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The NEWSdm experiment
Peculiarities of this experiment:
• Too complicated to simulate all the processes leading to the track images with Monte Carlo →

simulating it with real experimental data. The signal events are produced by exposing emulsion to a 
Carbon ion beam with the fixed energy, modeling the nuclear recoils from WIMPs. Background samples 
are exposed to a specific type of background.

• Barycenter shift analysis with polarized light allows us to go beyond the elliptical fit approximation and 
acquire additional information about events indistinguishable in unpolarized light.

• Required background rejection power of 𝑂 104 with the current status of background reduction 
techniques used, which is not achievable by conventional methods.

Machine learning approach:
• Capable of detecting complex features directly in pixel images from the microscope.

• Has a variety of algorithm types for different possible applications, including event classification, image 
denoising or processing the images from the optical microscope to acquire some information.
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The experimental data
Signal samples:
• Exposed to Carbon ion beams with fixed energy

• C100kev, C60keV, C30keV

• Low bckg contamination due to small exposure time

Background:
• Gamma exposure, simulating intrinsic electrons 

from C14 decays (via Compton scattering)

• Random fog: thermal excitations of the crystals

21.01.2019 DEEP LEARNING TECHNIQUES FOR NEWS-DM 3

C100keV Fog

 Current goal: > 105events of each type.



Data from the emulsions
Emulsions usually contain different tracks or crystals apart of the main subject of our study.
• Silver nanoparticles on the top and bottom surfaces to configure the microscope during scanning

• Radioactive source can produce extra decay products (i.e. 𝛼-particles) that have to be discarded.

Emulsion sample needs to be clearly understood before starting the Machine Learning analysis.
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Fog sample with silver nanoparticles on the surfaces Events distribution over Z axis in the Fog sample



3D Convolutional Neural Networks
Convolutional approach is designed for working with 

images. It is capable of discovering complex features 
of the images and gaining high performance.

Stacking together images for different light 
polarizations to obtain a 3D image.

Empty polarization images are filled with zeros.

Network “scans” not only plain image, but also the 
“polarization” axis.

Allows Network to learn correlations between 
features of different polarization images.
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Track image rotations
Carbon ion beam has a specific direction, while background is mostly isotropic.

To force Network to find more complex and less obvious features we want to make both 
background and signal isotropic.

Solution: random rotations of a small subsets of data.

Positive side-effect: it can significantly increase the size of the dataset.
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Risks: can produce some artifacts, 
can lead to overfitting the training 
images if misused.

Rotations of C100keV track



Preliminary results (𝐶60𝑘𝑒𝑉 vs 𝛾+𝛼)
We compared several approaches by the way of 
treating the training data:
• “Physical” − using only physically motivated data 

(limited size of the dataset)

• “Unphysical” − adding to physically motivated data 
the samples we are not interested in, like silver 
nanoparticles images on the surface of emulsion 
(images themselves still look very similar)

• “Rotational” − enlarging the physical dataset by 
random rotations several time (2 for now)
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The validation data used to check the models 
performances contains only intact physical data, 
which is not  augmented or modified.

Histograms of the models’ outputs



Preliminary results (𝐶 vs 𝛾+𝛼)

01.02.2019 DEEP LEARNING TECHNIQUES FOR NEWS-DM 8

Gamma sample seems to remain contaminated 
with some alphas:
• C100keV is more similar with background than 

C60keV, which might be due to the “tail” of alpha 
distribution that could not be discarded by cuts.

Bigger training dataset has significant impact on 
the models performance.
• Current physical gamma background is ~104 events

Feasible solution: scan another clean gamma 
sample and acquire more tracks. 

(already brought from Japan)

Histograms of the models’ outputs



Preliminary results (𝐶 vs fog)
Large enough clean dataset with ~105 events.

No such significant difference between C ions 
with various energies.

No obvious difference between models with 
rotations and without either.

(more visualization on the next slide)
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Image rotations imply isotropy, while do not 
hurt nor improve the performance significantly.

Might be a sign that further enlargement of the 
dataset is not so crucial.

Histograms of the models’ outputs



Preliminary results (𝐶 vs fog)
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The validation data used to check the models 
performances contains only intact physical data, 
which is not  augmented or modified.



Summary
Conclusions:
• Clear understanding of the emulsion sample prior to application of Deep Learning techniques is crucial.

• Both physically motivated data and redundant contaminations of the emulsions might be used in the model training.

• Random rotations do not harm the performance, while implying important condition of isotropy.

• Deep Learning algorithms allows us to achieve background rejection power of 103 with still some room for 
improvement.

• The increasing dataset to 106 events is not guaranteed to provide crucial enhancement in performance.

Further plans:
• Carry on the study for “fog” and “gamma” background samples.

• Deeper study of the models performance on unseen data (separate scan or sample).

• Adding information about the barycenter shift to the algorithm’s input.

• Using images from the color camera, since scattered wavelength depends on the form of the silver grains.
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