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Keras

hitps://keras.io/



Why go Deep?

 DNN-based classification/regression generally out perform hand crafted algorithms.

» Better Algorithms

e In some cases, it may provide a solution where algorithm approach doesn’t exist or fails.
* Unsupervised learning: make sense of complicated data that we don’t understand or expect.
» Easier Algorithm Development. Feature Learning instead of Feature Engineering

* Reduce time physicists spend writing developing algorithms, saving time and cost. (e.g. ATLAS >
$250M spent software)

* Quickly perform performance optimization or systematic studies.

» Faster Algorithms

After training, DNN inference is often faster than sophisticated algorithmic approach.

DNN can encapsulate expensive computations, e.g. Matrix Element Method.

Generative Models enable fast simulations.

Already parallelized and optimized for GPUs/HPCs.

Neuromorphic processors.



Where i1s ML needed?

* Traditionally ML Techniques in HEP
» Applied to Particle/Object Identification

e Signal/Background separation

* Here, ML maximizes reach of existing data/detector... equivalent to additional integral
luminosity.

e There is lots of interesting work here... and potential for big impact.
 Now we hope ML can help address looming computing problems of the next decade:
- Reconstruction
1. Intensity Frontier- LArTPC Automatic Algorithmic Reconstruction still struggling

2. Energy Frontier- HL-LHC Tracking- Pattern Recognition blows up due to
combinatorics

- Simulation

3. LHC Calorimetry- Large Fraction of ATLAS CPU goes into shower simulation.



Problems



Data Analysis

Objectives:
* Searches (hypothesis testing): Likelihood Ratio Test (Neyman-Pearson lemma)

* Measurements: Maximum Likelihood Estimate P(z|H;)

> kq
P(x|Ho)

* Limits (confidence intervals): Also based on Likelihood

Likelihood n

p({x}|0) = Pois(n|v(8)) | [ p(z.[6)

e=1

 nlndependent Events (e) with Identically Distributed Observables ({x})
e Significant part of Data Analysis is approximating the likelihood as best as we can.

We dedicate huge amount of resources to use Monte Carlo simulation to effectively
estimate these likelihoods.



Neutrino Detectors

* Need large mass/volume to maximize chance of neutrino interaction.
» Technologies:
« Water/Oil Cherenkov
¢ Segmented Scintillators
Liquid Argon Time Projection Chamber: promises ~ 2x detection efficiency.
» Provides tracking, calorimetry, and ID all in same detector.
» Chosen technology for US’s flagship LBNF/DUNE program.
e Usually 2D read-out... 3D inferred.

« After many years of trying, good automatic reconstruction still not demonstrated.
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Standard Model / New Physics
in Quantum Field Theory

Lepton/
Quark 4-vectors

—1

Soft QCD: Quark Fragmentation
and Hadronization

Particle
4-vectors

—1

Simulation: Particle
Interactions with

Energy
Deposits in Detector

1

Digitization: Detector
Response and Pileup Mixing

Detector Response

Simulation

e Simulation in HEP is a multi-step process...

* Two steps are irreversible.

e Hadronization: Quarks turn to jets of particles via Quantum
Chromodynamics (QCD) at energies where theory is too strong to
compute perturbatively.

* Use semi-empirical models tuned to Data.

e Simulation: Particles interact with the Detector via stochastic
processes

» Use detailed Monte Carlo integration over the “micro-physics”
* Therefore we cannot formally evaluate the likelihoods.
* Rely on Monte Carlo Method to perform Probability Density Estimation

* The simulation step is extremely time consuming... O(1 hr) /
collision... LHC produces 40 million/sec

 ATLAS simulation takes O(50%) of ATLAS resource
* Lager fraction than CMS because of calorimeter

e For HL-LHC, NLO and NNLO generation will become even more
relevant... these can be time consuming too.



HL-LHC

Higher Granularity + High Trigger Rates
 ~10x higher input rates.
e Trigger Needs:
e Better Calorimetry
* Tracking
 Low New Physics x-sections, need:
» Detail Physics: NLO / NNLO
 Faithful Simulation: Geant
* High Pileup: O(200) proton collision / crossing

e Tracking Pattern Recognition
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Computlng

* HEP Reco is Embarrassingly parallel problem — Single threaded and

memory-heavy software

Past few decades: scaling via ever faster / denser commodity linux 10"

boxes

e Moore’s law has stalled.

Cost of adding more transistors/silicon area no longer decreasing.
* Trend towards more cores and slower memory access.
Co-processors: MiC, GPUs, FPGA,
» Storage Scaling also a problem...

 HL-LHC computing requires budget many times larger than LHC.
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Computing Solutions

* Highly parallel processors (¢.g. GPUs) are
already > 10x CPUs for certain computations.

e Trend is away from x86 towards

. . Updated HEP Computing Model
specialized hardware (c.g. GPUs, Mics,
: » In preparation for the Inventory Roundtable, the largest HEP

experiments from all three frontiers were asked to provide a

more detailed estimate of their expected computing needs
» CPU, storage, network, personnel, and HPC portability

FPGAs, Custom DL Chips)

Unfortunately parallelization (i.e. Multi-core/
GPU) has been extremely difficult for HEP.

» “Business as usual” (minimal additional HPC use): $600M %+ 150M
» With effective use of HPC resources this reduces to: $275M + 70M

» By 2030 cost share by frontier is estimated to be:
» 1 Energy Frontier $ inM HEP-Wide Computing Costs Fall 2017

» Leverage opportunistic resources and HPC . intensiy Frontier

» ¥/a Cosmic Frontier

» A strategy encompassing

e most computation power in highly parallel all HEP computing needs

is required!

Processors

m— CPU  mmmm Disk

Office of
Science

DOE HEP Status at HEPAP - May 2018 29

” ENERGY
Replace trigger, reconstruction, and

simulation algorithms with better, faster, and Jim Siegrist, HEPAP meeting, May 2018
easier Deep Learning algorithms.

* These algorithms not only run on newest
accelerators, but are the driving force in
processor evolution.



Deep Learning in HEP

Few simple cases already deployed. e.g. feature based b-tagging
Lots of promising studies of more sophisticated approaches and applications.
Basic framework integration... difficult and subtle concerns on horizon
* e.g. DL framework integration. Model storage and book keeping. Model Memory management.
We have a long program of research before suitability and ability to do real work.
Example path:
* Feasibility studies demonstrating potential.

e Simplified datasets, idealized formulations. e.g. work by Micky, Luke, & Ben

Growing realism: Tackling real detector. e.g. ATLAS GAN.

Systematic studies: e.g. CaloDNN

Physics Application: Target high impact potential physics, and work it through.

Build: Democratize by integrating into framework.

Integrate: Production workflow.



Identification of Jets Containing b-Hadrons with
Recurrent Neural Networks at the ATLAS

Experiment
ATL-PHYS-PUB-2017-003

Unrolled RNN

Dan Guest
ATLAS Collaboration
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Example: Calorimetry
with Deep Learning



Calorimetry with Deep Learning: Particle Identification and
Simulation for Collider Physics

Dawit Belayneh!, Federico Carminati?, Amir Farbin®, Benjamin Hooberman®*, Gulrukh Khattak?®, Miaoyuan Liu®,
Junze Liu*, Dominick Olivito”, Vitéria Barin Pacela®, Maurizio Pierini?, Alexander Schwing*, Maria Spiropulu?, Sofia
Vallecorsa?, Jean-Roch Vlimant?, Wei Wei*, and Matt Zhang?*

Univ. of Chicago

CERN

Univ. of Texas Arlington

Univ. of Illinois at Urbana-Champaign
UET Peshawar

Fermi National Accelerator Laboratory
Univ. of California, San Diego

Univ. of Helsinki

California Institute of Technology
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the date of receipt and acceptance should be inserted later

Abstract. Using calorimeter data from particle detectors, we apply various machine learning techniques to
tasks involving the identification and simulation of particles produced in high-energy particle collisions. We
train neural networks on raw calorimeter-cell-level information, and show that these provide significant
improvements in performance for particle classification and energy regression as compared to methods which
rely on traditional algorithms, such as feature-based neural nets and boosted decision trees. We compare
various neural architectures, and perform hyperparameter scans to study the optimal configurations of
these nets for the classification and regression problems. Furthermore, we demonstrate the applicability of
these nets to other detector geometries, specifically ATLAS-like and CMS-like geometries. In addition, we
train a generative adversarial network that provides reasonable modeling of shower features for different
particle types at various angles and energies. This network could serve as a fast and computationally light
method of simulating particle showers in generated collision events.



Calorimeter Dataset

 CLIC is a proposed CERN project for a linear accelerator of
electrons and positrons to TeV energies (~ LHC for protons)

e LCD is a detector concept.

* Not a real experiment yet, so we could simulate data and make
it public.

 The LCD calorimeter is an array of absorber material and silicon
sensors comprising the most granular calorimeter design available

e Data is essentially a 3D image

o With at effective eta/phi resolution of 0.003x0.003, we can down
sample to get ~ ATLAS granularity: 0.025x0.1 (pre-sampler) to
0.2x0.1 Tile D.

i Electromagnetic
i shower (e, y)

Hadronic shower




The Project

* 3 Parts to calorimetry:
» Classification: |1D’ing the type of particle.
* Better performance, less background under peak
* Regression: Measuring the Energy

* Better performance, skinner peak, less background under
peak.

* Simulation: Necessary for every step... very computationally
expensive.

* Faster ... save money.

« Primary goal: while all of these have been demonstrated to be feasible,
move toward realism, deep investigation, and implementation.

* Sub-Goals:
* Demonstrate improvement over traditional techniques
* Hyper-parameter studies

* Project to different real detectors
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Compare BDT trained Features to DNNs trained on Images.

Add realism...

Classification
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True Positive Rate
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Regression
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Some images
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Variational Autoencoders for New Physics Mining
the Large Hadron Collider

Olmo Cerri!, Thong Q. Nguyen', Maurizio Pierini’, Maria Spiropulu’, a
Jean-Roch Vlimant!

ICalifornia Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91
CERN, CH-1211 Geneva, Switzerland

Abstract

Using variational autoencoders trained on known physics processes, we develop a
one-side p-value test to isolate previously unseen processes as outlier events. Since
the autoencoder training does not depend on any specific new physics signature,
the proposed procedure has a weak dependence on underlying assumptions about
the nature of new physics. An event selection based on this algorithm would
be complementary to classic LHC searches, typically based on model-dependent
hypothesis testing. Such an algorithm would deliver a list of anomalous events,
that the experimental collaborations could further scrutinize and even release as a
catalog, similarly to what is typically done in other scientific domains. Repeated
patterns in this dataset could motivate new scenarios for beyond-the-standard-model
physics and inspire new searches, to be performed on future data with traditional
supervised approaches. Running in the trigger system of the LHC experiments,
such an application could identify anomalous events that would be otherwise lost,
extending the scientific reach of the LHC.

https://arxiv.org/pdf/1811.10276.pdf
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Event Generation and Statistical Sampling
with Deep Generative Models and a Density Information Buffer

Sydney Otten,'» 2> * Sascha Caron,’? T Wieske de Swart,’ Melissa van Beekveld,! Luc Hendriks,!
Caspar van Leeuwen,* Damian Podareanu,* Roberto Ruiz de Austri,> and Rob Verheyen!

L Institute for Mathematics, Astro- and Particle Physics IMAPP
Radboud Universiteit, Niymegen, The Netherlands
2GRAPPA, University of Amsterdam, The Netherlands
3 Nikhef, Amsterdam, The Netherlands
*SURFsara, Amsterdam, The Netherlands
® Instituto de Fisica Corpuscular, IFIC-UV/CSIC
Unwversity of Valencia, Spain
(Dated: March 14, 2019)

We present a study for the generation of events from a physical process with generative deep
learning. To simulate physical processes it is not only important to produce physical events, but also
to produce the events with the right frequency of occurrence (density). We investigate the feasibility
to learn the event generation and the frequency of occurrence with Generative Adversarial Networks
(GANSs) and Variational Autoencoders (VAESs) to produce events like Monte Carlo generators. We
study three toy models from high energy physics, i.e. a simple two-body decay, the processes
ete”™ — Z — 171 and pp — tf including the decay of the top quarks and a simulation of the detector
response. We show that GANs and the standard VAE do not produce the right distributions. By
buffering density information of Monte Carlo events in latent space given the encoder of a VAE we
are able to construct a prior for the sampling of new events from the decoder that yields distributions
that are in very good agreement with real Monte Carlo events and are generated (’)(108) times faster.
Applications of this work include generic density estimation and sampling, targeted event generation
via a principal component analysis of encoded events in the latent space and the possibility to
generate better random numbers for importance sampling, e.g. for the phase space integration of
matrix elements in quantum perturbation theories. The method also allows to build event generators
directly from real data events.
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Networks?

» That means that any oscillation analysis can benefit fror
precise identification of the interaction in two ways:
e Estimating the lepton flavor of the incoming neutrino.
e Correctly identifying the type of neutrino interaction, ti
better estimate the neutrino energy, aka is it a quasi
elastic event or a resonance event?

* Our detectors are also often the perfect domain:
* Large ~uniform volumes where spatially invariant
response is a benefit.
* Usually only one or two detector systems.

t-SNE projection of final features to 2D

However our CNN achieves 73% efficiency and 76% purity on
Ve selection at the s/v's+ b optimized cut.
Equivalent to 30% more exposure with the old PIDs.
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| earning Representations
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JET SUBSTRUCTURE

Many scenarios tor physics Beyond the Standard Model

include highly boosted W, Z, H bosons or top quarks

Low top pt High top pr

q
W _ W boost
q >
t _
b
b

|dentifying these rests on subtle substructure inside jets

e an enormous number of theoretical effort in developing
observables and techniques to tag jets like this

V= Y=\
r‘\ m r ““‘ lner f‘\




'
Goal: Find W jets in§
an enormous sea of
generic g/g jets

x4

W bosons are naturally boosted if they result
from the decay of something even heavier

V Searching for new particles

decaying into boosted W
2 bosons requires looking at the
" radiation pattern inside jets

like a digital image!




the Jet Image

J. Cogan et al. JHEP 02 (2015) 118
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Pre-processing & spacetime symmetries

One of the first typical steps is pre-processing

Can help to learn faster & smarter; but must be careful!



One of the most useful physics-
inspired features is the jet mass
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Why images?

there is information encoded in the
physical distance between pixels




Modern Deep NN's for Classification
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Exciting New Directions

So far only scratches the surface
...this is a very active field of research!
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Oliveira, et. al arXiv:1511.05190

DEEP LEARNING VS. THEORY Whiteson, et al arXiv:1603.09349

While the DNN shows a significant improvement with
respect to the jet mass combined with single theory
inspired variable (eg. 121, D), only a small improvement with
respect to a BDT using several theory-inspired variables

Other Problems: S 10—

| S Pile-up 9>=50 _ pNN(image)
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e theory inspired variables work on _
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FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

VBG NNS vBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB  JJR NN

so much more fun than

VBG

Analogy: N

going TO NP

word — particle N\

to DT NN

arsing — jet algorithm
p 9 J 9 trlme denltist

e —




QCD-INSPIRED RECURSIVE NEURAL NETWORKS

(arXiv:1702.00748)
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QCD-INSPIRED RECURSIVE NEURAL NETWORKS
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Neural Message Passing for Jet Physics

Isaac Henrion, Johann Brehmer, Joan Bruna, Kyunghun Cho, Kyle Cranmer
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g.louppeQ@ulg.ac.be gaspar.rochette@ens.fr
Abstract

Supervised learning has incredible potential for particle physics, and one appli-
cation that has received a great deal of attention involves collimated sprays of
particles called jets. Recent progress for jet physics has leveraged machine learning
techniques based on computer vision and natural language processing. In this work,
we consider message passing on a graph where the nodes are the particles in a
jet. We design variants of a message-passing neural network (MPNN); (1) with a
learnable adjacency matrix, (2) with a learnable symmetric adjacency matrix, and
(3) with a set2set aggregated hidden state and MPNN with an identity adjacency
matrix. We compare these against the previously proposed recursive neural network
with a fixed tree structure and show that the MPNN with a learnable adjacency
matrix and two message-passing iterations outperforms all the others.



Table 1: Summary of classification performance for several approaches.

Network Iterations ROC AUC R._509
RecNN-£; (without gating) [10] 1 0.9185 4 0.0006 68.3 = 1.8
RecNN-k; (with gating) [10] 1 0.9195 £ 0.0009 74.3+24
RecNN-desc-pr (without gating) [10] 1 0.9189 4+ 0.0009 70.4 4+ 3.6
RecNN-desc-pr (with gating) [10] 1 0.9212 £ 0.0005 83.3 £ 3.1
RelNet 1 0.9161 £ 0.0029 67.69 £+ 6.80
MPNN (directed) 1 0.9196 = 0.0015 89.35 £+ 3.54
MPNN (directed) 2 0.9223 == 0.0008 98.26 +-4.28
MPNN (directed) 3 0.9188 = 0.0031 85.93 £ &8.50
MPNN (undirected) 1 0.9193 £ 0.0015  86.41 4= 3.80
MPNN (undirected) 2 0.8949 £+ 0.1004 97.27 +£5.02
MPNN (undirected) 3 0.9185 = 0.0036  84.53 £+ 8.64
MPNN (set, directed) | 0.9189 £ 0.0017  88.23 +4.53
MPNN (set, directed) 2 0.9191 = 0.0046 87.46 = 14.14
MPNN (set, directed) 3 0.9176 = 0.0049 88.33 +9.84
MPNN (set, undirected) | 0.9196 + 0.0014 85.65 +4.48
MPNN (set, undirected) 2 0.9220 += 0.0007 94.70 4 2.95
MPNN (set, undirected) 3 0.9158 £ 0.0054 75.94 4+ 12.54
MPNN (id) 1 0.9169 = 0.0013  74.75 £ 2.65
MPNN (id) 2 0.9162 & 0.0020 74.41 £+ 3.50
MPNN (id) 3 0.9158 = 0.0029  74.51 £ 5.20




