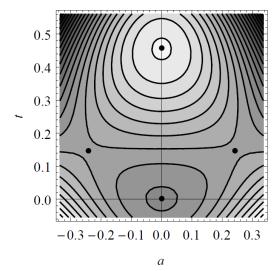
OSFT for the Ising model

• OSFT can be conveniently used for constructing e.g. the fixed boundary condition out of the free one. For the σ -brane at level ½ the string field

$$\Psi = tc_1|0\rangle + ac_1|\varepsilon\rangle$$

leads to a potential

$$\mathcal{V}(t,a) = -\frac{1}{2}t^2 - \frac{1}{4}a^2 + \frac{1}{3}K^3t^3 + K^2a^2t$$

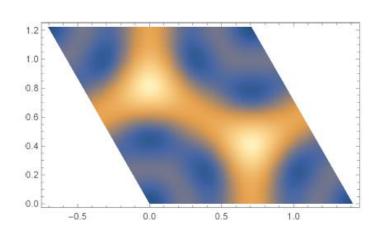


The various critical points have been interpreted as perturbative and tachyon vacua, and 1 or ε branes

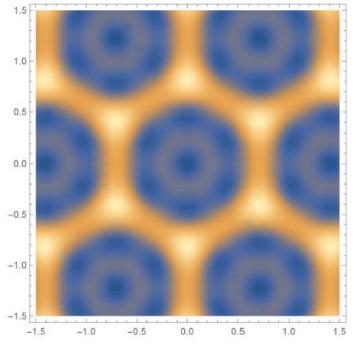
BCFT's from OSFT

Sometimes we discover really new boundary conditions. On a Z_3 torus with $\frac{2}{\sqrt{3}} < R < \sqrt{3}$ we find by condensing a Z_3 symmetric tachyon momentum mode on a wrapped D2

brane new unexpected state



See talk by Vošmera and upcoming work Kudrna, MS, Vošmera



Analytic solutions in OSFT

Universal: MS (2005), Okawa (2006),, Mertes, MS, JHEP 1612 (2016) 151 Non-universal: MS, KORZ (2007); ..., Erler, Maccaferri (2014)....

Simple subsector of the star algebra

- The star algebra is formed by vertex operators and the operator *K*. The simplest subalgebra relevant for tachyon condensation is therefore spanned by *K* and *c*. Let us be more generous and add an operator *B* such that *QB=K*.
- The building elements thus obey

$$c^{2} = 0, \quad B^{2} = 0, \quad \{c, B\} = 1$$

 $[K, B] = 0, \quad [K, c] = \partial c$

■ The derivative Q acts as $Q_BK = 0$, $Q_BB = K$, $Q_Bc = cKc$.

This new understanding lets us construct solutions to OSFT equations of motion $Q_B\Psi + \Psi * \Psi = 0$ easily.

It does not take much trying to find the simplest solution is
$$\Psi = \alpha c - cK$$

$$Q\Psi = \alpha(cKc) - (cKc)K$$

$$\Psi * \Psi = \alpha^2c^2 - \alpha c^2K - \alpha cKc + (cK)(cK)$$

More general solutions are of the form

$$\Psi = Fc \frac{KB}{1 - F^2} cF$$
, Here $F = F(K)$ is arbitrary M.S. 2005, Okawa, Erler 2006

- What do these solutions correspond to?
- In 2011 with Murata we succeeded in computing their energy

$$E = \frac{1}{2\pi^2} \oint_C \frac{dz}{2\pi i} \frac{G'(z)}{G(z)}$$

in terms of the function $G(z) = 1 - F^2(z)$

• For simple choices of G, one can get perturbative vacuum, tachyon vacuum, or exotic multibrane solution. At the moment the multibrane solutions appear to be a bit singular. (see also follow-up work by Hata and Kojita, and talk by Kojita)

The KBc can be naturally extended by adding string fields

$$\mathbb{L}_n=\mathcal{L}_n^L|I
angle$$
 Note that: $K=\mathcal{L}_{-1}^L|I
angle=\mathbb{L}_{-1}$ $[\mathbb{L}_m,\mathbb{L}_n]=(m-n)\mathbb{L}_{m+n}$

 Considering n=0,-1 is a consistent truncation. Example of a solution is

$$\Psi = F(K, L)cB \frac{1}{1 - F^2(K, L)} KcF(K, L)$$

 To show this, it is useful to use star product relations of kappa-deformed spacetime obeying identities such as

$$KF(K,L) = F(K,L-1)K$$

Masuda, Noumi, Takahashi (2012) solution

$$\Psi = F(K)c\frac{KB}{1-F(K)^2}cF(K) + H(K)c\frac{KB}{1-H(K)^2}cH(K)$$

for
$$F(K)H(K) = 1$$

It seems to describe ghost D-brane, but is too identity-like

 Most general tachyon vacuum solution due to Erler (see Jokel 2017)

$$\Psi = T \frac{KB}{1 - F} T + Q_{\mathrm{B}}(BT) \qquad [B, T] = F$$

Non-universal solutions

- Going beyond wedge based or KBc ansatz for the string field we add new elementary string fields particular to the BCFT in question
- Popular choices:

K,B,c,J for exactly marginal deformations $K,B,c,\sigma,\bar{\sigma}$ for generic background changes $K,B,c,\sigma,\bar{\sigma},\gamma,Q\sigma,Q\bar{\sigma}$ for the superstring

Exactly marginal solutions

• Solutions based on K, B, c, J

When the perturbing operator dimension 1 operator has regular OPE $J(z)J(0)\sim {
m finite}\,$ the resulting solution can be readily found (MS; Kiermaier, Okawa, Rastelli, Zwiebach 2007)

$$\Psi = FcJ \frac{B}{1 + \frac{1 - F^2}{K}J}cF$$

For the typical case $J(z)J(0)\sim {
m singular}$ one has to resort to subtraction procedure (KORZ 2007) or to use integrated vertex operators Fuchs, Kroyter, Potting 2007 or Maccaferri 2014, or much more complex Kiermaier Okawa 2009

Erler-Maccaferri solution

In 2014 Erler and Maccaferri searched for a solution in the form

$$\Psi = \Psi_{tv} - \Sigma \Psi_{tv} \overline{\Sigma},$$

Precursors: Kiermaier, Okawa, Soler 2010 MS 2001 and VSFT papers

where

$$Q_{\Psi_{tv}}\Sigma = Q_{\Psi_{tv}}\overline{\Sigma} = 0, \ \overline{\Sigma}\Sigma = 1$$

guarantee that the e.o.m. are satisfied. Interestingly

$$\Psi_{\rm tv} = \sqrt{F} \left(c \frac{B}{H} c + B \gamma^2 \right) \sqrt{F}, \qquad \qquad \Sigma = Q_{\Psi_{\rm tv}} (\sqrt{H} \sigma B \sqrt{H}), \\ \overline{\Sigma} = Q_{\Psi_{\rm tv}} (\sqrt{H} B \overline{\sigma} \sqrt{H}).$$

give a solution provided $\overline{\sigma}\sigma = 1$

Erler-Maccaferri solution

• In the follow-up work Erler, Maccaferri and Noris (2019) argue that for $F(K) \sim K^{\nu}$, $K \to \infty$, various ambiguities disappear for $\nu < -1$ (superstring) or $\nu < 0$ (bosonic)

To satisfy $\bar{\sigma}\sigma=1$ one cannot use simply the boundary condition changing operators, EM dress them by e^{kX^0} factors to cancel the OPE divergences.

 Interesting application by Ishibashi, Kishimoto, Masuda, Takahashi (2018) for solutions describing constant magnetic flux on D-brane

Classical solutions in super OSFT

 In 2013 there was a significant progress by Erler, who found the tachyon vacuum for Berkovits super-OSFT

$$S = \frac{1}{2q^2} \left\langle \left\langle (e^{-\Phi} Q_B e^{\Phi})(e^{-\Phi} \eta_0 e^{\Phi}) - \int_0^1 dt (e^{-t\Phi} \partial_t e^{t\Phi}) \{(e^{-t\Phi} Q_B e^{t\Phi}), (e^{-t\Phi} \eta_0 e^{t\Phi})\} \right\rangle \right\rangle$$

where Φ is picture-number and ghost-number zero string field. This action can be also written as

$$S = -\int_0^1 dt \operatorname{Tr}[(\eta \Psi_t) \Psi_Q] \quad \Psi_Q \equiv g(t)^{-1} Q g(t), \quad \Psi_\eta \equiv g(t)^{-1} \eta g(t), \quad \Psi_t \equiv g(t)^{-1} \partial_t g(t)$$

The equation of motion takes the form $\eta_0(e^{-\Phi}Q_Be^{\Phi})=0$

Classical solutions in super OSFT

- On a non-BPS D-brane the solution can be conveniently looked for in the basis K, B, c, γ and γ^{-1} suggested by Berkovits and M.S.
- Erler looked for solutions such that

$$\Psi = c \frac{1}{1+K} - Q\left(c \frac{B}{1+K}\right)$$

Corresponding g can be constructed by $g = Q_{0\Psi}\beta$ With a clever choice of β he found:

$$g = (1+\zeta)\left(1+Q\zeta\frac{B}{1+K}\right) \qquad g^{-1} = \left(1-Q\zeta\frac{B}{1+K+V}\right)(1-\zeta) \qquad \qquad \zeta \equiv \gamma^{-1}c$$
 for which he could have computed the energy etc.
$$V \equiv \frac{1}{2}\gamma^{-1}\partial c$$

for which he could have computed the energy etc.

Open bosonic SFT

Open supersymmetric SFT

Closed bosonic SFT

Closed supersymmetric SFT

Open problems

Open bosonic SFT

Find a well behaved anomaly-free solutions for multiple branes

Find a well behaved anomaly-free solution for a generic RG flow (cf. BMT 2010)

Closed bosonic SFT



Open supersymmetric SFT

Open problems

Open bosonic SFT

Find a well behaved anomaly-free solutions for multiple branes

Find a well behaved anomaly-free solution for a generic RG flow (cf. BMT 2010)

Open supersymmetric SFT

Find an analog of EM solution

Resolve the controversy surrounding the marginal deformations for the D0/D4 system (see talk by Ivo Sachs)

Closed bosonic SFT

Open problems

Open bosonic SFT

Find a well behaved anomaly-free solutions for multiple branes

Find a well behaved anomaly-free solution for a generic RG flow (cf. BMT 2010)

Closed bosonic SFT

Find an analog of Sen's conjecture for the closed string and construct good observables. Understand action of defects. Are we confined to Witten vertex?

Open supersymmetric SFT

Find an analog of EM solution in Berkovits theory

Resolve the controversy surrounding the marginal deformations for the D0/D4 system (see talk by Ivo Sachs)

