# AdS/CFT and condensed matter physics

#### Simon Ross

Centre for Particle Theory, Durham University

Padova 28 October 2009

### Outline

- Review AdS/CFT
- Application to condensed matter physics
- Finite temperature in AdS/CFT and hydrodynamics
- Charge transport and superconductivity
- Non-relativistic field theories: anisotropic conformal symmetry
- Reviews:
  - Hartnoll, arXiv:0903.3246
  - Rangamani, arXiv:0905.4352
  - McGreevy, arXiv:0909:0518

# Review of AdS/CFT

#### Maldacena

Conjecture a class of strongly-coupled field theories have gravity duals:

Identify global symmetries with asymptotic spacetime isometries.
 For conformal field theories, SO(d, 2) ↔ isometries of AdS<sub>d+1</sub>.
 In Poincare coordinates,

$$ds^2 = r^2 \eta_{\mu\nu} dx^{\mu} dx^{\nu} + \frac{dr^2}{r^2},$$

Dilatation is  $D: x^{\mu} \to \lambda x^{\mu}, r \to \lambda^{-1}r$ .

• Energy scale ↔ radial position.



# Review of AdS/CFT

• 
$$\langle e^{\int \phi_0 \mathcal{O}} \rangle = Z_{string}[\phi_0] \approx e^{-S[\phi_0]}.$$

Gubser Witten Klebanov Polyakov

- Choice of state  $\leftrightarrow$  initial conditions.
- ► Correlation functions ↔ variation of on-shell action wrt boundary conditions.
- ► Boundary stress tensor  $\langle T_{\mu\nu} \rangle = \frac{1}{\sqrt{k}} \frac{\delta S}{\delta \hat{h}^{\mu\nu}}$  Henningson Balasubramanian Kraus

• Conserved currents 
$$\langle J_{\mu} \rangle = \frac{1}{\sqrt{\hat{h}}} \frac{\delta \vec{S}}{\delta A^{\mu}}$$

- Examples:  $\mathcal{N} = 4$  SYM  $\leftrightarrow$  IIB string theory on asymp AdS<sub>5</sub>  $\times$  S<sup>5</sup>.
  - Classical gravity valid at strong 't Hooft coupling.
  - Many other explicit examples:  $AdS_5 \times X^5$ ,  $AdS_4 \times S^7/\mathbb{Z}_n, \ldots$
  - Focus on universal subsector: pure gravity in bulk.
- Reasons for believing such a duality exists more generally:
  - Field theories local in energy scale: RG flow is a local equation in energy scale
  - Holographic principle:  $S_{BH} = A/4G_N$  suggests gravity is related to a lower-dimensional theory.

Application to condensed matter physics

#### Application to QCD long studied. Why condensed matter?

- Rich system:
  - CFTs arise as IR desc near critical points; often strongly coupled.
  - Many different theories; can tune Hamiltonian in some settings.
- AdS/CFT provides a useful new perspective:
  - Few other methods for calculation at strong coupling.
  - Gravity dual calculates observables like transport coefficients directly, no quasiparticle picture.
- Prompts new questions:
  - Charge transport, phase transitions
  - Can have theories with an anisotropic scaling symmetry D:  $x^i \rightarrow \lambda x^i, t \rightarrow \lambda^z t$ .

# Application to condensed matter physics

#### However, this is a big extension of AdS/CFT.

- Known examples involve large N gauge theories. To apply these ideas to condensed matter, need to assume other field theories will have holographic duals.
- Proceed phenomenologically: construct bulk theories with qualitative features of interest.
- Big question: for what types of theories can we construct a bulk dual in the classical approximation?
  - Strong coupling
  - $N_{dof} \gg 1$
  - Hierarchy in spectrum:  $\Delta_{s>2} \gg \Delta_{s\leq 2}$ .

# Quantum critical point

Critical point at zero temperature.



#### Figure from Sachdev, arXiv:0711.3015

 Critical point described by a CFT; finite region described by finite-temperature CFT.

Simon Ross (Durham)

### Finite temperature in AdS/CFT

Field theory at finite temperature: partition function  $Z = \text{tr}e^{-\beta H} = e^{-\beta F}$ .  $\triangleright$  Bulk saddle-point Euclidean black hole Witten

$$ds^{2} = r^{2} \left[ \left( 1 - \frac{r_{+}^{d}}{r^{d}} \right) d\tau^{2} + d\mathbf{x}^{2} \right] + \left( 1 - \frac{r_{+}^{d}}{r^{d}} \right)^{-1} \frac{dr^{2}}{r^{2}}$$

- Temperature  $T = \frac{dr_+}{4\pi}$ .
- Entropy  $S = \frac{1}{4G_5} r_+^{d-1} V = \frac{(4\pi)^{d-1}}{4d^{d-1}G_5} V T^{d-1}$
- Stress tensor  $\langle T_{\mu\nu} \rangle = rac{r_+^4}{16\pi G_5} (\eta_{\mu\nu} + du_\mu u_\nu)$ ,  $u^\mu = \delta_t^\mu$ .

## Hydrodynamics

• Effective description of long-wavelength perturbations

$$T_{\mu\nu} \sim T^d (\eta_{\mu\nu} + du_{\mu}u_{\nu}) - 2\eta\sigma_{\mu\nu} + \dots$$

 Transport coefficients calculated in linearised theory on black hole background:

Linear response,  $\delta \langle T_{xy} 
angle = G^R_{xy,xy}(\omega,k) \delta g_{xy}$ , gives Kubo formula

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^{R}_{xy,xy}(\omega, 0).$$

Universal result  $\frac{\eta}{s} = \frac{1}{4\pi}$ 

• More direct approach:

Bhattacharyya Hubeny Minwalla Rangamani

- Consider black hole solution with  $T(t, \mathbf{x})$ ,  $u^{\mu}(t, \mathbf{x})$ .
- Correct order by order in derivative expansion.
- Hydrodynamic parameters determined by bulk dynamics:

$$16\pi G_5 T_{\mu\nu} = r_+^d (\eta_{\mu\nu} + du_\mu u_\nu) - 2r_+^{d-1} \sigma_{\mu\nu} + \dots$$

### Charge transport

Consider thermodynamics with chemical potential  $\mu$ .  $\triangleright$  Bulk dual is Reissner-Nördstrom-AdS black hole,

$$ds^{2} = r^{2} \left[ f(r) d\tau^{2} + d\mathbf{x}^{2} \right] + \frac{dr^{2}}{r^{2} f(r)},$$
  
$$f(r) = 1 - \left( 1 + \frac{\mu^{2}}{r_{+}^{2} \gamma^{2}} \right) \frac{r_{+}^{d}}{r^{d}} + \frac{\mu^{2}}{r_{+}^{2} \gamma^{2}} \frac{r_{+}^{2(d-1)}}{r^{2(d-1)}},$$
  
$$A = \mu \left( 1 - \frac{r_{+}^{d-2}}{r^{d-2}} \right) dt.$$

Constant term in  $A_{\mu}$  is a source for  $J_{\mu}$  in dual CFT; subleading term gives expectation value of  $J_{\mu}$ . Charge transport:  $\langle \mathbf{J} \rangle = \sigma \mathbf{E}$ . Electrical conductivity given by

$$\sigma = -\frac{1}{g^2} \frac{i}{\omega} \frac{\delta A_x^{(1)}}{\delta A_x^{(0)}} = -\frac{1}{g^2} \frac{i}{\omega} G_{A_x,A_x}^R(\omega,0).$$

# Conductivity



Different curves are different values of  $\mu$ . Figure from Hartnoll, arXiv: 0903.3264

- Pole in Im(σ) at ω = 0 implies δ-function in Re(σ). Consequence of translation invariance.
- Broad features similar to graphene, which is described by a 2+1 relativistic field theory.

# Superconductivity

| Hartno |
|--------|
| Herzo  |
| Horowi |
|        |

 $\star$  Model superconducting transition by condensation of a charged operator, breaking global U(1) symmetry.

Simple bulk dual: add a scalar of charge q, mass m to RN-AdS background. Consider d = 3.

- If  $q^2\gamma^2 \ge 3 + 2m^2$ , scalar is unstable for  $T \le T_c$  for some  $T_c$ .
- Two mechanisms for instability:
  - ▶ Effective negative mass<sup>2</sup> in region near horizon from charge coupling.
  - AdS<sub>2</sub> near horizon region in RN-AdS for small T: if scalar has  $-\frac{9}{4} < m^2 < -\frac{3}{2}$ , unstable in AdS<sub>2</sub> but stable in AdS<sub>4</sub>.
- Condensation produces a hairy black hole; solutions obtained numerically.
- $\triangleright$  This phenomenological theory can be embedded in string theory.

# Superconductivity



Condensate as a function of temperature. Different curves are different values of *q*. Figure from Hartnoll, Herzog & Horowitz, arXiv:0810.1563.

• Second-order phase transition

# Superconductivity



Real part of the conductivity as a function of frequency. Different curves are different values of q. Figure from Hartnoll, Herzog & Horowitz, arXiv:0810.1563.

- Delta-function at  $\omega = 0$ ; size jumps at transition.
- Gap at low temperatures:  $\operatorname{Re}(\sigma) \approx 0$  for  $\omega < \omega_g$ .

# Non-relativistic holography

In condensed matter, have theories with an anisotropic scaling symmetry D:  $x^i \rightarrow \lambda x^i, t \rightarrow \lambda^z t$ .

Two cases of interest:

- Lifshitz-like theories:  $D, H, \vec{P}, M_{ij}$
- Schrödinger symmetry: add Galilean boosts  $\vec{K}$ . z = 2 special.

Can these also have a dual geometrical description?

# Non-relativistic holography

In condensed matter, have theories with an anisotropic scaling symmetry  $D: x^i \to \lambda x^i, t \to \lambda^z t$ .

Two cases of interest:

- Lifshitz-like theories:  $D, H, \vec{P}, M_{ij}$
- Schrödinger symmetry: add Galilean boosts  $\vec{K}$ . z = 2 special.

Can these also have a dual geometrical description?

Lifshitz:

• Simple deformation of AdS:

Kachru Liu Mulligan

$$ds^{2} = -r^{2z}dt^{2} + r^{2}d\mathbf{x}^{2} + \frac{dr^{2}}{r^{2}}.$$

# Lifshitz geometry

• Solution of a theory with a massive vector:

$$S=\int d^4x\sqrt{-g}(R-2\Lambda-rac{1}{4}F_{\mu
u}F^{\mu
u}-rac{1}{2}m^2A_\mu A^\mu),$$

with  $\Lambda = -\frac{1}{2}(z^2 + z + 4)$ ,  $m^2 = 2z$ . Lifshitz solution has

$$A = \alpha r^z dt, \quad \alpha^2 = \frac{2(z-1)}{z}$$

- No conformal boundary: can define boundary conditions by working in terms of frame fields. e<sup>(0)</sup> = r<sup>z</sup>ê<sup>(0)</sup>, e<sup>(i)</sup> = rê<sup>(i)</sup>, e<sup>(3)</sup> = dr/r.
- Finite temperature black hole solutions obtained numerically.

Danielsson Bertoldı Thorlacius Mann Burrington Peet

- Analytic black holes in a theory with an extra scalar field. Balasubramanian McGreevy
- Not known how to embed these solutions in string theory

### Action & stress tensor

AdS/CFT dictionary is based on an action:  $\langle e^{\int \phi_0 \mathcal{O}} \rangle \approx e^{-S_{on-shell}[\phi_0]}$ . Need an action principle for asymptotically Lifshitz spacetimes; naive bulk action divergent. Regularize by adding boundary terms:

Saremi

$$S_{ct} = bulk + rac{1}{16\pi G_4}\int d^3\xi \sqrt{-h}(2K-4-\sqrt{2z(z-1)}\sqrt{-A_lpha A^lpha}) + S_{deriv}$$

\*  $S_{ct}$  satisfies  $\delta S = 0$  for variations,  $S_{on-shell}$  finite.

In relativistic case, stress tensor defined by  $\delta S = \int d^3 \xi T_{\alpha\beta} \delta \hat{h}^{\alpha\beta}$ . Non-relativistic theory: Stress-energy complex satisfying conservation equations  $\partial_t \mathcal{E} + \partial_i \mathcal{E}^i = 0$ ,  $\partial_t \mathcal{P}_j + \partial_i \Pi^i_{\ j} = 0$ . Define by

$$\delta S = \int \left[ -\mathcal{E}\delta \hat{e}_t^{(0)} - \mathcal{E}^i \delta \hat{e}_i^{(0)} + \mathcal{P}_i \delta \hat{e}_t^{(i)} + \Pi_i^j \delta \hat{e}_j^{(i)} + s_A \delta A^A \right].$$

Results finite

• Bulk equations of motion imply conservation equations,  $z\mathcal{E} = \Pi_i^i$ .

# Schrödinger symmetry

Galilean symmetry: rotations  $M_{ij}$ , translations  $P_i$ , boosts  $K_i$ , (i = 1, ..., d), Hamiltonian H, particle number N. Extended by the dilatation D,

 $[D, P_i] = iP_i, [D, H] = ziH, [D, K_i] = (1 - z)iK_i, [D, N] = i(2 - z)N.$ 

Dynamical exponent z determines scaling of H under dilatations.

For z = 2, N is central, and there is a special conformal generator C: [D, C] = -2iC, [H, C] = -iD.

Schrödinger algebra: Symmetry of free Schrödinger equation.

\* Isometries of a gravitational dual?

### Geometrical dual

#### Son Balasubramanian McGreevy

Embed Galilean symmetry in ISO(d + 1, 1) by light-cone quant:  $H = \tilde{P}_+$ ,  $N = \tilde{P}_-$ ,  $K_i = \tilde{M}_{-i}$ . Extend to embed Sch(d) in SO(d + 2, 2) by

$$D = ilde{D} + (z-1) ilde{M}_{+-}$$

\* Sch(d) is a subgroup of SO(d+2,2)

#### Geometrical dual

Embed Galilean symmetry in ISO(d + 1, 1) by light-cone quant:  $H = \tilde{P}_+$ ,  $N = \tilde{P}_-$ ,  $K_i = \tilde{M}_{-i}$ . Extend to embed Sch(d) in SO(d + 2, 2) by

$$D = ilde{D} + (z-1) ilde{M}_{+-}.$$

\* Sch(d) is a subgroup of SO(d + 2, 2)Gravitational dual: deform  $AdS_{d+3}$  to

$$ds^{2} = -\sigma^{2}r^{4}(dx^{+})^{2} + r^{2}(-2dx^{+}dx^{-} + d\mathbf{x}^{2}) + \frac{dr^{2}}{r^{2}}.$$

- Solution of a theory with a massive vector,  $A^- = \sigma$ .
- *N* discrete implies  $x^-$  periodic. Compact null direction?

### Dual in string theory

| Herzog    | Adams           | Maldacena |
|-----------|-----------------|-----------|
| Rangamani | Balasubramanian | Martelli  |
| SFR       | McGreevy        | Tachikawa |

Take  $AdS_5 \times S^5$ ,

$$ds^{2} = r^{2}(-2dx^{+}dx^{-} + d\mathbf{x}^{2}) + \frac{dr^{2}}{r^{2}} + (d\psi + P)^{2} + d\Sigma_{4}^{2},$$

and apply a TsT transformation:

• T-dualize the Hopf fiber coordinate  $\psi$  to  $\tilde{\psi}$ ,

• Shift 
$$x^- o ilde x^- = x^- + ilde \psi$$
,

• T-dualise  $\tilde{\psi}$  to  $\psi$  at fixed  $\tilde{x}^-$ .

Resulting solution is

$$ds^{2} = -r^{4}(dx^{+})^{2} + r^{2}(-2dx^{+}dx^{-} + d\mathbf{x}^{2}) + \frac{dr^{2}}{r^{2}} + (d\psi + P)^{2} + d\Sigma_{4}^{2},$$

$$B = r^2 dx^+ \wedge (d\psi + P).$$

Maldacena Martelli Tachikawa

#### Heating up the non-relativistic theory

Apply the TsT transformation to the Schwarzschild-AdS solution,

$$ds^{2} = r^{2}(-f(r)dt^{2} + dy^{2} + dx^{2}) + \frac{dr^{2}}{r^{2}f(r)} + ds^{2}_{S^{5}},$$

where  $f(r) = 1 - r_+^4 / r^4$ . Resulting solution in 5d is

$$ds^{2} = r^{2}k(r)^{-\frac{2}{3}} \left( \left[ \frac{r_{+}^{4}}{4\beta^{2}r^{4}} - r^{2}f(r) \right] (dx^{+})^{2} + \frac{\beta^{2}r_{+}^{4}}{r^{4}} (dx^{-})^{2} - [1 + f(r)]dx^{+}dx^{-} \right) + k(r)^{\frac{1}{3}} \left( r^{2}dx^{2} + \frac{dr^{2}}{r^{2}f(r)} \right).$$

$$A = \frac{r^{2}}{k(r)} \left( \frac{1 + f(r)}{2} dx^{+} - \frac{\beta^{2}r_{+}^{4}}{r^{4}} dx^{-} \right),$$

$$e^{\phi} = \frac{1}{\sqrt{k(r)}}; \quad k(r) = 1 + \frac{\beta^{2}r_{+}^{4}}{r^{2}}.$$

 $\triangleright \beta$  param. choice of  $x^-$  coord in TsT; define  $\gamma^2 \equiv \beta^2 r_+^4$ .

# Action principle

| Herzog           | SER    |
|------------------|--------|
| Rangamani<br>SFR | Saremi |
| SER              |        |

Similarly construct action by adding boundary counterterms:

 $S = bulk + \int d^4 \xi \sqrt{-h} (2K - 6 + (1 + c\phi)A^{\mu}A_{\mu} + (2c + 3)\phi^2)$ 

Finite, satisfies  $\delta S = 0$ , but boundary conditions for variations more restrictive.

Stress tensor — proceed as in Lifshitz case: vary metric at fixed  $A^A$ ,  $\phi$ . Differences:

- Conserved particle number. Particle number density  $\rho$ , flux  $\rho_i$ .
- No natural choice of frame.

Write

$$\delta S = \int d^4 \xi (s_{lphaeta} \delta h^{lphaeta} + s_{lpha} \delta A^{lpha}),$$

Define  $\mathcal{E} = 2s_{+}^{+} - s_{-}^{+}A_{+}, \quad \mathcal{E}^{i} = 2s_{+}^{i} - s_{-}^{i}A_{+}, \text{ etc.}$ 

- For black hole solution,  $\mathcal{E} = r_+^4$ ,  $\Pi_{xx} = \Pi_{yy} = r_+^4$ ,  $\rho = 2\beta^2 r_+^4$ .
- For solutions obtained by TsT from vacuum AdS solution, agrees with AdS stress tensor.

Simon Ross (Durham)

### Discussion

- Holography gives a simple approach to calculating observables such as transport coefficients for some class of strongly-coupled field theories.
  - Includes relativistic and non-relativistic theories.
  - Doesn't rely on a quasiparticle picture.
  - Potential applications to QCD and condensed matter.
- Need to understand which theories have such duals
  - General conditions for dual, validity of classical approximation?
  - Embedding phenomenological Lagrangians in string theory.
- May not model specific theories of interest, but will at least get new insight into strongly-coupled theories. Useful testing bed for refining expectations.