Turnaround size of non-spherical structures

Andrea Giusti

Bishop's University

3rd FLAG meeting: the Quantum and Gravity Museo Diocesano, Catania

June 13, 2019

Plan of the talk

- What is the turnaround radius? Why is it useful?
- Quasi-local energy in General Relativity;
- A rigorous definition of turnaround radius for spherical structures;
- What happens if we introduce small deviations from the spherical symmetry?

Turnaround Radius: An Astronomer's View

Assumptions

- Accelerated FLRW universe;
- One spherical inhomogeneity, $\phi=\phi(r)$.

Line element:

$$
\mathrm{d} s^{2}=a^{2}(\eta)\left[-(1+2 \phi) \mathrm{d} \eta^{2}+(1-2 \phi)\left(\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}\right)\right]
$$

Areal radius $R(\eta, r):=a(\eta) r \sqrt{1-2 \phi(r)}$.
The radial timelike geodesics read

$$
\ddot{R}=\frac{\ddot{a}}{a} R-\frac{G_{\mathrm{N}} \mathcal{M}}{R^{2}}, \quad \mathcal{M}=4 \pi \int_{0}^{R} \mathrm{~d} x x^{2} \rho(x)
$$

($\rho=\mathrm{DE}+$ the inhomogeneous density)

So, $\exists R_{\mathrm{c}}$ such that massive particles with $\dot{R}(0)=0$ cannot collapse if $R(0) \geq R_{\mathrm{c}}$, but they only expand.

Hence, the Turnaround Radius is defined by the condition

$$
\ddot{R}=0
$$

that leads to

$$
R_{\mathrm{c}}=\left(\frac{G_{\mathrm{N}} \mathcal{M}}{\ddot{a} / a}\right)^{1 / 3}
$$

Example: Schwarschild-de Sitter

Schwarschild-de Sitter spacetime

- Static spherically symmetric (exact) solution of the "vacuum" Einstein equations with $\Lambda>0$;
- Line element (static coordinates)

$$
\mathrm{d} s^{2}=-f(R) \mathrm{d} t^{2}+\frac{\mathrm{d} R^{2}}{f(R)}+R^{2} \mathrm{~d} \Omega^{2}
$$

with

$$
f(R)=1-\frac{2 G_{\mathrm{N}} M}{R}-H^{2} R^{2}, \quad H^{2}=\Lambda / 3
$$

- Turnaround Radius

$$
R_{\mathrm{c}}=\left(\frac{3 G_{\mathrm{N}} M}{\Lambda}\right)^{1 / 3}
$$

${ }^{1}$ Faraoni et al., JCAP 1510 (2015) 013.

Figure: Radial geodesic of a massive particle with zero initial velocity and initial position $R(0)=R_{*}\left(>\right.$ or $<$ than $\left.R_{\mathrm{c}}\right)$.

Problems with this definition

- Gauge-invariance of the result?
- What does $\mathcal{M}(R)$ mean?
- Should it contain ρ_{DE} ?
- Should it include only $\rho_{\text {pert }}$?
- Can we relate the turnaround radius with the notion of quasi-local energy?

Quasi-local energy in General Relativity

Hawking-Hayward mass

\mathcal{S} spacelike, closed, orientable, 2-surface

$$
M_{\mathrm{HH}} \equiv \frac{1}{8 \pi} \sqrt{\frac{A}{16 \pi}} \int_{S} \mu\left(\mathcal{R}+\theta_{(+)} \theta_{(-)}-\frac{1}{2} \sigma_{a b}^{(+)} \sigma_{(-)}^{a b}-2 \omega_{a} \omega^{a}\right)
$$

- μ area 2-form of $\mathcal{S}, A:=\int_{\mathcal{S}} \mu$;
- $\theta_{(\pm)}$expansion scalars of outgoing/ingoing null geodesics;
- $\sigma_{a b}^{(\pm)}$shear tensors, outgoing/ingoing null geodesics;
- ω^{a} projection onto \mathcal{S} of the commutator of the null normal vectors to \mathcal{S} (anholonomicity).
Note \mathcal{H} Hamiltonian 2-form, then $M_{\mathrm{HH}} \propto-\int_{\mathcal{S}} \mathcal{H}$.
\Longrightarrow Total energy contained in \mathcal{S}

[^0]
Spherical Symmetry

Hawking-Hayward $=$ Misner-Sharp-Hernandez

$$
\begin{gathered}
M_{\mathrm{HH}} \equiv \frac{1}{8 \pi} \sqrt{\frac{A}{16 \pi}} \int_{S} \mu\left(\mathcal{R}+\theta_{(+)} \theta_{(-)}\right)=4 \pi \int_{0}^{R} \rho(x) x^{2} \mathrm{~d} x=M_{\mathrm{MSH}} \\
1-\frac{2 G_{\mathrm{N}} M_{\mathrm{MSH}}}{R}=\nabla^{a} R \nabla_{a} R
\end{gathered}
$$

What happens if we try to put together the notions of quasi-local energy and turnaround radius?

[^1]
Back to accelerated universes

Idea: the turnaround occurs when the DE contribution overcomes the local gravitational pull.

Perturbed FLRW metric $(|\phi(r)| \ll 1)$

$$
\mathrm{d} \widetilde{s}^{2}=a^{2}(\eta)\left[-(1+2 \phi) \mathrm{d} \eta^{2}+(1-2 \phi)\left(\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}\right)\right]
$$

conformal to $\left(\Omega^{2}=a^{2}(\eta)\right)$ a post-Newtonian, asymptotically flat, approximation of a static spacetime metric in isotropic coordinates

$$
\mathrm{d} s^{2}=-(1+2 \phi) \mathrm{d} \eta^{2}+(1-2 \phi)\left(\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}\right)
$$

MSH Mass and Conformal Transformations

Einstein equations in the "static frame" to the first order in ϕ

$$
\triangle \phi=4 \pi G_{\mathrm{N}} \rho(r)
$$

from which one can infer

$$
m \equiv M_{\mathrm{MSH}} \simeq \frac{R^{2}}{G_{\mathrm{N}}} \frac{\mathrm{~d} \phi}{\mathrm{~d} R}
$$

Besides,

$$
\phi \simeq-\frac{G_{\mathrm{N}} m}{R} \simeq-\frac{G_{\mathrm{N}} m}{r}
$$

to the first order of approximation.

Conformal transformation $\widetilde{g}_{a b}=\Omega^{2}(x) g_{a b}$, one has

$$
M_{\mathrm{MSH}} \longrightarrow \widetilde{M}_{\mathrm{MSH}}=\Omega M_{\mathrm{MSH}}-\frac{R^{3}}{2 \Omega} \nabla^{c} \Omega \nabla_{c} \Omega-R^{2} \nabla^{c} \Omega \nabla_{c} R
$$

Recalling that $\widetilde{R}=a(\eta) r \sqrt{1-2 \phi}=a(\eta) R$ and that $\Omega=a(\eta)$,

$$
\widetilde{M}_{\mathrm{MSH}} \simeq \underbrace{m a}_{\text {Local }}+\underbrace{\frac{H^{2} \widetilde{R}^{3}}{2 G_{\mathrm{N}}}(1-\phi)}_{\text {Cosmological }}
$$

Turnaround:

$$
\text { Local } \simeq \text { Cosmological } \Longrightarrow \widetilde{R}_{\mathrm{c}}(t) \simeq\left(\frac{2 G_{\mathrm{N}} m a}{H^{2}}\right)^{1 / 3}
$$

(t cosmic time)
${ }^{6}$ Faraoni et al., Phys. Rev. D 92 (2015) 023511

Turnaround radius and Dark Energy

Assuming: $P_{\mathrm{DE}}=w \rho_{\mathrm{DE}}$ with $w=$ const.
Then,

$$
w(z)=-1+\frac{\ln \left[\left(3 m a_{0} / 4 \pi \rho_{0}\right)^{1 / 3} R_{\mathrm{c}}(z)^{-1}\right]}{1+z},
$$

- ρ_{0} dark energy density, today;
- $z=\left(a_{0} / a\right)-1$ redshift parameter.

Measuring $m a_{0}$ and $R_{\mathrm{c}}(z)$ one could constrain the equation of state parameter w of dark energy.

Technical/Experimental problem
Deviations from the spherical symmetry cannot be neglected!

Turnaround size of (slightly) non-spherical structures

Let's go back to the post-Newtonian line element in isotropic coordinates

$$
\mathrm{d} s^{2}=-(1+2 \phi) \mathrm{d} \eta^{2}+(1-2 \phi)\left(\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}\right)
$$

- $\phi=\phi(r, \theta, \varphi)=\phi_{0}(r)+\xi f(r, \theta, \varphi)$, with $\mathcal{O}(f)=\mathcal{O}\left(\phi_{0}\right)=\mathcal{O}(\phi)$ and $0<\xi \ll 1$
- $\mathcal{S}=\{\phi(r, \theta, \varphi)=$ const. $\}$ and $\mathcal{S}_{0}=\left\{\phi_{0}(r)=\right.$ const. $\}$

Hawking-Hayward mass

First order in both ξ and ϕ

$$
\begin{aligned}
M_{\mathrm{HH}}=\frac{1}{8 \pi} & \sqrt{\frac{A}{16 \pi}} \int_{S} \mu\left[\frac{4}{r} \frac{\mathrm{~d} \phi_{0}}{\mathrm{~d} r}\right. \\
& \left.+\xi\left(\frac{2 \cot \theta}{r^{2}} \frac{\partial f}{\partial \theta}+\frac{4}{r} \frac{\partial f}{\partial r}+\frac{2}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}+\frac{2}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}}\right)\right]
\end{aligned}
$$

\mathcal{S} as a small perturbation of \mathcal{S}_{0}

Equipotential surface of the unperturbed potential:

$$
\mathcal{S}_{0} \Longleftrightarrow \phi_{0}(r)=\text { const } . \Longrightarrow r=r_{0} .
$$

Equipotential surface of the perturbed potential:

$$
\mathcal{S} \Longleftrightarrow \phi(r, \theta, \varphi)=\phi_{0}(r)+\xi f(r, \theta, \varphi)=\text { const } .
$$

Assuming that the points of \mathcal{S} are located within a distance δr from r_{0}, with

$$
\delta r / r_{0}=\mathcal{O}(\xi) \Longleftrightarrow \text { small deformations, }
$$

Then,

$$
\begin{aligned}
\mathcal{S} & \Longleftrightarrow \phi_{0}\left(r_{0}+\delta r\right)+\xi f\left(r_{0}+\delta r, \theta, \varphi\right)=\text { const } . \\
& \Longrightarrow f\left(r_{0}, \theta, \varphi\right)=\text { const. }{ }^{\prime} \text { to } \mathcal{O}(\xi)
\end{aligned}
$$

Hence,

$$
\int_{\mathcal{S}} \mu(\cdots)=\int_{\mathcal{S}_{0}} \mu(\cdots)+\mathcal{O}\left(\xi^{2}\right)
$$

from which one can infer that

$$
M_{\mathrm{HH}}=M_{\mathrm{MSH}}+\mathcal{O}\left(\xi^{2}\right)
$$

Intuitively,

$$
M=M_{0}+\delta M
$$

where

$$
\delta M \simeq \delta V \delta \rho \sim r_{0}^{2} \delta r \delta \rho=\mathcal{O}\left(\xi^{2}\right)
$$

since $\delta r / r_{0}$ and $\delta \rho / \rho_{0}$ are $\mathcal{O}(\xi)$.

Back to Cosmology

Conformal transformation of the Hawking-Hayward mass

$$
\widetilde{M}_{\mathrm{HH}}=\Omega M_{\mathrm{HH}}+\frac{R \Omega_{, \eta}}{4 \pi}\left(\int_{\tilde{S}_{0}} \mu \phi,_{, \eta}-\frac{\Omega_{, \eta}}{\Omega} \int_{\tilde{S}_{0}} \mu \phi\right)+\frac{R^{3} \Omega_{, \eta}^{2}}{2 \Omega}
$$

- $\phi_{, \eta}=0$;
- Easy to see that

$$
\frac{R \Omega_{, \eta}^{2}}{4 \pi \Omega} \int_{\tilde{S}_{0}} \mu \phi \approx \frac{\dot{a}^{2} a R}{4 \pi} 4 \pi R^{2} \phi \approx(H \widetilde{R})^{2} \widetilde{R} \phi=\mathcal{O}\left[\left(\widetilde{R} / H^{-1}\right)^{2}\right]
$$

Negligible for structures of size $\widetilde{R} \ll H^{-1}$.

$$
\Longrightarrow \widetilde{M}_{\mathrm{HH}}=m a+\frac{H^{2} \widetilde{R}^{3}}{2}\left(1-\phi_{0}\right) \simeq m a+\frac{H^{2} \widetilde{R}^{3}}{2}
$$

Conclusions

- Turnaround radius: astronomer's definition
- Gauge-dependent;
- Not explicitly covariant;
- Physical meaning of $\mathcal{M}(R)$?
- Turnaround radius: alternative definition based on quasi-local energy in GR
- MSH or HH mass;
- Explicitly gauge-independent and covariant;
- Physical meaning of $M_{\mathrm{HH}} / M_{\mathrm{MSH}}$;
- Competition between local and cosmological effects.
- Turnaround size: non-spherical structures
- HH mass!
- Well... Cosmic structures are not spherically symmetric;
- How can we extend this notion to these systems?
- Small deviation from sphericity: nothing changes to $\mathcal{O}(\xi)$.

[^0]: ${ }^{2}$ Hawking, J. Math. Phys. 9 (1968) 598
 ${ }^{3}$ Hayward, Phys. Rev. D 49 (1994) 831

[^1]: ${ }^{4}$ Misner, Sharp, Phys. Rev. 136 (1964) B571
 ${ }^{5}$ Hernandez, Misner, Astrophys. J. 143 (1966) 452

