

ET Coating R&D @UniSa/UniSannio

F. Bobba, G. Carapella, F. Chiadini<u>, C. Di Giorgio</u>, O. Durante, R. Fittipaldi, V. Fiumara, J. Neilson, V. Pierro, I.M.Pinto, M. Principe

Summary

UniSa/UniSannio Team

Scientific Case and Goals of UniSa/UniSannio group Coating noise relevance, and the quest for cryo-friendly coating materials Design and Fabrication of optical coatings based on amorphous nano-layered oxides

Optical Coating -Our Deposition Facility Ion-Assisted Electron Beam from OptoTech

Optical Coating – Our Characterization Facility Scanning probe microscopes, X-Ray diffractometers, Scanning Electron Microscopes

Collaborations

Preliminary results, on-going work, and future plans

UniSa/UniSannio Team

Name	Affiliation	Specialization
Fabrizio Bobba	UniSa - INFN	Material Science
Giovanni Carapella	UniSa - INFN	Material Science
Francesco Chiadini	UniSa - INFN	Optics/Metamaterials
Cinzia Di Giorgio	UniSa - INFN	Material Science
Ofelia Durante	UniSa - INFN	Ph.D. Student
Rosalba Fittipaldi	CNR-SPIN - INFN	Material Science
Vincenzo Fiumara	UniBas - INFN	Optics/Metamaterials
Joshua Neilson	UniSannio - INFN	Ph.D. Student
Vincenzo Pierro	UniSannio - INFN	Optical Modelling
Innocenzo Pinto	UniSannio - INFN	Optics, OSA Fellow
Maria Principe	UniSannio - INFN	Optical Engineering

7 permanents2 Post-Docs2 Ph.D. students

Noise Spectrum of Virgo GW interferometer

Power spectrum of mirror thermal noise: Temperature

$$S_B(f) = \frac{2 k_B T}{\pi^{3/2} f} \frac{(1 - \sigma_s^2)}{w Y_s} \varphi_c$$

Noise Spectrum of Virgo GW interferometer Advanced Virgo Noise Budget Quantum noise 10-21 Gravity gradient Suspension thermal noise Coating Brownian noise 5 Coating thermo-optics noise Visibility volume Substrate Brownian noise $\propto PSD_{floor}^{-3/2}$ & event rate 10 Excess gas Sensitivity [1/IHz] Total noise 4 10-2 Mechanical loss 10-2 behavior in nowadays used coating materials! 10^{2} 10⁴ 10 10 Frequency [Hz]

Power spectrum of mirror thermal noise: Temperature

$$S_B(f) = \frac{2 k_B T}{\pi^{3/2} f} \frac{(1 - \sigma_s^2)}{w Y_s} \varphi_c$$

Cryo-friendly coating materials exist..

Power spectrum of mirror thermal noise: Temperature

$$S_B(f) = \frac{2 k_B T}{\pi^{3/2} f} \frac{(1 - \sigma_s^2)}{w Y_s} \varphi_c$$

..but they crystalize very soon upon annealing!

2593.9 Hz

200

150

250

300

Power spectrum of mirror thermal noise: Temperature

$$S_B(f) = \frac{2 k_B T}{\pi^{3/2} f} \frac{(1 - \sigma_s^2)}{w Y_s} \varphi_c$$

Design, production & characterization of innovative optical coatings

Starting point: Bragg Reflector

Condition of highest Reflectivity

 $t_{\rm H} = t_{\rm L} = -$

Modified Bragg Reflector

Low Refractive Index . n

High Refractive Index . nu

UniSa/UniSannio group research line

Optimized design with minimum thermal noise [PRD 81 (2010) 122001]

Replace homogeneous layers with *stratified nano-composites*

Background of UniSa/UniSannio group : Nanolayered

Composites

Prescribing the nanolaminate index n_{eff} determines uniquely the thickness ratio of the low / high index materials

 $\frac{\delta_{L}}{\delta_{H}} = \left(\frac{{n_{H}}^{2} - {n_{eff}}^{2}}{{n_{eff}}^{2} - {n_{L}}^{2}}\right)$

Prescribing the optical thickness z of the nanolaminate (in units of λ_0/n_{eff}) and a fiducial minimum thickness of the nanolayers yields all feasible (N, δ_H, δ_L) designs, from $N(\delta_H + \delta_L) = z\lambda_0 n_{eff}^{-1}$

Equivalent TiO_2/SiO_2 subwavelength doublet based, QWL thick composites with n_{eff} =2.09

 $\delta_{SiO_2}[nm]$

3.51549

3.28112

3.076052.89511

 $\begin{array}{r} 2.73427 \\ 2.59036 \\ 2.46084 \\ 2.34366 \\ 2.23713 \end{array}$

2.13986

2.0507

1.96867

N	$\delta_{TiO_2}[nm]$	$\delta_{SiO_2}[nm]$	N	$\delta_{TiO_2}[i]$
1	78.0559	49.2168	14	5.5754
2	39.0279	24.6084	15	5.2037
3	26.0186	16.4056	16	i 4.8784
4	19.514	12.3042	17	4.5915
5	15.6112	9.84337	18	4.3364
6	13.0093	8.20281	19	4.1082
7	11.1508	7.03098	20) 3.9027
8	9.75699	6.1521	21	. 3.7169
9	8.67288	5.46854	22	2 3.548
10	7.80559	4.92168	$\overline{23}$	3.3937
11	7.09599	4.47426	24	3.2523
_12	6.50466	4.1014	25	5 3.1222
13	6.0043	3.78591		

Many equivalent designs, with different N, δ_L, δ_H

 TiO_2 does not crystallize upon annealing up to 300°C when stack with SiO₂, in multilayers structure (10 nm each layer).

 TiO_2 does not crystallize upon annealing up to 700 ° C when stack with SiO₂, in multilayers structure (3 nm each layer).

Main Advantage: ...thus resulting into lower losses even at cryo-T!

Main Advantage of nano-layering strategy:

Higher crystallization temperature.

guaranteeing

Higher temperature of post-deposition annealing.

leading to

 Reduction of optical absorption and/or mechanical losses;
Smoother surfaces and interfaces.
Material stress and strain release.

Ion Assisted Deposition Facility

- □ High-vacuum deposition chamber (10⁻⁷ mbar)
- Electron-beam source equipped with 6 crucibles
- Plasma source (IAD)
- Multiple samples deposition
 - Sample size (from 1 to 5 inches)
 - Ceramic lamp for possible high temperature depositions (up to 350°C)
 - Rotary substrate holder for enhanced uniformity with sub-nm accuracy/repeatability
 - Fully programmable via GUI

Ion Assisted – Electron Beam

Electron-beam source: Electrons are emitted from a filament due to thermionic effect, thus deflected and accelerated against the target.

Ion Assisted – Electron Beam

- Electron-beam source: Electrons are emitted from a filament due to thermionic effect, thus deflected and accelerated against the target.
- The target reaches the melting temperature (e.g. about 1700°C for SiO₂ and 1800°C for TiO₂) thus releasing atoms, which travel toward the substrate.

Ion Assisted – Electron Beam

- Electron-beam source: Electrons are emitted from a filament due to thermionic effect, thus deflected and accelerated against the target.
- The target reaches the melting temperature (e.g. about 1700°C for SiO₂ and 1800°C for TiO₂) thus releasing atoms, which travel toward the substrate.
- In ion-assisted deposition, high energy ion beam (Ar, O₂) is focused toward the substrate

Ion Assisted – Electron Beam

- Electron-beam source: Electrons are emitted from a filament due to thermionic effect, thus deflected and accelerated against the target.
- The target reaches the melting temperature (e.g. about 1700°C for SiO₂ and 1800°C for TiO₂) thus releasing atoms, which travel toward the substrate.
- In ion-assisted deposition, high energy ion beam (Ar, O₂) is focused toward the substrate
- Thermally evaporated atoms adsorb kinetic energy by hitting the ions, thus increasing their own energy when reaching the substrate, giving rise to a more dense coating.

Optical Coatings – Characterization Facility

Scanning Probe Microscopes

X-Ray Diffractometers

Optical Coatings – Characterization Facility

Recent addition: Annealing Facility

- Adjustable annealing temperature from room temperature up to 900°C;
- PID Feedback controlled power supply heater with stability of 0.05°C;
- Adjustable annealing pressure from room pressure down to 3x10⁻⁴ mBar;
- Controllable annealing atmosphere.

Optical Coatings – Characterization Facility

Main Tasks: Contribute to structural and morphological characterization of coatings, before and after heat treatment.

Collaborations

Besides structural and morphological analysis, our group collaborates with:

.. for optical characterization and mechanical loss measurements.

Results and Future Plans

Characterization of new samples

Preliminary Tests

Preliminary Tests

Preliminary Results: Fabrication

Deposition of 200-nm single materials

Material	Plasma	Total Thickness (nm)
SiO ₂	Yes	200
TiO ₂	Yes	200
ZrO ₂	Yes	200
HfO ₂	Yes	200

Temperature (K)

What do we know about these materials?

TiO₂ and HfO₂ do not show cryo-peak in mechanical losses BUT crystalize upon annealing at low temperature (200-300°C) with consequent blowup of optical properties!

Preliminary Results: Fabrication

Sample	Plasma	n. Layers	Single layer thickness (nm)	Total Thickness (nm)
TiO ₂ /ZrO ₂	Yes	8	25.6	205
TiO ₂ /ZrO ₂	Yes	16	12.6	202
TiO ₂ /ZrO ₂	Yes	32	6.4	205
TiO ₂ /ZrO ₂	Yes	64	3.2	205
TiO ₂ /ZrO ₂	Yes	122	1.6	195
TiO ₂ /ZrO ₂	Yes	128	1.6	205

TiO₂ and HfO₂ do not show cryo-peak in mechanical losses BUT crystalize upon annealing at low temperature (200-300°C) with consequent blowup of optical properties!

Before Annealing – as deposited:

■ We measured the AFM topography to qualify the morphology and quantify surface roughness and uniformity of top-most TiO₂ surface

Before Annealing – as deposited:

- We measured the AFM topography to qualify the morphology and quantify surface roughness and uniformity of top-most TiO₂ surface
- We found a reduction of surface roughness as the layer thickness decreases (increased segmentation);

Before Annealing – as deposited:

- We measured the AFM topography to qualify the morphology and quantify surface roughness and uniformity of top-most TiO₂ surface
- We found a reduction of surface roughness as the layer thickness decreases (increased segmentation);
- We performed X-Ray diffraction and checked the amorphic nature of our samples;
- We performed SAXS on multilayered samples and confirmed the presence of segmentation;

ω

Before Annealing – as deposited:

- We measured the AFM topography to qualify the morphology and quantify surface roughness and uniformity of top-most TiO₂ surface
- □ We found a reduction of surface roughness as the layer thickness decreases (increased segmentation);
- We performed X-Ray diffraction and checked the amorphous nature of our samples;
- We performed SAXS on multilayered samples and confirmed the presence of segmentation;
- We cross-sectioned the multilayered samples and imaged the layers by profiting of advances scanning probe techniques.

Friction Force Microscopy Ultrasonic Force Microscopy TiO₂ 400nm ZrO Low High Colour contrast is representative of different friction coefficient. TiO₂ ZrO TiO₂/ZrO₂ TiO₂ surface 8-layer Substrate High Colour contrast is representative of different stiffness.

Low

After Annealing (12 hours – 10⁻⁴ mBar):

Granular morphology is preserved after heat treatment.

After Annealing (12 hours – 10⁻⁴ mBar):

- Granular morphology is preserved after heat treatment.
- A decreasing trend of surface roughness is observed.

After Annealing (12 hours – 10⁻⁴ mBar):

- Granular morphology is preserved after heat treatment.
- A decreasing trend of surface roughness is observed.
- XRD demonstrate that T-crystallization is higher than 300C, given the used annealing conditions.

Annealing at higher temperatures, AFM and XRD analyses on annealed TiO_2/ZrO_2 are on-going!

Results and Future Plans

Characterization of new samples

Thank you for the attention.