
INFN Machine Learning course D. Bonacorsi1

INFN Machine Learning course
Prof. Amir Farbin, Prof. Daniele Bonacorsi

20-22 May 2019
Camogli, Italy

Decision Trees

2

Decision Trees (DT)

Decision Trees are quite versatile ML algos

• they can perform both classification and regression tasks (even multi-output
tasks)

• they are powerful enough to be capable of fitting complex datasets

• DTs are also the fundamental components of Random Forests, which are
among the most powerful ML algos available today

INFN Machine Learning course D. Bonacorsi3

Overview

Briefly, on:

• how to train, visualize, and make predictions with Decision Trees

• CART training algorithm used by Scikit-Learn

• how to regularize trees and use them for regression tasks

• some of the limitations of Decision Trees

INFN Machine Learning course D. Bonacorsi4

Example of a DT for classification

INFN Machine Learning course D. Bonacorsi5

Sklearn on the iris flowers dataset
→ DecisionTreeClassifier

creates this:

root node (depth 0), at the top

leaf node (depth 1)
non-leaf node (depth 1)

Among the qualities of DTs is that they require very little data preparation

• in particular, they don’t require feature scaling or centering at all

node’s samples attribute = counts how many training instances it applies to
node’s value attribute = how many training instances of each class this node applies to
node’s gini attribute = measures its impurity (pure node - gini=0 - if all training
instances it applies to belong to the same class.

leaf node (depth 2)leaf node (depth 2)

Depths stops at
max_depth=2

INFN Machine Learning course D. Bonacorsi6

max_depth=3 would have added
“depth 3” decision boundaries

DT: estimating class probabilities

A DT can estimate the probability that an instance belongs to a
particular class k

• first, it traverses the Tree to find the leaf node for this instance

• second, it returns the ratio of training instances of class k in this node

Example:

• a iris flower with 5cm long and 1.5cm wide  
petals corresponds to the green, bottom left,  
depth 2 node

• DT outputs the following probabilities:

❖ 0/54 → 0% for Iris-Setosa

❖ 49/54 → 90.7% for Iris-Versicolor

❖ 5/54 → 9.3% for Iris-Virginica

• prediction outputs Iris-Versicolor (class 1)

INFN Machine Learning course D. Bonacorsi7

White box vs black box

How is your intuition of the characteristics of this algo?

Decision Trees fairly intuitive and decisions easy to interpret

• → “white box” models

• you may even apply manually the same (and known) classification rules the DT
itself applied

Random Forests or Neural Networks give great predictions, you can
check calculations but harder to explain why a prediction was made

• → “black box” models

• e.g. a cat recognised in a picture from.. the ears? the tail? at which %?

INFN Machine Learning course D. Bonacorsi8

Classification And Regression Tree (CART)
Sklearn uses the CART algo to train DTs

• it produces only binary trees (non-leaf nodes always have 2 children, i.e. questions only
have yes/no answers)

❖ Other algos (such as ID3) can produce DTs with nodes that have >2 children

The idea behind the CART algo is quite simple

• it split the training set in 2 subsets using a single feature k and a threshold tk

• it chooses k and tk by searching for the pair that produces the purest subsets (weighted
by their size)

❖ The cost function that the CART algo  
tries to minimize for classification is:

• then, it splits the 2 sub-sets in 2 again using the same logic, and so on, recursively, until
indicated by the max_depth hyperparameter (or if it cannot find a split that will reduce
impurity)

❖ a few other hyperparameters (described in a moment) control additional stopping conditions
(min_samples_split, min_samples_leaf, min_weight_fraction_leaf, and max_leaf_nodes).

Note: CART is a greedy algo (searches for an optimum split at the top level already, and repeats, no check whether the split will eventually lead to the
lowest possible impurity several levels down). OK for good solution, no guarantees for the optimal one - which is a problem that scales exponentially
with m, so the problem becomes intractable for fairly small training sets. With DT and CART, do trade for a “reasonably good” solution..

INFN Machine Learning course D. Bonacorsi9

It does not predict a class, but a value

• example: I want a value prediction for a new instance with x1=0.6, I traverse
tree starting and reach the leaf node that predicts value=0.111 - which is the
average target value of the 110/200 training instances associated to this leaf
node, and this prediction results in a Mean Squared Error (MSE) equal to 0.015
over these 110 instances.

INFN Machine Learning course D. Bonacorsi10

Example of a DT for regression

Sklearn on a noise quadratic dataset
→ DecisionTreeRegressor

creates this:

It does not predict a class, but a value

• example: I want a value prediction for a new instance with x1=0.6, I traverse
tree starting and reach the leaf node that predicts value=0.111 - which is the
average target value of the 110/200 training instances associated to this leaf
node, and this prediction results in a Mean Squared Error (MSE) equal to 0.015
over these 110 instances.

INFN Machine Learning course D. Bonacorsi11

Example of a DT for regression

Sklearn on a noise quadratic dataset
→ DecisionTreeRegressor

creates this:

e.g. x1=0.6

INFN Machine Learning course D. Bonacorsi12

If you change to max_depth=3:

Example of a DT for regression

Note: the predicted
value for each

region is always the
average target value

of the instances in
that region.

The CART algo for regression (classification) tries to split the training
set in a way that minimises impurity (MSE)

• The cost function that the CART algo  
tries to minimize for classification was:

• … for regression is:

INFN Machine Learning course D. Bonacorsi13

Example of a DT for regression

DT prone to overfitting

Note that - just like for classification tasks - DTs are prone to
overfitting also when dealing with regression tasks.

• Using the default hyper-parameters, i.e. without any regularization, you get
the predictions of type [A] below. Just setting min_samples_leaf=10 in sklearn
results in a much more reasonable model as in [B] below

INFN Machine Learning course D. Bonacorsi14

[A] [B]

from sklearn
documentation:

DT instabilities and limitations
In summary, DTs have a lot of pros:

• simple to understand and interpret

• easy to use, versatile, powerful

They also have cons:

• In general, main issue with DTs is that they are very sensitive to small variations in the
training data

• Example: DTs are inclined towards orthogonal decision boundaries (all splits are
perpendicular to an axis): this makes them sensitive to training set rotation

❖ e.g. rotate a data points distribution by 45° and an easy split [A] becomes an unnecessarily convoluted decision
boundary [B]. Both DTs fit the training set perfectly, but one should not be surprised that the model as in [B] may not
generalize well.

❖ One way to limit this problem is to use PCA, which often results in a better orientation of the training data..

Actually, since the training algo used by sklearn is stochastic, one may get
different models even on the same training data (unless one sets the
random_state hyper-parameter)

Random Forests can limit this instability by averaging predictions over many
trees.

INFN Machine Learning course D. Bonacorsi15

