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 ML in the online data acquisition
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2019 

we stand at the height of 

some of the greatest 

accomplishments that 

happened in DL

Meta-learning [3]Autopilot [2] 

Natural Language Processing [1]

Video to video synthesis [4]

...but this is also the beginning of this incredible data-driven technology, in particular in our field

Reÿ [1] [2] [3] [4]

http://jalammar.github.io/illustrated-transformer/
https://www.tesla.com/autopilot
https://github.com/tensorflow/adanet
https://tcwang0509.github.io/vid2vid/
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● DL is a subset of ML which makes the 
computation of multi-layer NN feasible. 
When applied to massive datasets and  giving 
massive computer power it outperforms all 
other models most of the time.

● ML is becoming ubiquitous in nuclear and 
particle physics. 

● DL just started having an impact in 
nuclear/particle physics
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Artificial Intelligence 

Machine Learning

  Deep Learning
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Storage

HLT1

9 PB buffer on disk 
calibration and alignment

HLT2

pp collisions

FPGA-based L0
1 TB/s              30 MHz

50 GB/s             1 MHz

6 GB/s             120 kHz

0.7 GB/s             

S
oftw

are Trigger

M. Williams, 
ML in the LHCb Trigger and Beyond

in the example: LHCb (Run 2)
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Storage

HLT1

buffer on disk 
calibration and alignment

HLT2

pp collisions

5 TB/s              

2-5 GB/s             

S
oftw

are Trigger

   “T
riggerless” Readout

in the example: LHCb (Run 3)
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Towards Streaming Readout 

data read continuously ÿrom all channels
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G. Heyes, JLab12 streaming readout and future 
EIC
Y. Furletova, ML for particle identification

● Validation checks at source reject noise and suppress 
empty channels.

● Data then flows unimpeded in parallel channels to storage 
or a local compute resource.

● Data organized in multi-dimensions by channel and time. Different streaminĀ pipelines: 
FPGA based (w/ data reduction) and ÿull streaminĀ.

ML naturally suited ÿor online data reduction or 
hiĀh level physics event selection/triĀĀer
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  GPUs
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In the following I will show some ML applications in the data acquisition
(ML been deployed on FPGA, GPUs will be soon used for the HL trigger too)   
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protons

PbOPbWO4

Hardware Trigger: Muon ID CMS    
● L1 trigger responsible for selecting 100k/s 

interesting events out of the 40M/s

● Endcap Muon Track Finder (EMTF)
○ Needs to operate fast (~ 500 ns)
○ No tracker info available, only muon 

chambers 

● Want Machine Learning to do the pT 
assignment (implemented on FPGA)
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Main parameters: ΔΦ12 , ΔΦ23, ΔΦ34,
θtrack, Δθ12, Δθ23, Δθ34

● transverse momentum (pT ) is assigned based on curvature 
● The Endcap Muon Track Finder (EMTF) needs to process 

hits and assign a momentum
● Interesting muons have large pT 

(CMS CR -2017/357)
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Muon ID CMS                                            
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● 2500 operations to assign the  pT for a single track.
● A BDT would take ~2500 ns with standard settings.
● Create a look-up table* to reduce the 2500 operations into 1 operation 

● Trade time for memory by discretizing 
features and fit into 30 bits: 

○ e.g. var 1 = 10 bits, var2 = 5 bits, var3 
= 5 bits, var4 =5 bits, var5=5 bits 
=> Input = 30 bits

○ Map each input to the ML output and 
save map 2^30 possibilities w/ 9 bit 
output = 1.2 GB LUT

Goal: 
Minimize Rate Maximize 
Efficiency 

● LUT into the FPGA Implemented this desiĀn in 
2016/2017 data takinĀ 

● Improved 3x rate reduction (ÿor pT > 25 GeV) with small 
loss oÿ efficiency 

*LHCb first employed the discretized LUT BDT approach in 2011

(CMS CR -2017/357)
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“Ghost Tracks Killer” (LHCb-PUB-2017-011)  

Fake-track (ghost) killing DNN based on 22 features, most important are hit 
multiplicities and track-segment chi2 values from tracking subsystems. Significantly 
reduces the rate of events selected in the HLT1.
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Run in the trigger on all tracks (it must be very fast). Use of custom activation 
function and highly-optimized C++ implementation.



HLT2 Topological Trigger
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OK

● The main b-physics trigger used by LHCb. 
Selects vertices which are:
➢ Detached from the primary pp 
➢ Compatible with coming from a b-hadron 

decay 

T.Likhomanenko et al [1510.00572]
V.Gligorov, M. Williams, JINST 8 (2012) P02013

Event

HLT “1-track” HLT “2-body SV”

HLT2: Topo 

OR
Consists of:
● An SV algorithm that considers 2, 3, and 4-track 

vertices (seeded by HLT1 ML selections).
● The ML uses a list of features: n(tracks), corrected 

mass, vertex χ2, scalar track pT  sum, flight distance 
χ2, pseudorapidity (PV-SV), min(track pT ), n(small IP 
tracks), IP χ2, n(very b-like tracks).

● All features are discretized in the ML for stability, 
robustness, etc. This allows to control growth of DT.
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HLT2 Topological Trigger
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OK

● This BDT algorithm has run since 2011, collecting the data used by ~200 papers.
 

● It was re-tuned for Run 2 by Yandex and it is now based on MatrixNet.

● In the LHC Run 1, this trigger, which utilized a custom boosted decision tree 
algorithm, selected a nearly 100% pure sample of b-hadrons with a typical 
efficiency of 60-70%.
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Real-Time Calibration in LHCb
● VELO opens/closes every fill, expect updates every few fills. Rest of tracking stations only need 

updated every few weeks.

● RICH gases indices of refraction must be calibrated in real time; requires ~1 min to run, and 
new calibrations are required for each run.

● Calibration data is sent to a separate “stream” from the physics data after the first 
software-trigger stage. This permits running the calibrations on the online farm simultaneously 
with running the trigger.
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Further Improvements
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New Directions
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Detector Alignment

DIRC @ GlueX/JLab 

● Optical box made by several components and filled by water.

● During data-taking this becomes a noisy black-box problem 
with many non-differentiable terms. 

○ relative alignment of the tracking system with the 
location and angle of the bars 

○ mirrors shifts cause parts of the image change

○ other offsets

● These aspects make seemingly impossible to analytically 
understand the change in PMT pattern

● Requires dedicated system for calibration. 
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Self-learning alignment parameters 
Shown for the DIRC, can be 

generalized to other detectors 
                                   

CF et MIT 
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Bayesian Optimization

(leÿt) correlations amonĀ the 
main misaliĀnment parameters
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(Applications for EIC) 

This approach finds a lot of useful applications:

● Optimal Design (hardware, ... )

● Tuning Simulations (cf. Ilten, Williams, Yang [1610.08328])

● Hyperparameters (e.g. DNN) 

● Calibration (cf. GlueX DIRC)

● etc…   

A machine ÿor delvinĀ deeper than ever 
beÿore into the buildinĀ blocks oÿ matter

Building the future EIC is the top long-term priority for 
medium/high-energy nuclear physics in the U.S. 

It already consists of a large international collaboration. 
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old
new 

3σ

π/K separation

EIC dual-RICH

Preliminary

      E. Cisbani, A. Del Dotto, CF
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Anomaly Detection          

Towards Automated Data Quality System 
It’s a continuous supervised learning approach:

● Historical data processed by experts 
(classifying data good/bad) 

● System learns patterns 

Establish procedure to split data into “definitely bad”, “definitely 
good”, and “expert needed” 
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● As new data is coming the supervisor continue making complicated labelling
● Can think of approaching the problem in minimal chunks of data to label 

automatic 
decision

expert 
needed

    1    0

   definitely anomalous    ambiguous     definitely good

Loss rate 
L =  FN/(TP+FN)

Pollution rate
 P = FP/(TP+FP) 

Rejection rate
R = grey / (black + grey + white)

scores

M Borisyak et al 2017 J. Phys.: Conf. Ser. 898 092041

↻
retrain

reduce Rejection 
minimizes human 

evaluation
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Anomaly Detection
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FN

Different approaches under study for the identification of 
anomaly (N.B.: specific failure modes can be labeled). 
Used “lumi-sections” (CMS open data).

 

● Combining different “channels”. Used a BDT.

0 1

● Explored autoencoders for rare anomalies. 
When trained on the inliers, testing on unseen faulty 
sample tend to yield sub-optimal representations, 
thus providing a metric for quantifying the anomaly 
in occupancy plots.

M Borisyak et al
(YANDEX)
J. Phys.: Conf. Ser. 898 
092041

1808.00911 A.A. Pol et al 

   Autoencoder

All models instructed to minimize 
the mean squared error between 

original and reconstructed samples
fractions of rejected luminosity and 
lumisections gradually decrease as 
classifier gets more labeled data

severity of a potential anomaly ~ p-value



FPGA: A “Top/Down” Approach 
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PbO

● hls4ml is a package for creating HLS 
implementations of neural networks 

        https://hls-fpga-machine-learning.github.io/hls4ml/

● Supports common layer architectures 
and model software

● Highly customizable output to map 
different latency and size needs 

● Simple workflow to allow quick 
translation to HLS 
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   CPU/GPU

        FPGA

arXiv:1804.06913v3 

https://hls-fpga-machine-learning.github.io/hls4ml/
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Summary

● With high luminosity and high data rate 
environment we have to be able to make FAST 
decisions along data transfer.

● Heavy use of ML @LHC during Run 1 and Run 2.

● ML on FPGA allows online data reduction. 

● Run3 LHCb will upgrade to a triggerless readout. 

● Both data science and detector expertise needed 
to implement advanced approaches, e.g. 
detection of anomalies in detector data. 
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                Deep Net Painting of Portofino 


