Lecture 4;
Rapid Walk-through of
Deep Learning

Amir Farbin

Vlotivations

* Curse of Dimensionality- Data occupies a small fraction of high dimensional
space

- Manifold Learning
e Natural Data Lives in low dimensional (Non-Linear) Manifold.
e For example consider 100 by 100 pixel images of faces

« We can imagine that images a specific person’s face trace a manifold in
pixel space

e as we rotate face wrt 3 angles
 as facial change by movement of O(50) muscles on face

 |deally feature extractors would learn these manifolds.

L LS el
eQOone

el L F el
QAE PN BW
QACE U OW
FAE DDA
GANE gD PY
sGand eqQePe
SN QTP
SEANE Qe PG

AR = Lo dCo

TEITC
SREP2E
SR 2Q
S Ll
dgfeg
el Lot
ol Lol
2@ QaAQR
el Lo b ol

b)

™

le

=
A~
2
o
»n
¢
~

(a) Azimu

GARE { VGO P

-
2l s
LYYL&
GVdE
CTaL
STAE

T2
GARE

Sod - Loda
Lol L L.

i

Ciﬁiﬁﬁ’(€€ @@@@@@@@@@

(c) Lighting (d) Wide or Narrow

Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from —1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally in (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.

https://arxiv.org/pdf/1606.03657.pdf

https://arxiv.org/pdf/1606.03657.pdf

Hadsell et al CVPR 2006

Why Deep?

e “We can approximate any function as close as we want with shallow architecture.
Why would we need deep ones”?”

 Deep machines are more efficient for representing certain classes of functions
e They can represent more complex functions with less “hardware”
* Hierarchy of representations with increasing level of abstraction.
* Images: Pixel>Edge— Texton—Motif=Part—=0Object
e Text Character=Word—Word Group—Clause—Sentence—Story
 Speech: Samples—Spectral Band—Sound—...—~Phone—Phoneme—Word
e In DL, these are learned features...
e Each stage transforms input representation into high-level representation
* High-level are more global/invariant

* Low-level are shared among categories.

DNN Architectures

Dense Networks

4//A'\ //A\\"’,/A\\ /A\\\
. \\\(y'll
* Simplest type. ,ﬁ,«,;//‘\‘\‘»,f.,,,@.\‘““ ‘LQ\‘}%’ /‘\Q\\,,
:"‘ XY N "0»// \\0“ ")}"0// \\«“' ‘t"/
K \‘)" @ A% RN . Q,
,‘\v” V"'/ ~\" "'~ A#A’A#‘x ""‘ "‘ V‘v"\.
\’ol‘*'*' “' “ "'oz’ V'I"/' " "A\ % "\"
N> \‘\
VRS e W W

N //' " "’\\Q ';"~\\
ﬂAA \'/' ‘\\“ o7 "I A \\“ ”'«‘/‘ ‘\'/é/‘\

T v«{ l{ W 2
Sialiiag
e d deep network => Fa(Fg-1(Fa-2(...(F1(x0))) \ .'

® Single layer: Fi(xi-1) = (W xi-1 + b))

e Each Wi is nj by ni.s Matrix = n; is width at depth /

* d and {n;} are hyper-parameters

* Note: thin/deep networks don’t have enough bandwidth to
propagate info. Generally want n; >> d.

e https://playground.tensorflow.org/

Building DL Models

Inputs

e Neural Networks work best with inputs ~0 — 1

* You can shift by mean and divide by variance

e QOr use a scaler from sklearn.

Activations

Activations g

* Vanishing Gradients

e Sigmoid |
02 a4 0 2 4 6
e Saturate
1.5
2
tanh(z) = 1 | | S
* non-Zero centered b @) ==
0.5
* Relu 0.0
-0.5
: nh
* Larger Gradient 4.0 ta
-1.5
| -6 -4 -2 0 2 4 6
* Simple to compute
10
0 for z2<0
H H (11 H b)) 8 —
* [f learning rate too high, neurons can “Die” (never f(z) = {m for >0
activate) °
4
* [Leaky Relu 2
0 relu
* Choice of activation can be seen as a hyper parameter -2

Output

The softmax layer

* Classification: One-hot representation > The output from the softmax layer is a set of probability distribution,
positive numbers which sum up to 1.
e SoftMax
e Boltzmann distribution: e -E&T ey ——— (o4pixels ——

pixels
— HNNNENEEN -0

* Takes vector of arbitrary values and maps to

* vector with values in range O to 1

softmax
 vector components sumto 1. Q Q Q Q
0 1 2 9

* Uses: weighted sum of all

neuron outputs

pixels + biases
* Prob output from Multiclass classification \\
exp(z;)

softmax (z,) =

* Normalization of data. Zjexp(zj)

Cost Functions

Cost/Loss

e MSE- Mean square error
 Proven to give right y for given x.
* MAE- Mean absolute error
 Proven to give right median y for given x.
e Often train poorly: saturating outputs give small gradients.
e For classification, output for selected class is 1
* Use cross-entropy for classification

* You can write your own log-likelihood cost function

Cost Functions

2=, wixj +b

C — (.y - a)2 % = (a — y)o-,(z)x — ao_l(z)
N 2
b = (a —y)o'(z) = ac'(2),
oC 1
d_wj " z xj(0(z) =).

"\

_ ! | . ~ ocC 1
C=— D [ylna+(1-y)in(l - a)] — = Z(G(Z) —).

The Cross-Entropy Cost Function

> For classification problems, the Cross-Entropy cost function works
better than quadratic cost function.

» We define the cross-entropy cost function for the neural network by:

© | 06| 606|0606|06|06|1)|0606]| 06|06

Cross entropy “one-hot” encoded ground truth

N

C=-) y log(y)

this isa “6”
computed probabilities)

\
0.01 | 0.01 | 0.01 | .01 [©0.01 | 0.01 | ©.90 | ©.01 | ©0.02 | ©0.01

P4
0 1 2 3 4 5 6 7 8 9

H(p,q) = —) p(z) logq(z).

 In information theory, the cross entropy between two probability
distributions p and g over the same underlying set of events measures
the average number of bits needed to identity an event drawn from the
set, if a coding scheme is used that is optimized for an "unnatural”
probability distribution g rather than the "true” distribution p

KL Divergence

N

Dkr(pllq) = ;p(wi) ' ZOQSEZ;

p Is the truth
g is your “coding” of truth
D ~ number of extra bits needed to code p when starting code g

—> Minimize Dxi. — g encodes same information as p

Optimizers

Training == Optimization

* Training = Minimizing cost function
w.r.t. parameters a

C[F(Xtrain‘o_z)a ﬁrain] — C(O_Z)
* (Gradient Decent (Newton’s Method):

e (GGradient points to direction of
maximal change.

* |terate (€ sets the step size ==

Learning Rate)

O_Zi—l—l — O_Zz — GVC(O_Z)

Stochastic Gradient Decent

Inefficient to compute the gradient on full dataset — take few steps.

Approximate the gradient on a small subset (a batch) — take more steps

e Noisy gradients... but faster (computationally) convergence.

Number of Examples = Batch Size * Number of Batches

Epoch = 1 pass through all examples.

|
Learning Rate, Decay, Momentum
527;_|_1 — 52@ — EVC((SZ)
* ¢ is the learning rate ~ the step size... a hyper parameter.
* May be beneficial to take big steps in the beginning, small steps near the minimum.
e Decay: atepochi,ei— €1/ (1 + 6) a hyperparameter

e Gradient can be noisy

* Momentum: add a bit of the previous batch gradient to gradient of current batch.

Lots of difference strategies... again, a hyperparameter.

N SGD -
Momentum E
NAG -
Adagrad
Adadelta
Rmsprop

CNNs

Convolutional NNs

* |Inspired by visual cortex
* Input. Raw data... for example 1D = Audio, 2D = Images, 3D = Video
* Convolutions ~ learned feature detectors
- Feature Maps - One per convolution kernel
* Pooling - dimension reduction / invariance
e Stack: Deeper layers recognize higher level concepts.
* Hyperparameters:
* Number, Size, and stride of convolutions
* Pooling sub-sampling and method (average, max, ...)

e Number of times...

Feature maps 1 Y
‘Y

Input -

= bL &

IED ek |-
NEEATII=EE
L .rl’;d'n
Vembh ol]

ASNINRY
T NZR¥N =
Convolutions Subsampling Convolutions Subsampling Fully connected A BANN

Basic Idea for Invariant Feature Learningﬁ Y LeCun
- . TP e . MA Ranzato

Embed the input non-linearly into a high(er) dimensional space

» In the new space, things that were non separable may become
separable

Pool regions of the new space together

» Bringing together things that are semantically similar. Like
pooling.

Pooling

Non-Li
on-Linear Or

Function .
Aggregation

Input

Stable/invariant

high-dim features

Unstable/non-smooth
features

Non-Linear Expansion — Pooling Y LeCun
MA Ranzato

Entangled data manifolds

Non-Linear Dim .
. Pooling.
Expansion, .
: : Aggregation
Disentangling

Sparse Non-Linéar Expansion = Pooling | Y LeCun
= MA Ranzato

Use clustering to break things apart, pool together similar things

Clusterti
e .ern?g, Pooling.
Quantization, Asoresation
Sparse Coding SEITE

LeNet-5 (1998) GoogleNet/Inception(2014) ResNet(2015)

input convi pool1 conv2 pool2 hiddend output \
size112 . 1XTconv, 64/2 |
ol max /Imnllz
Size:56
— e 1x1 conv, 64
1 33 i o6 i xt i — 3x3conv, 64
Full x1 i))) 1x1 conv, 256
T Hon ﬂmons 1x1 convolutions 3x3 max pooling l(—
N
e

1x1 conv, 64
— 3x3 conv, 64
1x1 conv, 256

ibsampk ” b:

1x1 conv, 64
— 3x3conv, 64
1x1 conv, 256

Previous layer

tion

sy201q [018/>

wmvolution

AlexNet (2012)

Size:28
1x1 conv, 128/2
— 3x3 conv, 128

1x1 conv, 512

Joas \dense

')
(=
-
o'

192

1x1 conv, 128
3x3 conv, 128
1x1 conv, 512

—

—
1x1 conv, 128
~—— 3x3conv, 128
1x1 conv, 512

I

13 13

syo01q [LISf>

e = dense

192 128 Max

Max_ 128 Max pooling
pooling pooling

2048 2048

Size:14 [

48

ZFNet(2013)

image size 224 110 26 13 13 13
filter size 7 ¢3 ¢ 3
1 w384 1 w384 256 ¥)
’. : \2.56 N N ¢ 1x1 conv, 256
stride 2 3x3 max 3x3 max e I 3 3x3 256
3 pool| | contrast pool 4096 4096 class 2 2 L a e r s] — x3 conv,
MR, | o, stride 2 units| | units| | softmax y : i

o] :
1 {256 256

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output

VGGNet (2014)

1x1 conv, 256/2
— 3x3 conv, 256
1x1 conv, 1024

1x1 conv, 256
— 3x3 conv, 256
1x1 conv, 1024

T
PE—
v

sya201q [Z]8)>

Size:7

1x1 conv, 512/2
— 3x3 conv, 512
1x1 conv, 2048

Input Image

1x1 conv, 512
—] 3x3 conv, 512
1x1 conv, 2048 |
—
s
1x1 conv, 512
—— 3x3conv, 512
probabilities 1x1 conv, 2048

siafivy 761

syoopq [¢]8)>

image

pool 1
pool 2
pool 3
pool 4
pool 5

fc 6

fc 7

fc 8
[€'9c's"c]=8/>

convi i
convi 2
conv 2 1
conv2 2
conv3 1
conv 3 2
conv3 3
conv4d 1
conv4 2
conv4 3
conv5 1
conv5 2
conv5 3

avg pool/2

4

fc ,1000 |

152 Layers

https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

saahiv] 101
saahiv] g

SpH

[£9'F°€]=8/>

[8°€TFE]

Inception-va4
80 4 80 4 8 g :
Inception-v3 ‘ . ResNet-152
ResNet-50° : : VGG-16 VGG-19
7 e e el Dt . e iy 757 ResNet-101
’ ResNet-34
. B
> 70 > 70 ‘a ResNet-18
S @ GoogleNet
5 =z ENet
B 657 S 65 -
-t ~
2 2 Q BN-NIN
F 60 4 F 60 4 5M 35M 65M 95M 125M 155M
BN-AlexNet
>0 N\ X Aa® 40 49 ad O .oVl B b 09 5 10 15 20 25 30 35 40
\) Cr NN e N D ‘: A0 455 N2 N
t>~\e’ \’;\e*ﬁ V\\‘\ g\: : & 66 Gcae N e(,‘\ c)V\e’V $e‘_ ‘\0(\ O Operations [G-Ops]
o ° O REQRE™ Q% (PP

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

Graph Convolutional NN

https://arxiv.org/pdf/1901.00596.pdf

Transfer Learning

* Training Challenges
e Can take a long time... maybe weeks.
e Parallelization can help... if you have lots of resources.
e You may not have enough training data for task you want to accomplish.

e Transfer learning: | want to a DNN to perform task A on sample 1.

Train on large dataset B of same type as A (e.g. images) on a specific task 2...

e Or use pre-trained model.

Modify output task B — A.

Fine-tune: train to perform task A on sample 1.

= Train faster, get better results, use smaller training data.

* You can find pre-trained models for image recognition, NLP, and many other tasks.

Recurrent DNNSs

Votivation

DNN inputs:

e Fixed size: images, video, raw data from detector...
 Variable size: audio, text, particles in event... sequences.
Usual NNs map input to output.

« No memory of previous information.

Recurrent NN: feed some output back into self.

DNNSs can represent arbitrary functions... RNNs can represent arbitrary programs.

b

C? I T T
L A

—> —> >

1
S Oy S

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN input/output

one to one one to many many to one many to many many to many
! P11 ! P11 P11
! ! Pt Pt Pt

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Basic RNN

tanh(Whhht_l + thwt)

Why - by

y:

ot

'S S O

Q<@
oo
oo
@ <@
o
o

target Chars: “e” “I” “I” “O”

1.0 0.5 0.1 0.2
2.2 03 0.5 -1.5
tput |
OUPEL Iyl . 1.0 1.9 0.1
4.1 1.2 -1.1 2.2
T Jww
05 1.0 0.1 |\w hn| -0.3
hidden layer | .01 — 0.3 —| -05 ——| 0.9
0.9 01 -0.3 0.7
IR R .
1 0 0 0
: 0 1 0 0
input layer 0 0 1 1
0 0 0 0

input Chal'S: “h” {Pug] ulu “l”

4

Sequence Predictor

[STM

Ch
- Forget o= o (W lheor,zi] +)
hi—1
Cell State
New info | it =0 (Wi lhe—1,2¢] + b;)
s I:tcg> C’t — tanh(WC-[ht_l,xt] -+ bC)
—® @ >
ftT ’L'tr'%t C; = ft k Cpoq1 + 14 * ét
he A\
Eanh> o =0 (W [he—1,2¢] + bo)
Oy 6
Construct output . - . fu=ouxtanh(Cy)

117t|

(TTT¢TT]
lu
==

Neural Turing
Machines

have external memory
that they can read and
write to.

Other RNNs

(2 =2]—{e]
%
(A =2 =]

Attentional

Interfaces

allow RNNs to focus on
parts of their input.

S ——| S
(5]

Adaptive

Computation Time
allows for varying
amounts of computation
per step.

(1) |

“{ Op2)~

1 t t
(A=A —{A]
Neural
Programmers

can call functions,
building programs as
they run.

Types of Networks

Combining Architectures

 Different data are naturally suited for different architectures: Input Visual Sequence Output
Features Learning

e Audio: 1-D CNN, RNN
e Image: 2D CNN

e Text: RNN

¢ You can combine architectures:

° i E °
° L1 e
[] T
e Video: 2D CNN on frames — RNN in time. E E
I : yTl
e You can simultaneously look at multiple types of data: ! L]
o Siamese: 2 parallel data inputs (same or different types) http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds08.pdf

1x1%1500 =25 IxIx25 —+ 25

Cross Patch Feature
Aggregation
Fully
connected

o 'R |33 H
N Gx6x3 e 20 ! Layor

https://www.codeproject.com/Articles/1253224/Keras-Implementation-of-Siamese-like-Networks

Example: Captioning

Input Video r‘g(?nvolutlonal Net Recurrent Net Output
LENH—] —[sM 15TV |— 4
LENH—| _LS'%’IVI — LS'%’M — boy
lz _)-’ LS'E'M l—' LS}{M
1 DJED\\—»I " =TTV —| LSTM — playing
u'jl'u\\"' | L*M_I—' L#M_l—' golf
El@\\‘*' e L_S*Nl — L_S'%'Nl — <EOS>

https://www.cs.utexas.edu/~vsub/naacl15_project.html

Semi-supervised Learning

* Basic idea: Train network to reproduce the input.

« Example: Auto-encoders nput

~_ code

De-noising auto-encoders: add noise to input only.

Sparse auto-encoders:

Sparse latent (code) representation can be exploited for
Compression, Clustering, Similarity testing, ...

decoder
encoder

Anomaly Detection
 Reconstruction Error

e Quitliers in latent space S
Bottleneck Hidden Layer

Transfer Learning \ l /;H:,
()

. . rP ‘\] . r/ \,: (\)

 Small labeled training sample” - \/A\/’H\ S
__/ / - / . / _

. VY 7 0\ 7\)\ P

Train auto-encoder on large unlabeled dataset (e.g. data). 2 OGS \5_:\ —

\/ _A __

e Train in latent space on small labeled data. (e.qg. rare '/j/ \’(_

signal MC). \

» Easily think of a dozen applications.

o_utput

)

~

P ——
/ N\
f

Generative Models

VAE: Variational
Autoencoders

Auto-Encoding Variational Bayes

Diederik P. Kingma Max Welling
Machine Learning Group Machine Learning Group
Universiteit van Amsterdam Universiteit van Amsterdam
dpkingma@gmail.com welling.max@gmail.com
Abstract

How can we perform efficient inference and learning in directed probabilistic
models, in the presence of continuous latent variables with intractable posterior
distributions, and large datasets? We introduce a stochastic variational inference
and learning algorithm that scales to large datasets and, under some mild differ-
entiability conditions, even works in the intractable case. Our contributions is
two-fold. First, we show that a reparameterization of the variational lower bound
yields a lower bound estimator that can be straightforwardly optimized using stan-
dard stochastic gradient methods. Second, we show that for i.i.d. datasets with
continuous latent variables per datapoint, posterior inference can be made espe-
cially efficient by fitting an approximate inference model (also called a recogni-
tion model) to the intractable posterior using the proposed lower bound estimator.
Theoretical advantages are reflected in experimental results.

https://arxiv.org/abs/1312.6114

https://arxiv.org/abs/1312.6114

Decoder p,(x|2)

Encoder q(z|x)

Data: x Reconstruction: X

e aprobabilistic encoder g4 (z|x), approximating the true (but
intractable) posterior distribution p(z|x), and

e agenerative decoder py(x|z), which notably does not rely on any
particular input x.

Both the encoder and decoder are artificial neural networks (i.e.
hierarchical, highly nonlinear functions) with tunable parameters ¢» and 6,
respectively.

Learning these conditional distributions is facilitated by enforcing a
plausible mathematically-convenient prior over the latent variables,
generally a standard spherical Gaussian: z ~ N'(0, I).

lz(97 ¢) — _Ezwqg(z\:v,f)llogp¢($i|Z)J T KL(QO(ZImz)Hp(Z))

http://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and.htm|

X =7 1X — f(2)|
A l A
G 7(2)
I\ | A
Decoder | 1 [)C L[N (1(X), »(X))|[N(0, I)]] | Decoder
KLIN ((X), 5(X))[N(0, T)] ‘i’ L___ A A ()

Sample z from N (u(X), 3(X))

|
l
l
l
l
R
l
Encoder : Encoder | | sample € from NV (0,])
(@) | (@)
l
1 | i\
X : X

Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
only to the right network.

https://arxiv.org/pdf/1606.05908.pdf

CESCSANNNNDNDNDN

rey'=s

CEESASANNNNNNDN
777777777777

YO) ())0) N o0 0o O O v == == o — —

N LSS SN~~~

R R R EE R R R R
AAA I IV VWVY LN NNNNN
F 33539999 VOVN UGN NNNNN
SIAI9I9I9I9 VO AOVVUN UNNANANN

bbbbbbooooaoo‘////_

999900 QOQQUNQ
Q9990000 QQ

//

“ J
”

CLLLLLALUZLLLLESS S YUY Y YY

LLLLLLAZLLLLESSEHHY Y Y
10LbL L

(o Xo No e
o/ /

NV
J QQ0Q
JIJ000O0QQQQQ0
) ooo

[

4

Sl 00ed /

J
JOOO0O0O0O0Q0

3

round 65536: train in latent space

O - N MS<T N O 0O

7.2/ 06 4 | 94 as ?
72/Z1 10 4 [4 4S F

smiling neutral neutral

smiling man
woman woman man g

man man woman
with glasses without glasses without glasses

Results of doing the same
arithmetic in pixel space

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y. The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Figure 8: A "turn” vector was created from four averaged samples of faces looking left vs looking
right. By adding interpolations along this axis to random samples we were able to reliably transform

their pose.

“,2\3.1? u%ﬂ
wr —

lll‘l
ﬁﬁ (

&

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

https://arxiv.org/pdf/1511.06434v2.pdf

https://arxiv.org/pdf/1511.06434v2.pdf

L LS el
eQOone

el L F el
QAE PN BW
QACE U OW
FAE DDA
GANE gD PY
sGand eqQePe
SN QTP
SEANE Qe PG

AR = Lo dCo

TEITC
SREP2E
SR 2Q
S Ll
dgfeg
el Lot
ol Lol
2@ QaAQR
el Lo b ol

b)

™

le

=
A~
2
o
»n
¢
~

(a) Azimu

GARE { VGO P

-
2l s
LYYL&
GVdE
CTaL
STAE

T2
GARE

Sod - Loda
Lol L L.

i

Ciﬁiﬁﬁ’(€€ @@@@@@@@@@

(c) Lighting (d) Wide or Narrow

Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from —1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally in (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.

https://arxiv.org/pdf/1606.03657.pdf

https://arxiv.org/pdf/1606.03657.pdf

GAN: Generative
Adversarial Networks

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio?
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7

.
‘~

' X
\ b e FOSPP
v
e X

2 20 20N 2N

(a) (b) (c) (d)

X

N

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution py (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping * = G(z) imposes the non-uniform distribution p, on
transformed samples. GG contracts in regions of high density and expands in regions of low density of p,. (a)
Consider an adversarial pair near convergence: p, 1s similar to pgaa and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D*(x) =

o ’(’gjgaf;l @) (c) After an update to GG, gradient of D has guided GG(z) to flow to regions that are more likely

to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because p; = pdaa. The discriminator is unable to differentiate between

the two distributions, i.e. D(x) = 2.

2 https://arxiv.org/abs/1406.2661
Example: http://cs.stanford.edu/people/karpathy/gan/

http://cs.stanford.edu/people/karpathy/gan/
https://arxiv.org/abs/1406.2661

Generative Adversarial

Real
Samples
Latent
Space
- 4 D
—*4e| D
; .. Correct?
e ™ >® 5 Discriminator]
G B
D :
Generated 5
A Generator Fake |
- x ~ Samples '
RN SRRt SO

Fine Tune Training

Noise

hitp://www.kdnuggets.com/2017/01/generative-adversarial-

networks-hot-topic-machine-learning.html

http://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html
http://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ..., 2™} from noise prior p,(2).
e Sample minibatch of m examples {z(!),... (™} from data generating distribution
pdata(w)-

e Update the discriminator by ascending its stochastic gradient:

Vo, -3 [log D (29) 4108 (1- b (0 (=9)))].

1=1

end for
e Sample minibatch of m noise samples {z(!), ..., 2™} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Do, Yotes (1= 0 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

minmax V(D, G) = gy (w08 D(@)] + By (2 lo&(1 — D(G(2))]

Karras et al, 2017, arXiv:1710.10196

State-of-the-art

G Latent Latent Latent
+
| 818 —
1 []
H []
1 H []
i : ' 1
: : ' '
5 5 1024x1024 |
B —
| i Reals | {Reals ; ; Reals
D . . 1024x1024 |
P § 5 3
o : []
b ' []
v Yy [|
[]
L 8x8 [—

v

Training progresses

Style transfer

___ Monet Z Photos Zebras < Horses

horse —» zebra

Summer {_ Winter

Zhu et al, 2017, arXiv:1703.10593

A

51 .
» A

A

Van Gogh

Monet

Photograph

Slides from Gilles Louppe

AT
S

B
Cezanne

Super-resolution

bicubic SRResNet
(21.59dB/0.6423) A (23.53dB/0.7832)

Ledig et al, 2016, arXiv:1609.04802

SRGAN original
(21.15dB/0.6868)

Text-to-image synthesis

Slides from Gilles Louppe

The bird is
This birdisred short and
and brown in stubby with
color, with a yellow on its
stubby beak

Text
description

64x64
GAN-INT-CLS

128x128
GAWWN

256x256
StackGAN

A bird with a
medium orange
bill white body
gray wings and
webbed feet

This small
black bird has
a short, slightly
curved bill and
long legs

A small bird
with varying
shades of
brown with
white under the
eyes

Zhang et al, 2016, arXiv:1612.03242

A small yellow
bird with a
black crown
and a short
black pointed
beak

This small bird
has a white
breast, light
grey head, and
black wings
and tail

VAE vs GAN

* GAN

* (Generates from noise... can't select what you
generate.

 Adversarial network only discriminates... results In
current “style” but no object.

* VAE

e Cost function instead of adversarial network...
results in blurry images.

Variational Encoder Network

noise ~ N(o, 1)

5. =,
Xdata —> 3 relu < x 3 relu $ sum Z
4 4

Generator Network

J < J 4
7 — >
4 4 4 4
Xvec —>
§ tanh § tanh § tanh § tanh 10 X
Yvec ——> | sen
« A « 4
'vec —> y) \
1 Wg
Discriminator Network
» Wd
Xgen—> ®conv ® conv conv O——>Y

http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

Adversarial

Domain Adaptation

0L
oL, Y
90 ¢ a0, @
$ I:> E> ﬁ E> |:> |:> E class label y
label predlctor Gy(-:0,)
\/[006 f}\ domain ilasslﬁer Ga(+;04)

N e \

+
feature extrggtor Gr(50¢)
/) $ E> @ domain label d

D 50" Coss L
004

_ forwardprop backprop (and produced derivatives) |

f

J soanyeo;

Q,'\
’}
o
<Q> &
RS

Pivot

Adversarial game

Classifier f

Learning to Pivot with Adversarial Networks

Gilles Louppe Michael Kagan Kyle Cranmer
New York University =~ SLAC National Accelerator Laboratory New York University
g.louppe@nyu.edu makagan@slac.stanford.edu kyle.cranmer@nyu.edu

Adversary r

<—— N

y1(f(X;0¢); 0

N\

Goal is to solve: Oy,

9

F(X: 0 f(X;0r);0,
X0 2O by)

|

: O

' 1

| o

| |

: (f : po,(ZIf(X;6f))
Lr(0f) Or £r(07,6/)

r = arg ming, maxg, L¢(0f) — L,(0¢,0,)

Intuitively, r penalizes f for outputs that can be used to infer Z.

https://arxiv.org/abs/1611.01046

! 3.0 1.0
2.5 0.9
2.0 0.8
0.7
: 1.5
0.6
: 1.0
0.5
0.5
0.4
0.0 0.3
5 —0.5 0.2
5 -1. 1
0.8 1.0 —01.0 -0.5 00 05 1.0 15 2.0 0
4.0 , , 3.0
35| |] PUXZ=—0)) | 5 s
L1 p(f(X)]|Z2=0)
300 C 1 p(f(X)|Z=+0a) | i 1 2.0
25l | s
= 2.0 e A e . . 1.0
1.5F ----------------- -------------------------------- . 0.5
1.0 e 5 0.0
0.5 ~0.5
. z z z z _q \“
0 8.0 0.2 0.4 0.6 0.8 1.0 —01.0 -0.5 0.0 0.5 1.0
f(X)
Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at Z = —o, 0, 0 without

adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is
not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify
for values of Z above o, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = —o, 0, o when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

15 2.0

0.84

0.72

0.60

0.48

0.36

0.24

0.12

Training

Over Fitting

> Overfitting occurs when a model is excessively complex, such as
having too many parameters relative to the number of observations. A
model that has been overfit has poor predictive performance, as it
overreacts to minor fluctuations in the training data.

Classification:

Appropriate-fitting Over-fitting
Regression: < o
Size Size Size '
Oy + 012 0o + 01 + O 0o + 01 + O22° + O3> + O,2*
High bias “Just right” High variance

(underfit) (overfit)

Accuracy

1.0

0.9

0.8

o
o

o
wn

accuracy

|

o
FN

o
w

loss

0.2

test acc
training acc

10

20
epoch
Accuracy

30

40 50

accuracy

0.88 — test acc
— training acc
0-865 10 20 30 40
epoch

_Cross entrophy loss ,

2.5
— training loss
— test loss
2.0
1.5
1.0
0.5
0% 10 20 30 40 50
epoch
0.6 _Cross 9ntrophy loss 1
: — training loss
— test loss

epoch

Regularization - Dropout

> Dropout is an extremely effective, simple and recently introduced
regularization technique by Srivastava et al (2014).

a) Standard Neural Net (b) After applying dropout.

» While training, dropout is implemented by only keeping a neuron
active with some probability p (a hyperparameter), or setting it to zerc
otherwise.

» It is quite simple to apply dropout in Keras.

apply a dropout rate 0.25 (drop 25% of the neurons)
model.add(Dropout(0.25))

1.00 Accuracy ‘ 0.9 _Cross 9ntrophy loss .
— training loss
0.8 — testloss
0.95¢
0.7
000/ 98.26% | ©6
" test accuracy | osf , g P
@© (V)]
5 0.85 1 9
§ — 0.4} :
10 20 30 4 50
0.80 : ‘ : 0.3} epoch
0.75
— test acc
— training acc
0-70 10 20 30 40 50

epoch epoch

DL Software and
Technical Challenges

numpy, [heano, Keras

 Numpy
* Provides a tensor representation.
» It's interface has been adopted by everyone.
* e.g. HDF5, Then, TensorFlow, ... all have their own tensors.
* You can use other tensors, for the most part interchangeably with numpy.
* Provides extensive library of tensor operations.
« D=A*B + C, immediately computes the product of A and B matrices, and then computes the sum with C.
e Theano
* Allows you write tensor expressions symbolically.
« A*B + Cis an expression.
« Compiles the expression into fast executing code on CPU/GPU: F(A,B,C)
* You apply the Compiled function to data get at a result.
« D=F(A,B,C)
» Keras
* Neutral Networks can be written as a Tensor mathematical expression.

» Keras writes the expression for you.

DNN Software

* Basic steps

* Prepare data

« Build Model

e Define Cost/Loss Function

e Run training (most commonly Gradient Decent) ‘
(ReLU)

* Assess performance.

* Run lots of experiments... [Add)

« 2 Classes of DNN Software: (Both build everything at runtime) T
| (MatMul)
« Hep-Framework-Like: e.g. Torch, Caffe, ...
« C++ Layers (i.e. Algorithms) steered/configured via interpreted script: @V{ %()

e General Computation Frameworks: Theano and TensorFlow

Everything build by building mathematical expression for Model, Loss, Training from primitive ops on
Tensors

Symbolic derivatives for the Gradient Decent

Builds Directed Acyclic Graph of the computation, performs optimizations

Theano-based High-level tools make this look like HEP Frameworks (e.g. pylearn2, Lasagna, Keras, ...)

Technical Challenges

Datasets are too large to fit in memory.

Data comes as many hb files, each containing O(1000)
events, organized into directories by particle type.

For training, data needs to be read, mixed, “labeled”,
possibly augmented, and normalized.... can be time
consuming.

Very difficult to keep the GPU fed with data. GPU
utilization often < 10%, rarely > 50%.

Keras python multi-process generator mechanism has
imitations...

A

-
~— JUpyter AnalyzeScan (autosaved) Logout
File Edit View Insert Cell Kernel Help | Python2 O
+ X @@ B » ¥ M B C Code C CellToolbar
acc', 'All History.loss', 'All History.val loss', 'All_History.acc', 'All Depth']
In [4]: # Get a List of all numbers stored in MetaData
print "Available Parameters:", GetGoodParams (MyModels)
Available Parameters: ['Ele AUC', 'Width', 'Depth', 'Pi0_AUC', 'Epochs', 'Gamma_AUC', 'ChPi AUC']
In [5]: # Make a Table of all relevant parameters, sort by 1,2,then 0 columns.
Note: Parameters are optional... but the columns and rows will be not optimally sorted.
ScanTable (MyModels, ['Model Name', 'Width', 'Depth', 'Epochs', 'Ele AUC', 'Pi0O AUC', 'ChPi AUC', 'Gamma AUC'],[1,2,0])
Model Name width Depth Epochs Ele AUC Pi0_AUC ChPi_AUC Gamma_AUC
Width=32 Depth=1 32 1 228 0.9183 0.8657 0.9916 0.8833
Width=32 Depth=2 32 2 335 0.9364 0.8382 0.9885 0.8583
Width=32 Depth=3 32 3 298 0.9404 0.8979 0.9864 0.8572
Width=32 Depth=4 32 4 320 0.9139 0.8879 0.9518 0.8639
Width=64 Depth=1 64 1 251 0.9262 0.8712 0.9961 0.9022
Width=64 Depth=2 64 2 304 0.9320 0.9015 0.9887 0.9078
Width=64 Depth=3 64 3 432 0.9388 0.9164 0.9922 0.8186
Width=64 Depth=4 64 4 339 0.9808 0.9372 0.9983 0.9414
Width=128 Depth=1 128 1 342 0.9715 0.9154 0.9966 0.9357
Width=128 Depth=2 128 2 213 0.9500 0.8650 0.9956 0.9083
Width=128 Depth=3 128 3 318 0.9627 0.9322 0.9934 0.9261
Width=128 Depth=4 128 4 450 0.9879 0.9198 0.9984 0.9335
Width=256 Depth=1 256 1 395 0.9783 0.9191 0.9978 0.9436
Width=256 Depth=2 256 2 365 0.9473 0.9199 0.9913 0.9103
Width=256 Depth=3 256 3 437 0.9798 0.9544 0.9969 0.9570
Width=256 Depth=4 256 4 294 0.9276 0.9025 0.9859 0.9034
Width=512 Depth=1 512 1 292 0.9397 0.8777 0.9858 0.9067
Width=512 Depth=2 512 2 325 0.9588 0.9355 0.9868 0.9224
Width=512 Depth=3 512 3 289 0.9762 0.9339 0.9972 0.9195
Width=512 Depth=4 512 4 308 0.9349 0.8710 0.9921 0.8861
In [6]: # Plot Historical MetaData... put 4 models per plot
#PlotMetaDataMany (MyModels, 4, ["History", "val loss"],loc="center left")
PlotMetaDataMany (MyModels,4,["All History.val acc"],loc="center left")
0.9 T r o " . T
VAT
i { “h,"’ dl' I ’y‘
0.8 ' Ill” ‘ ‘l i
| _
— Width=256 Depth=3
— Width=64 Depth=1
0.6 1| — width=256 Depth=4
— Width=512 Depth=4
0.5 1
0.4 R
In [7]: # Compare Number of Epochs each model ran (only last run)

PlotMetaData (MyModels, ["Epochs" 1)

: Jupyter AnalyzePerformance (autosaved)

File Edit

B + x & B 2+ ¥

—— g~ -

View Insert Cell Kernel Help

M B C | Code c CellToolbar

Also performs inference on the test data, returning the results

from DLAnalysis.Classification import *

result,NewMetaData=MultiClassificationAnalysis(MyModel, [Test_X ECAL,Test X HCAL],Test_Y,BatchSize,
IndexMap={0:'Pi0', 2:'ChPi', 3:'Gamma', 1l:'Ele'})

A

Logout

LN ¢ |Python2 @

1 1 |l 1
1.0 — -
.
-
-
, . .
0.8 [~ ” -
. .
] ’
© -,
o & ,
.g 0.6 L .
£ -
8 o’
a -
g 0.4 | '¢ - R
= L’ — Pi0 (area = 0.97)
e — Ele (area = 0.99)
0.2 } o? . i
L’ —— ChPi (area = 1.00)
g Gamma (area = 0.97)
0.0 & ’ Il 1 l l
C nn n-"2 na naAa nQ 1N J
In [4]: # Bin the data
Energy=target[:,:,2].flatten()
def AUCvsEnergy(E _min=10.,E max=510.,E bins=100.):
BD,E_binning=BinDataIndex(Energy, E _min, E max, E_bins)
Run the Classification Analysis in Bins
return BinMultiClassificationAnalysis(MyModel,Test Y¥Y=Test Y,Y binning=E binning,
bin_indecies=BD, result=result,
IndexMap={0:'Pi0', 2:'ChPi', 3:'Gamma', 1l:'Ele'})
In [5]: | # Full Energy Range
Res=AUCvsEnergy(10.,510.,50.)
1.00 / —— —
0.98 | =
0.96 |- 1| — Pio_AuC
— ChPi_AUC
— Ee_AUC
0.94 | || — Gamma_AUC
0.92 1
L 0.90 - o s s P . J
In [6]: # 10 to 100 GeV

(Google’s Tensor Processing Unit).

Distributed fraining -

1. Tensor operation parallelism:
GPUs, FPGA, and ASICs

e Note additional HN, Data,

Model parallelism with multi-

GPU

3. Data Parallelism:

Each GPU or
Node computes
gradient on sub-
set of data.
Sync'’ing
gradients
bottlenecked by
bus or network.

4. Model Parallelism: Large model spread
over many GPUs or nodes. Less network
traffic but only efficient for large models.

h

Model HP+]I

Model HP» :II

Model HP3

2. Hyper-parameter scan: II II
simultaneously train Model HP1 Model HP>
multiple models. e.g. 1 Q Q
model per GPU or node. II II

Model HP3; Model HP4

|

|

Model HP4

| (] [0 (I

Model Part A Model Part B Model Par Model Part B

tA

Model Part C Model Part D Model Part C Model Part D

oL _Jo ||
IV=W=|

|

| I

Model Part A Model Part B Model Part A Model Part B
Model Part C Model Part D Model Part C Model Part D

Model HP+

il
Model HP> D

Model HP3
Model HP4

V=w=|

Keras

hitps://keras.io/

