
INFN Machine Learning course D. Bonacorsi1

INFN Machine Learning course
Prof. Amir Farbin, Prof. Daniele Bonacorsi

20-22 May 2019
Camogli, Italy

Training models

2

Normal Equation vs Gradient Descent
Training a ML model → usually just few lines of code. Let’s
understand a bit “what’s under the hood”

Take e.g. a simple, Linear Regression model. You can train in 2 ways:

• using the Normal Equation that directly computes the model parameters that
minimize the cost function over the training set

• using an iterative optimization approach, called Gradient Descent (GD), that
gradually tweaks the model parameters to minimise the cost function over the
training set, eventually converging to the same set of parameters as the first
method

A few variants of GD exist:

• Batch GD

• Stochastic GD

• Mini-batch GD
INFN Machine Learning course D. Bonacorsi3

Towards an analytical solution

Applied Machine Learning course D. Bonacorsi4

Applied Machine Learning course D. Bonacorsi5

Towards an analytical solution

Applied Machine Learning course D. Bonacorsi6

Towards an analytical solution

Normal Equation

Let’s discuss its computation complexity:

• it computes the inverse of a (n+1)×(n+1) matrix (n = # features), whose
computational complexity is typically about O(n2.4) to O(n3) (depending on the
implementation)

❖ if you double n, computation time grows a factor 5.3 to 8

• sklearn LinearRegression with Singular Value Decomposition (SVD) is about
O(n2)

• both are linear with the # instances → O(m). So, they can handle large training
sets efficiently (provided they can fit in memory)

INFN Machine Learning course D. Bonacorsi7

Gradient Descent (GD)

Gradient Descent (GD) is an iterative algorithm capable of finding
optimal solutions by measuring the local gradient of the error
function with regards to the parameter vector θ, and it goes in the
direction of descending gradient.

An important parameter in GD is the size of the steps, determined
by the learning rate hyperparameter

INFN Machine Learning course D. Bonacorsi8

Applied Machine Learning course D. Bonacorsi9

Formulating the training problem differently

Applied Machine Learning course D. Bonacorsi10

(with 2 θs you can at least plot it 3D - but you can think and generalise to n θs..)

Note the axes.

Gradient Descent (GD) algorithm

Applied Machine Learning course D. Bonacorsi11

From the starting point, think physically as if these were hills: look around 360
degrees and make a step in the direction where I am going down quicker.

Pick a starting point, i.e. a given (θ0, θ1) pair

Gradient Descent (GD) algorithm

Applied Machine Learning course D. Bonacorsi12

This is roughly the direction I should take.

And now?

Gradient Descent (GD) algorithm

Applied Machine Learning course D. Bonacorsi13

Gradient Descent (GD) algorithm

Applied Machine Learning course D. Bonacorsi14

Gradient Descent (GD) algorithm

NOTE: this visual representation is easy to grasp but a bit misleading_ it is actually
an hyperplane that intersect a hypersurface.. and projection on the thetas

hyperplane gives you GD progression

Applied Machine Learning course D. Bonacorsi15

… GD would have taken you to a different local minimum. This is a property of GD.

If I had started just a couple of steps to the right…

Gradient Descent (GD) algorithm

Definition of GD algo

Applied Machine Learning course D. Bonacorsi16

This is a good way to visualise the different between parameters and hyperparameters.

Let’s look and digest all its parts.

• Firstly, let’s look at the θs

Applied Machine Learning course D. Bonacorsi17

Implementation of GD algo

Implementation of GD algo: θs

Applied Machine Learning course D. Bonacorsi18

QUIZ: is this correct?

Applied Machine Learning course D. Bonacorsi19

Implementation of GD algo: θs

Applied Machine Learning course D. Bonacorsi20

NOTE: simultaneously update θ0 and θ1. 
Be careful about a correct implementation of GD!

Implementation of GD algo: θs

Let’s look and digest all its parts.

• Firstly, let’s look at the θs

• Secondly, let’s look at the derivative term

Applied Machine Learning course D. Bonacorsi21

Implementation of GD algo

Applied Machine Learning course D. Bonacorsi22

Implementation of GD algo: derivative

Let’s look and digest all its parts.

• Firstly, let’s look at the θs

• Secondly, let’s look at the derivative term

• Thirdly, look at the learning rate term

❖ constant/running

❖ value

Applied Machine Learning course D. Bonacorsi23

Implementation of GD algo

Why a _fixed_ learning rate?

The derivative also explains why GD can converge to a local
minimum even with the learning rate _fixed_.

• As you approach a local minimum, GD will automatically take smaller steps.
So, no need to decrease α over time.

Applied Machine Learning course D. Bonacorsi24

Applied Machine Learning course D. Bonacorsi25

Implementation of GD algo: learning rate

Batch GD and learning rate

INFN Machine Learning course D. Bonacorsi26

red line = start

learning rate too low: will
eventually converge, but slow..

learning rate too high:
may not converge at all

in just a few iterations, it
has converged to the

solution

INFN Machine Learning course D. Bonacorsi27

learning rate too small: many iterations
to converge, long training time

learning rate is too high: possible divergence

Linear Regression is a convex function, so no
local minima, just a global minimum

Is GD guaranteed to approach arbitrarily close
the global minimum (if you wait long enough

and if the learning rate is not too high)?

GD vs normal equation

need to choose alpha

• run it a few time and pick the best

needs many iterations

• depending on the details it would make it
slower

needs feature scaling

works well even when n is large

• even millions of features

• cost ~scales as O(kn
2
)

for some tasks (e.g. logistic regression
algorithms) you need GD..

Applied Machine Learning course D. Bonacorsi28

no need to choose alpha

do not need any iterations

feature scaling is irrelevant

slow if n is large. Need to
compute (XTX)-1

• nxn matrix, so very high for high n

• matrix inversion cost ~scales as O(n3)
empirically, a limit at n~104..

aka: an iterative process aka: an analytic solution

Applied Machine Learning course D. Bonacorsi29

Eventually, it reaches the global minimum corresponds to having an hypothesis  
that gives me a good fit to the data

Bonus feature! GD in action

Applied Machine Learning course D. Bonacorsi30

Local minima?

INFN Machine Learning course D. Bonacorsi31

A complicate loss landscape..

INFN Machine Learning course D. Bonacorsi32

A constructed 3D representation for loss
contour of a VGG-56 deep network's
loss function on the CIFAR-10 dataset.

33

Stochastic GD

Stochastic GD

Batch GD uses the whole training set to compute the gradients at
every step

• very slow when the training set is large

Stochastic GD is at the other extreme: it 
picks a single, random instance in the  
training set at every step and computes 
the gradients based only on that single  
instance

• pro: much faster. Also, possible to train on huge training sets (only one instance
needs to be in memory at each iteration: SGD can be implemented as an out-of-
core algorithm)

• con: much less regular than Batch GD, the cost function will bounce up and
down, decreasing only on average, and will still bounce close to the minimum. so
once the algorithm stops, the final parameter values are good, but not optimal

❖ when the cost function is very irregular, this can actually help the algo jump out of local minima, so
Stochastic GD has a better chance of finding the global minimum than Batch GD does

INFN Machine Learning course D. Bonacorsi34

In Stochastic GD, randomness is good to escape from local optima,
but bad because the algo can never settle at the minimum

You can gradually reduce the learning rate

• The steps start out large (which helps make quick progress and escape local
minima)

• then get smaller and smaller, allowing the algo to settle at the global
minimum.

❖ if the learning rate is reduced too quickly, you may get stuck in a local minimum

❖ if the learning rate is reduced too slowly, you may jump around the minimum for a long time and
end up with a suboptimal solution if you halt training too early

INFN Machine Learning course D. Bonacorsi35

Stochastic GD

Applied Machine Learning course D. Bonacorsi36

Applied Machine Learning course D. Bonacorsi37

Applied Machine Learning course D. Bonacorsi38

Recap:

Applied Machine Learning course D. Bonacorsi39

40

Mini-batch GD

Mini-batch GD

In Batch GD we will use all m examples in each iteration.

In Stochastic GD we will use 1 single example in each iteration.

What Mini-batch GD does is somewhere in between. Specifically,
with this algorithm we're going to use b examples in each
iteration, where b is a parameter called the "mini batch size”.

• This is just like batch GD, except that I'm going to use a much smaller batch
size. That’s why we call it “mini”.

Yes, b is an additional hyperparameter..
• A typical range for b might be anywhere from2 up to b equals 100 (so, 10ish?)

Applied Machine Learning course D. Bonacorsi41

Applied Machine Learning course D. Bonacorsi42

In summary:

• pro: you can get a performance boost from hw optimization of matrix
operations, especially when using GPUs

• pro: the algo’s progress in parameter space is less erratic than with Stochastic
GD, especially with fairly large mini-batches.

• con: it may be harder than with SGC for it to escape from local minima (in the
case of problems that suffer from local minima)

INFN Machine Learning course D. Bonacorsi43

Mini-batch GD

Batch vs Stochastic vs Minibatch GD

They all end up near the minimum, but Batch GD’s path
actually stops at the minimum, while both Stochastic
GD and Mini-batch GD continue to walk around.

INFN Machine Learning course D. Bonacorsi44

Note: there is almost no difference after training: all these algos end up
with very similar models and make predictions in exactly the same way.

GD and feature scaling

When using GD, you should ensure that all features have a similar
scale - or else it will take much longer to converge

• e.g. use sklearn’s StandardScaler class

INFN Machine Learning course D. Bonacorsi45

Polinomial Regression

What if your data is actually more complex than a simple straight
line?

You can actually use a linear model to fit nonlinear data:

• add powers of each feature as new features, then train a linear model on this
“extended” set of features

INFN Machine Learning course D. Bonacorsi46

High-degree Polynomial Regression will likely fit the training data much better
than plain Linear Regression

How to diagnose this? We used CV to get an estimate of a model’s
generalisation performance:

• if a model performs well on the training data but generalizes poorly according to the CV
metrics, then your model is overfitting

• if it performs poorly on both, then it is underfitting

Concretely, this is one way to tell when a model is too simple or too complex.

INFN Machine Learning course D. Bonacorsi47

Linear model 
→ underfitting 

Polynomial regression 
→ overfitting

Underfitting or Overfitting?

Useful to look at the learning curves
• these are plots of the model’s performance on the training set and the

validation set as a function of the training set size (or the training iteration)

INFN Machine Learning course D. Bonacorsi48

Learning curves

1-2 instances, the  
model fit them

just fine  
(RMSE=0)

later, impossibile
to fit, so it

increases and
reaches a plateau

increasing m -
alone - does not

help

When model is trained on very few
training instances, it is incapable of
generalizing properly, so validation

error is initially quite high
Then, it learns and error goes down

plain Linear Regression model: learning curves

Underfitting

A high-order polynomial model performs significantly better on the training
data than on the validation data, which is the signature of an overfitting model.

• However, if you used a much larger training set, the two curves would continue to get closer.

INFN Machine Learning course D. Bonacorsi49

Learning curves

The error on the training data
is much lower than with the

Linear Regression model.

There is larger gap here

Overfitting

10th-degree polynomial model: learning curves

One way to
improve an
overfitting
model is to
feed it more
training data

until the
validation

error reaches
the training

error.

