Scanning status in Japan

2019.02.1

Atsuhiro UMEMOTO

Contents

- Improvement of scanning speed
- Evaluation of elliptical fitting analysis
- Detector study for calculating DM cross-section
- Surface run at Nagoya with Equatorial telescope

Improvement of Scanning speed

- Kobayashi developed a new algorithm for improving the PTS3 scanning speed.
(the detailed was shown in previous kobayashi's slide)
- And the algorithm was installed in PTS2.
(1) Optimization of surface recognition

Our scanning uses surface recognition using Au40nm. If the surface is recognized, the scanning goes next Step(elliptical fitting and image saving). If not, scanning repeats surface recognition at same position.

In new algorithm, the surface position of next view is predicted by using the current surface position. The starting Z position can be tuned and the slope of sample surface is corrected.

992 view scanning by PTS2

	N of all trial	1	2
before	1778	415	417
after	1042	951	35

Total scanning time 992view	before	76 min 10 sec
	after	58 min 30 sec

Improvement of Scanning speed

(2) Each image filter processing before elliptical fit was speed up with GPU stream.
(3) Stage control and elliptical fitting (w/ image saving) were parallelized.

Scan condition: 4MB image $\times 96$ layer. Sample: FAN113gf Oday after MAA (F.D. $=0.12 /(10 \mathrm{um})^{\wedge} 3 \mathrm{w}$ shrink) Same area was selected for scanning speed check.

Process time when surface recognition is success

Variation of process time of Elli fit and image saving

process ID
Estimation: the number of retake (surface recognition) is reduced In the new method. The size of scanning data access to HDD per unit time is increased.
\Rightarrow HDD always needs to work, the treatment efficiency will be worse.

Improvement of Scanning speed

Process time when surface recognition is success

	Ready to scan	Image filter	Elliptical fit and image save	Total/view
Before	$0.26 \pm 0.01(\mathrm{~s})$	$1.67 \pm 0.09(\mathrm{~s})$	$1.15 \pm 0.79(\mathrm{~s})$	$3.08 \pm 0.79(\mathrm{~s})$
After BMP	$0.09 \pm 0.14(\mathrm{~s})$	$0.61 \pm 0.01(\mathrm{~s})$	$2.78 \pm 1.64(\mathrm{~s})$	$3.48 \pm 1.65(\mathrm{~s})$
After PNG	$0.09 \pm 0.15(\mathrm{~s})$	$0.61 \pm 0.01(\mathrm{~s})$	$1.81 \pm 0.23(\mathrm{~s})$	$2.51 \pm 0.28(\mathrm{~s})$
After wo image	$0.26 \pm 0.11(\mathrm{~s})$	$0.62 \pm 0.03(\mathrm{~s})$	$0.63 \pm 0.03(\mathrm{~s})$	$1.50 \pm 0.12(\mathrm{~s})$

	Effective scan speed include surface recognition
Before	$76 \mathrm{~min} 10 \mathrm{sec} / 992 \mathrm{views}$
After BMP	$58 \mathrm{~min} 30 \mathrm{sec} / 992 \mathrm{views}$
After PNG	$42 \mathrm{~min} 30 \mathrm{sec} / 992$ views
After wo image	$26 \mathrm{~min} 10 \mathrm{sec} / 992 \mathrm{views}$

Current scanning, the image is required for eye-check, additional image solution etc.. We decide to save scanning image as PNG.
\Rightarrow SSD is better for speed up of image saving than HDD.
The scanning will be changed that does not save images after understanding the both signal and noise characteristics. (April or May)

Current scanning

PTS2 scanning. Data is being analyzed now. FAN113gf (DM search at surface lab $-20^{\circ} \mathrm{C}$ for 1 month)

Optical mark by 400 nm Au

- The position of optical mark was recorded.
- The scanning area was separated into four (to save each scanning image to different HDDs)

area1	$9.9 \times 17 \mathrm{~mm} 2=17200$ views	$* 2.3$ TB PNG Image and txt file
area2	$14.9 \times 17 \mathrm{~mm}=25800$ views	
area3	$20.9 \times 17 \mathrm{~mm} 2=36120$ views	
area4	$12 \times 18 \mathrm{~mm} 2=18381$ views	

Time log

Scanning Log

area1	14 hours $/ 17200$ views	$2.93 \mathrm{sec} /$ view
area2	19.5 hours $/ 25800$ views	$2.72 \mathrm{sec} /$ view
area3	25.92 hours $/ 36120$ views	$2.59 \mathrm{sec} /$ view
area4	14.5 hours $/ 18381$ views	$2.84 \mathrm{sec} /$ view

Total $=81$ hours and 54 minutes (loss time 8hours and 7minutes)
Effective Scanning time= 73 hours $47 \mathrm{~min} / 97501$ views.
If all area of views (except surface) are available for data analysis $(112 \mathrm{um})^{\wedge} 2 \times(64$ layer $\times 0.3125 \mathrm{um} / 0.6) \times 10^{\wedge}-12 \times 97501 \times 3.44=0.14 \mathrm{~g} / 3.07$ days $\Rightarrow 1 \mathrm{~g} / 22$ days

PTS2 and PTS3

	Maximum Speed (w image saving)	Maximum Speed (w/o image saving)
PTS2	$<16.6 \mathrm{~g} /$ year	$<27.0 \mathrm{~g} / \mathrm{year}$
PTS3	$<22.0 \mathrm{~g} /$ year	$<32.0 \mathrm{~g} /$ year
PTS2+3	$<38.6 \mathrm{~g} /$ year	<59.0 g/year

We need more study to use scanning data of both PTS2 and PTS3.
The difference of detection efficiency, angular resolution and fog density should be understood.

We are going to operate PTS2 and PTS3 scanning in this May.

Elliptical fitting

We used a Image filtering and "rectangle recognition method" to get minor, major, ellipticity and track angle in previous, but this was much affected by the digitized pixel.

2017/02~04 BG run in LNGS
0.035 g Scanning data of FAN085gf4

- Ellipticity cut >=2.0

We developed a new elliptical fitting method using image frequency.

Elliptical Fitting by FFT

Ag40 nm spherical

Brighter event was selected by brightness parameters and image eye-check was done. 52 events selected by Max brightness 160<=Max<=200, Mean brightness 65<=mean<=105

Major and Minor distribution

Ellipticity distribution

Carbon 100 keV ion w 10 degree implant

Camera X-axis pixel arrangement was beam direction(90d)

Camera was rotated about 45d by manually.
\Rightarrow beam direction became 135d

t.ff_phi \{abs(t.ff_minor-3.96)<4*0.22\&\&t.ff_elli>=1.25\}

Detection efficiency and angle by FFT

FAN113gf NIT-7Onm
detection efficiency of 100keV Carbon ion

Selection parameter

- Absolute (minor - 3.89) < 4×0.24

FAN113gf DM search area1
Angular distribution

Selection parameter

- Absolute (minor - 3.89) < 4×0.24
- elli>= 1.75
- 100<=Max -BG brightness <= 150
- 30<=Mean -BG brightness <= 75
- 35<=number of Pixel<=75

Carbon ion efficiency by FFT

Detection efficiency of Carbon ion

The event was recognized as two separated grain, then in current system it was judged as noise (like a dust).

The higher kinetic energy, those events got increased \Rightarrow need a tracking method.

Carbon ion efficiency by FFT

Detection efficiency of Carbon ion

Detection efficiency of Carbon ion

I estimated the efficiency
 if tracking methods was available

It is not easy to develop a tracking program soon.
After finishing the current data analysis, I will try developing .

Detection efficiency of Nuclear recoil

- It is important to understand the relation between Ellipticity and track length.
- We evaluated the detection efficiency of only Carbon ion with Elliptical fitting.
- Our DM target nuclei are $\{\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Ag}, \mathrm{Br}\}$.
\Rightarrow we will estimate the detection efficiency of all target nuclei from the result of carbon efficiency using the relation between track length and ellipticity.
- The systems between DM search and ion implantation are different.
\Rightarrow Ion data has the tracks which are scattered out from NIT. Those events are negligible in the case of DM search (interaction is occurred inside of NIT)
Detection efficiency should be converted to DM search system.

Cross-section Limit

- To calculate the DM cross-section, we have to understand the "Recoil Energy", "Emulsion track length", and "Ellipticity".

Recoil Energy $\mathrm{E}_{\text {Recoil }}$ calculation can be done when DM mass and velocity are assumed.

Recoil track length
Converted from the relation
track length and recoil energy
by SRIM.
\downarrow
Emulsion track length is decided by
the crystal formation and crystal
sensitivity of NIT.
NIT Param..
Crystal size $=44$ nm
Crystal density $=10000$ /um3
Crystal sensitivity $\sim 100 \%$ (30keV Carbon)

Detectable in experiment

Ellipticity, event rate

$\mathrm{R}_{\text {emulsion }} \Leftrightarrow$ Ellipticity

Our detection process

Optical simulation by PSF

Our detection process

SRIM+NIT+Optical Simulation

- The relation between track length and ellipticity is studied using SRIM simulation with a virtual emulsion detector and optical simulation.
- The virtual emulsion and SRIM calculation were done by Asada.
- the size of crystal has a distribution like actual AgBr crystal.
- track range by SRIM is determined as the length from start point to end point.
- Optical image was calculated by Fresnel equation by Shiraishi.
\Rightarrow elliptical fit and get parameters.

NIT. face-centered cubic lattice and random walk

C100 keV 10degree implantation

X(depth) Track Projection of $1640 \mathrm{tag}=0$

As a first test, 3 latent image specs were generated at random point in each AgBr crystal

Track length

SRIM and the end of crystal

SRIM and the end of grain

NIT70 nm

Track Projection of 1640 tag $=0$

Each grain was set as apertures with $\mathrm{R}=48 \mathrm{~nm}$.
The optical image was generated (NA1.4 and $\lambda=510 \mathrm{~nm}$)

FFT elliptical fitting
Minor : 3.50747
Major : 5.70059
Elli : 1.62527
Track angle : 112.721

C100 keV ion comparison

- The fog event was subtracted using mask in PTS2 data.

The relation between track range(kinetic energy) and ellipticity seems to be found.

Ellipticity and SRIM ,grain length

Track lengh and ellipticity

Equatorial telescope

- We tested a prototype of equatorial telescope for DM directional detection.
- New nano. tracker (SIGHTRON company) was used.
http://www.sightron.co.jp/sightron/sightron_products25/

New nano. tracker

- Portable equatorial telescope
- $60 \times 98 \times 44 \mathrm{~mm}, 400 \mathrm{~g}$
- Power supplied from socket with USB
- Guaranteed temperature - $10 \sim 40^{\circ} \mathrm{C}$

Equatorial telescope setup

2019/01/11/15:03

2019/01/11/17:01

Equatorial telescope rotates the camera platform with reflector plate. QTR-1A catches emitted light by itself when the reflector plate comes upward of QTR-1A. Then the output voltage of QTR-1A becomes lower.

- Reflector plate is not square in this test, so we can get the time difference of output voltage and it has the relation with the telescope movement.
"arduino" (a kind of microcomputer) operates QTR-1A and also records output voltage in time as a text file.

Test at room temperature

Data taking in a minute

Time fluctuation of output values of Photo Refrector

Light absorber (black tape)

I checked if the tape worked as light absorber in this test . The tape was come upward of QTR-1A in this time region.

Time fluctuation of output values of Photo Refrector

Temperature sensor

Time fluctuation of output values of Photo Refrector

The shape of Vout in -10 degree was almost same as that of room test.

Time fluctuation of output values of Photo Refrector

Time fluctuation of output values of Photo Refrector in -10 degree

Plan and summary

- Scanning speed is enough to do 1 gram DM search. (Only PTS2)
- The angular resolution was improved by FFT elliptical fitting and DM directional search can be done with equatorial telescope $(\Rightarrow B G$ event has flat distribution).
- DM cross-section will be calculated using ellipticity and SRIM.

Our important task is rejecting dust events.

- The number of dust event generated by development process can be reduced by tuning the pAg in NIT gel production. I would like to produce this NIT and set it on the equatorial telescope at surface-lab.
- Brightness and Phase-contrast information
- NIT70 should be better than NIT40 for rejecting dust (it has to be evaluated)

