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Training models
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Normal Equation vs Gradient Descent
Training a ML model → usually just few lines of code. Let’s 
understand a bit “what’s under the hood” 

Take e.g. a simple, Linear Regression model. You can train in 2 ways: 

• using the Normal Equation that directly computes the model parameters that 
minimize the cost function over the training set 

• using an iterative optimization approach, called Gradient Descent (GD), that 
gradually tweaks the model parameters to minimise the cost function over the 
training set, eventually converging to the same set of parameters as the first 
method 

A few variants of GD exist: 

• Batch GD 

• Stochastic GD  

• Mini-batch GD
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Towards an analytical solution
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Towards an analytical solution
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Towards an analytical solution



Normal Equation

Let’s discuss its computation complexity: 

• it computes the inverse of a (n+1)×(n+1) matrix (n = # features), whose 
computational complexity is typically about O(n2.4) to O(n3) (depending on the 
implementation) 

❖ if you double n, computation time grows a factor 5.3 to 8 

• sklearn LinearRegression with Singular Value Decomposition (SVD) is about 
O(n2) 

• both are linear with the # instances → O(m). So, they can handle large training 
sets efficiently (provided they can fit in memory)
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Gradient Descent (GD) 

Gradient Descent (GD) is an iterative algorithm capable of finding 
optimal solutions by measuring the local gradient of the error 
function with regards to the parameter vector θ, and it goes in the 
direction of descending gradient. 

An important parameter in GD is the size of the steps, determined 
by the learning rate hyperparameter
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Formulating the training problem differently
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(with 2 θs you can at least plot it 3D - but you can think and generalise to n θs..)

Note the axes.

Gradient Descent (GD) algorithm
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From the starting point, think physically as if these were hills: look around 360 
degrees and make a step in the direction where I am going down quicker.

Pick a starting point, i.e. a given (θ0, θ1) pair

Gradient Descent (GD) algorithm
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This is roughly the direction I should take.

And now?

Gradient Descent (GD) algorithm
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Gradient Descent (GD) algorithm
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Gradient Descent (GD) algorithm

NOTE: this visual representation is easy to grasp but a bit misleading_ it is actually 
an hyperplane that intersect a hypersurface.. and projection on the thetas 

hyperplane gives you GD progression
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… GD would have taken you to a different local minimum. This is a property of GD.

If I had started just a couple of steps to the right… 

Gradient Descent (GD) algorithm



Definition of GD algo
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This is a good way to visualise the different between parameters and hyperparameters.



Let’s look and digest all its parts. 

• Firstly, let’s look at the θs
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Implementation of GD algo



Implementation of GD algo: θs
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QUIZ: is this correct?
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Implementation of GD algo: θs
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NOTE: simultaneously update θ0 and θ1. 
Be careful about a correct implementation of GD!

Implementation of GD algo: θs



Let’s look and digest all its parts. 

• Firstly, let’s look at the θs 

• Secondly, let’s look at the derivative term
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Implementation of GD algo
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Implementation of GD algo: derivative



Let’s look and digest all its parts. 

• Firstly, let’s look at the θs 

• Secondly, let’s look at the derivative term 

• Thirdly, look at the learning rate term 

❖ constant/running 

❖ value
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Implementation of GD algo



Why a _fixed_ learning rate?

The derivative also explains why GD can converge to a local 
minimum even with the learning rate _fixed_. 

• As you approach a local minimum, GD will automatically take smaller steps. 
So, no need to decrease α over time.
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Implementation of GD algo: learning rate



Batch GD and learning rate
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red line = start

learning rate too low: will 
eventually converge, but slow..

learning rate too high: 
may not converge at all

in just a few iterations, it 
has converged to the 

solution
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learning rate too small: many iterations 
to converge, long training time

learning rate is too high: possible divergence

Linear Regression is a convex function, so no 
local minima, just a global minimum

Is GD guaranteed to approach arbitrarily close 
the global minimum (if you wait long enough 

and if the learning rate is not too high)?



GD       vs           normal equation

need to choose alpha 

• run it a few time and pick the best 

needs many iterations 

• depending on the details it would make it 
slower 

needs feature scaling 

works well even when n is large 

• even millions of features 

• cost ~scales as O(kn
2
) 

for some tasks (e.g. logistic regression 
algorithms) you need GD..
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no need to choose alpha 

do not need any iterations 

feature scaling is irrelevant 

slow if n is large. Need to 
compute (XTX)-1  

• nxn matrix, so very high for high n 

• matrix inversion cost ~scales as O(n3)
empirically, a limit at n~104..

aka: an iterative process aka: an analytic solution
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Eventually, it reaches the global minimum corresponds to having an hypothesis  
that gives me a good fit to the data



Bonus feature! GD in action
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Local minima?
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A complicate loss landscape..
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A constructed 3D representation for loss 
contour of a VGG-56 deep network's 
loss function on the CIFAR-10 dataset.
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Stochastic GD



Stochastic GD

Batch GD uses the whole training set to compute the gradients at 
every step 

• very slow when the training set is large 

Stochastic GD is at the other extreme: it 
picks a single, random instance in the  
training set at every step and computes 
the gradients based only on that single  
instance 

• pro: much faster. Also, possible to train on huge training sets (only one instance 
needs to be in memory at each iteration: SGD can be implemented as an out-of-
core algorithm) 

• con: much less regular than Batch GD, the cost function will bounce up and 
down, decreasing only on average, and will still bounce close to the minimum. so 
once the algorithm stops, the final parameter values are good, but not optimal 

❖ when the cost function is very irregular, this can actually help the algo jump out of local minima, so 
Stochastic GD has a better chance of finding the global minimum than Batch GD does
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In Stochastic GD, randomness is good to escape from local optima, 
but bad because the algo can never settle at the minimum 

You can gradually reduce the learning rate 

• The steps start out large (which helps make quick progress and escape local 
minima) 

• then get smaller and smaller, allowing the algo to settle at the global 
minimum.  

❖ if the learning rate is reduced too quickly, you may get stuck in a local minimum 

❖ if the learning rate is reduced too slowly, you may jump around the minimum for a long time and 
end up with a suboptimal solution if you halt training too early
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Stochastic GD
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Recap:
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Mini-batch GD



Mini-batch GD

In Batch GD we will use all m examples in each iteration.  

In Stochastic GD we will use 1 single example in each iteration.  

What Mini-batch GD does is somewhere in between. Specifically, 
with this algorithm we're going to use b examples in each 
iteration, where b is a parameter called the "mini batch size”. 

• This is just like batch GD, except that I'm going to use a much smaller batch 
size. That’s why we call it “mini”. 

Yes, b is an additional hyperparameter.. 
• A typical range for b might be anywhere from2 up to b equals 100 (so, 10ish?)
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In summary: 

• pro: you can get a performance boost from hw optimization of matrix 
operations, especially when using GPUs 

• pro: the algo’s progress in parameter space is less erratic than with Stochastic 
GD, especially with fairly large mini-batches.  

• con: it may be harder than with SGC for it to escape from local minima (in the 
case of problems that suffer from local minima)
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Mini-batch GD



Batch vs Stochastic vs Minibatch GD

They all end up near the minimum, but Batch GD’s path 
actually stops at the minimum, while both Stochastic 
GD and Mini-batch GD continue to walk around. 
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Note: there is almost no difference after training: all these algos end up 
with very similar models and make predictions in exactly the same way.



GD and feature scaling

When using GD, you should ensure that all features have a similar 
scale - or else it will take much longer to converge 

• e.g. use sklearn’s StandardScaler class
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Polinomial Regression

What if your data is actually more complex than a simple straight 
line?  

You can actually use a linear model to fit nonlinear data: 

• add powers of each feature as new features, then train a linear model on this 
“extended” set of features 
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High-degree Polynomial Regression will likely fit the training data much better 
than plain Linear Regression 

How to diagnose this? We used CV to get an estimate of a model’s 
generalisation performance: 

• if a model performs well on the training data but generalizes poorly according to the CV 
metrics, then your model is overfitting 

• if it performs poorly on both, then it is underfitting 

Concretely, this is one way to tell when a model is too simple or too complex.
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Linear model 
→ underfitting 

Polynomial regression 
→ overfitting

Underfitting or Overfitting?



Useful to look at the learning curves 
• these are plots of the model’s performance on the training set and the 

validation set as a function of the training set size (or the training iteration)
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Learning curves

1-2 instances, the  
model fit them 

just fine  
(RMSE=0)

later, impossibile 
to fit, so it 

increases and 
reaches a plateau

increasing m - 
alone - does not 

help

When model is trained on very few 
training instances, it is incapable of 
generalizing properly, so validation 

error is initially quite high
Then, it learns and error goes down

plain Linear Regression model: learning curves 

Underfitting



A high-order polynomial model performs significantly better on the training 
data than on the validation data, which is the signature of an overfitting model.  

• However, if you used a much larger training set, the two curves would continue to get closer.
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Learning curves

The error on the training data 
is much lower than with the 

Linear Regression model.

There is larger gap here

Overfitting

10th-degree polynomial model: learning curves 

One way to 
improve an 
overfitting 
model is to 
feed it more 
training data 

until the 
validation 

error reaches 
the training 

error.


