Eternity and the Cosmological Constant

E.A. and Roberto Vidal




C.C.= vacuum energy

Old dream:

To flat space!?

why cannot decay?

Gravitational field looks very different depending on the
sign of cc:
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Abbott & Deser: classical stability outside horizons

(Many people in between...)

Tsamis &Woodard: two loop instability of positive c.c. (de sitter space) in
ordinary quantum gravity

SUSY dislikes positive c.c. i.e., de Sitter.

(Killing energy is not globally defined because horizons.)

Maldacena: negative c.c. (AdS) consistent vacua of quantum gravity.

KKLT: metastable positive c.c. (de sitter) solutions in string theory.




A.M. Polyakov: Eternity and de Sitter

Claims matter instability in the presence of a positive cosmological constant (de sitter fails the
"eternity test" =absence of spiders)

Proposes a novel way of selecting the correct propagator, claimed to be
equivalent to unitarity.

Integrating the propagator, claims a non vanishing imaginary part for the effective potential

Consistent with the dual CFT being non-unitary?




In the presence of a gravitational background, vacuum is non
unique

Besides, 0+ is not the same as 0- (CTP, Schwinger-Keldysh, BV)

Chernikov & Tagirov: One parameter family of dS invariant vacuum states.

Relations between the sphere, dS, adS EsdS etc confusing...

'LOOKS LIKE A MESS...

AP'S composition principle:

. . a
/d“z(:(:v,z)(:(z,y) = —ayn'z(’(""’ y)

EA&RV:Actua-IIy this is automatic if the propagator
stems from the heat kernel




Heat equation  K(r) ="

OK (z,y;T)

ot =

AK((E,y, T) - /1'2

Kac: Can one hear the shape of a drum?

FSRHE lim K(z,y;7) = d(z,y).

T—0*t

[FSRHE is UNIQUE in the Riemannian case J




Usually the heat equation is used in the small time
expansion (de Witt-Schwinger) to get divergences .

K(xayv ) Kinya Zanzy

This is because it is usually difficult to solve
exactly the heat equation.

If we knew it, we would also know the effective action
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FSRHE defines a propagator

{ G=-A"" ELxK(T)dT }

This yields in flat space: Ko (z,y;7) =

) 0 1 m nf2—-1
Go (‘L=y) — A dr Kq (.L', Y; T) o (Q’R'IIE - y|> Kn_.""z—l (TTL|.II - y|)

> m?2 _ dT
G (z) = K=o (T) e —
0 H
Cc+100 de m—27'
K=o (1) = / 2 € w2 Gy ()




Constant curvature manifolds= spheres and their
analytic continuations

in = 04X X5 =1? ds® = 6 4pdXdXP
A=0
antipodal mapping: Zy: XA — —XA
projective space: RP" = S,,/Z,.
X* = ZGA(XA)Q =+’ ds* = ea(dX™)?
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Euclidean anti-de Sitter space




L"Global" coordinates for S J

XA =1(coshTit, (), sinh il ())

[Global coordinates for H }

XA =1 (sinh 1 (Q),coshTier1 (Q))

—

() = (cosBy, sinbicosby, ...,sin6... sinb,_ 1)

» N (S7) = (1,6)
N (H) = (6’5—1,1,6)




Invariant distance

[Z(X,Y) = in.QY }

:leﬁ; (2 = cos 6

FEadS, : X =1 (coshT,sinhT,_1); (2= coshT
dSy,): X =1 (sinhT,coshTf,_1); (&= coshtcosb

adSy, : X =1 (coshTcosf,cosh, T sinb,sinhti,_2);( z=coshTcos0
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Conformal structure of de Sitter




z<1

z>1




el ot 7 (0,6 T) (
ml2 n - - 2 n
= - Qi—Qi_ =ml2 1 — cos ¥; o
2 i—1 ( 1) ; ( ¢‘-l) ¢ Ccos ¢i—l = ﬁ.‘ . ﬁi—l

eV = (‘%)—%l r (nT—l) i (j - nT—l) Iy nc1 (2) C;-;_l (cos )  (3.8)
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Scalar field on the Sphere

(22 = 1)G" + nzG' £ m?* =0

Look for solutions with a single source at z=1

o _ lxz) _ .o on—=1 . n-1nl=xz
G(z)—Fi(z)—F( 5 >_F(z,u+—2 , —ip+ 5 9 g )

m2l2 — #2 + !n;l!z'

This Green function is unique and it obeys the composition law

Y (Y (V)"
v ’ _E : jk Jk
G- ) = . jG+n—1)+m?
ik




Scalar field on de Sitter

1
cosh 72sin@"—2

! 8, (cosh " 18,G) —

? - 89 (Sin 9""2390) + mzl'zG =0
cosh 77~

(2* = 1)G" + n2G" + m*I°G = 0|, z = cosh 7 cosf (4.8)
must specify the values in the branch cuts

Matching flat space singularities gives the Bunch-Davies (Euclidean) vacuum.

Ambiguities in the GF
G(z) = Ggp(z) + aRe F.(z) + BRe F_(2)
Not all GF correspond to a vev

Subset: Chernikov-Tagirov family of vacua

Co A (ip 4 ) 2 2
Go(2) = 2@ -T2 = N T(E)] { cosh 2a ReF( 5 ) +

2

_ 1
+sinh 2a ReF (ITZ) —z'ImF( ;z) }




[Scalar field on EadS }

In this case, the naive analytic continuation diverges at
infinity

One has got to combine this with an homogeneous
solution




Scalar field on AdS

G must vanish at the well defined spacial infinity

The EadS expression must be continued to the full real axis.

The delta singularities lie in the imaginary part of the F functions;
and the homogeneous pieces can be taken real.

—

1 -2
We have to eliminate the imaginary part of F ( 5 )

—2 n—2 n—2
2

Ry? (2)=e™R,? (z4ie)+e "™R,Z (2—ic)




Lift to a symmetric function defined on the full space.

Sy /Zs
adSn / ZQ
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zeR
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R(z)
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R(z)




The imaginary part of the effective potential

We can see the heat kernel formally as
K(r)= e ™M (3.14)

where M? is the positive definite operator acting on quadratic fluctuations around
the background field, id est,

M?= A+ 8°V(9) (3.15)

and we include masses in the potential.
Let us mention that whenever the full eigenvalue problem for the operator M?
is known, there is a formal FSRHE. Using the discrete notation,

M?u,(z) = A\un(z) (3.16)

with eigenfunctions which can be chosen to obey

(1, ) = / 0p() (2t () = b (3.17)

(where the measure du(z) is usually /|g|d"z) as well as a completeness relationship
of the type

Y ui(@)unly) = 8(z — y) (3.18)

then the following is the sought for FSRHE

[ (z,y|T) = Ze AT (2)un (y) ] (3.19)




If the eigenvalues are real

—

Then the heat kernel is also real

=

and the imaginary part of the free energy vanishes




Heat kernel

-1 + 2] n—l e 292, i n—
K(r;2) = V(Sn) Z T (z)e TV (6)+i(i+n-1)

Free Energy




[de Sitter & anti de Sitter }

Discrete spectrum
L(L+n-1)
[2
n n n
L=—[=]+41,—[=]+42,....,—[=]+

Continuous spectrum

n—1)2
AZ_I_( :

A €10, 00)




Continuous spectrum only

In all cases, we have closure

S Vi) Vi) + [ dAZ(@)Zuly) =5 (@.9)
L




Useful approximation (blind to the differences)

gy 1)9 > A-r('.f@):,*.-r;g.ﬁ :""_1:'2._ ]-
ZQje_"*-""_“NQ/ djje "V 2 = 1 1—_+1—n

0

2 2y A 2 2 24,y 2 2
zll_(m +‘ (O)_(n+l)) (log‘%+log (m +2 (G))_(n+1)))
u u
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The only imaginary part appears when

m? 4+ V" (qb) (n+ 1)2

This corresponds exactly in flat space to

SSB (Weinberg and Wu)




What are the conditions for an imaginary part to appear?

Schwinger-Dyson

)
o gHv

0 — /Dglwpbpcqu et (Sg(9uv)+Sg5(guv @) +Sgn (guv,b,¢)+Scount (guv,9))

Einstein-Hilbert:;

1
(xv/1gl (RW ~ SR KZTW) ) = 0




T/,u/ = (Sm + ng + Sgh + Scount)

Einstein-Hilbert, neglecting counterterms

Vi (

9 _
2

iy /£2T> ) = 0




Scount.grav. — / \/@dnaj (ClR2 + CZRMVR'MV + .. >

Scount.matt. = / V ’g‘dnﬂf (le“”ﬁugb@,,gb + .. )

Proper analysis of Schwinger-Dyson quite
complicated...




To conclude:

It seems possible to build up models
with decaying cosmological constant, but we still
are shy of a workable one







