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Motivations
• Curse of Dimensionality- Data occupies a small fraction of high dimensional 

space 

• Manifold Learning

• Natural Data Lives in low dimensional (Non-Linear) Manifold. 

• For example consider 100 by 100  pixel images of faces 

• We can imagine that images a specific person’s face trace a manifold in 
pixel space 

• as we rotate face wrt 3 angles 

• as facial change by movement of O(50) muscles on face 

• Ideally feature extractors would learn these manifolds.



(a) Azimuth (pose) (b) Elevation

(c) Lighting (d) Wide or Narrow

Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from �1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally in (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.

(a) Rotation (b) Width

Figure 4: Manipulating latent codes on 3D Chairs: In (a), we show that the continuous code
captures the pose of the chair while preserving its shape, although the learned pose mapping varies
across different types; in (b), we show that the continuous code can alternatively learn to capture the
widths of different chair types, and smoothly interpolate between them. For each factor, we present
the representation that most resembles prior supervised results [7] out of 5 random runs to provide
direct comparison.

8 Conclusion

This paper introduces a representation learning algorithm called Information Maximizing Generative
Adversarial Networks (InfoGAN). In contrast to previous approaches, which require supervision,
InfoGAN is completely unsupervised and learns interpretable and disentangled representations on
challenging datasets. In addition, InfoGAN adds only negligible computation cost on top of GAN and
is easy to train. The core idea of using mutual information to induce representation can be applied to
other methods like VAE [3], which is a promising area of future work. Other possible extensions to
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Figure 8. Test set results: the DrLIM approach learned a mapping to 3d space for images of a single airplane (extracted fromNORB dataset).
The output manifold is shown under five different viewing angles. The manifold is roughly cylindrical with a systematic organization: along
the circumference varies azimuth of camera in the viewing half-sphere. Along the height varies the camera elevation in the viewing sphere.
The mapping is invariant to the lighting condition, thanks to the prior knowledge built into the neighborhood relationships.

similar pairs, the system avoids collapse to a constant func-
tion and maintains an equilibrium in output space, much as
a mechanical system of interconnected springs does.
The experiments with LLE show that LLE is most useful

where the input samples are locally very similar and well-
registered. If this is not the case, then LLE may give degen-
erate results. Although it is possible to run LLE with arbi-
trary neighborhood relationships, the linear reconstruction
of the samples negates the effect of very distant neighbors.
Other dimensionality reduction methods have avoided this
limitation, but none produces a function that can accept new
samples without recomputation or prior knowledge.
Creating a dimensionality reduction mapping using prior

knowledge has other uses. Given the success of the NORB
experiment, in which the positions of the camera were
learned from prior knowledge of the temporal connections
between images, it may be feasible to learn a robot’s posi-
tion and heading from image sequences.
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Why Deep?
• “We can approximate any function as close as we want with shallow architecture. 

Why would we need deep ones?”  

• Deep machines are more efficient for representing certain classes of functions  

• They can represent more complex functions with less “hardware”  

• Hierarchy of representations with increasing level of abstraction. 

• Images: Pixel➝Edge➝Texton➝Motif➝Part➝Object 

• Text: Character➝Word➝Word Group➝Clause➝Sentence➝Story 

• Speech: Samples➝Spectral Band➝Sound➝…➝Phone➝Phoneme➝Word 

• In DL, these are learned features… 

• Each stage transforms input representation into high-level representation 

• High-level are more global/invariant 

• Low-level are shared among categories.



DNN Architectures



Dense Networks
• Simplest type.


• Single layer: Fi(xi-1) = f(Wi xi-1 + bi) 

• d deep network ⟹ Fd(Fd-1(Fd-2(…(F1(x0)))) 

• Each Wi is ni by ni-1 Matrix ⟹ ni is width at depth i 


• d and {ni} are hyper-parameters


• Note: thin/deep networks don’t have enough bandwidth to 
propagate info. Generally want ni >> d.



• https://playground.tensorflow.org/



Building DL Models



Inputs

• Neural Networks work best with inputs ~ 0 ⟶ 1


• You can shift by mean and divide by variance 


• Or use a scaler from sklearn.



Activations



ActivationsAdding More Layers? 
¾ Using a 5 fully connected layer model: 
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• Vanishing Gradients


• Sigmoid


• Saturate


• non-Zero centered


• Relu


• Larger Gradient


• Simple to compute


• If learning rate too high, neurons can “Die” (never 
activate)


• Leaky Relu


• Choice of activation can be seen as a hyper parameter



The softmax layer 
¾ The output from the softmax layer is a set of probability distribution, 

positive numbers which sum up to 1.  
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• Classification: One-hot representation 

• SoftMax 

• Boltzmann distribution: e -E/kT  

• Takes vector of arbitrary values and maps to  

• vector with values in range 0 to 1 

• vector components sum to 1.  

• Uses: 

• Prob output from Multiclass  classification 

• Normalization of data. 

• …

Output



Cost Functions 



• MSE- Mean square error


• Proven to give right y for given x.


• MAE- Mean absolute error


• Proven to give right median y for given x.


• Often train poorly: saturating outputs give small gradients.


• For classification, output for selected class is 1


• Use cross-entropy for classification


• You can write your own log-likelihood cost function

Cost/Loss



Cost Functions



• In information theory, the cross entropy between two probability 
distributions p and q over the same underlying set of events measures 
the average number of bits needed to identify an event drawn from the 
set, if a coding scheme is used that is optimized for an "unnatural" 
probability distribution q rather than the "true" distribution p

0.01 0.01 0.01 0.01 0.01 0.01 0.90 0.01 0.02 0.01 

The Cross-Entropy Cost Function 
¾ For classification problems, the Cross-Entropy cost function works 

better than quadratic cost function. 
¾ We define the cross-entropy cost function for the neural network by: 
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KL Divergence

• p is the truth


• q is your “coding” of truth


• D ~ number of extra bits needed to code p when starting code q


• ⟹ Minimize DKL ⟶ q encodes same information as p



Optimizers



Training == Optimization
• Training = Minimizing cost function 

w.r.t. parameters α  

• Gradient Decent (Newton’s Method): 

• Gradient points to direction of 
maximal change. 

• Iterate (ε sets the step size == 
Learning Rate)

~↵i+1 = ~↵i � ✏rC(~↵)

C[F ( ~Xtrain|~↵), ~Ytrain] ⌘ C(~↵)



Stochastic Gradient Decent
• Inefficient to compute the gradient on full dataset ⟶ take few steps.


• Approximate the gradient on a small subset (a batch) ⟶ take more steps 


• Noisy gradients… but faster (computationally) convergence.


• Number of Examples = Batch Size * Number of Batches


• Epoch = 1 pass through all examples.



Learning Rate, Decay, Momentum …
~↵i+1 = ~↵i � ✏rC(~↵)

• ε is the learning rate ~ the step size… a hyper parameter.


• May be beneficial to take big steps in the beginning, small steps near the minimum.


• Decay: at epoch i, εi ⟶ εi-1 / (1 + δ)   a hyperparameter 

• Gradient can be noisy


• Momentum: add a bit of the previous batch gradient to gradient of current batch.


• Lots of difference strategies… again, a hyperparameter. 



CNNs



Convolutional NNs
• Inspired by visual cortex 

• Input: Raw data… for example 1D = Audio, 2D = Images, 3D = Video 

• Convolutions ~ learned feature detectors 

• Feature Maps - One per convolution kernel

• Pooling - dimension reduction / invariance  

• Stack: Deeper layers recognize higher level concepts. 

• Hyperparameters:  

• Number, Size, and stride of convolutions  

• Pooling sub-sampling and method (average, max, …) 

•  Number of times…



Y LeCun
MA Ranzato

Basic Idea for Invariant Feature Learning

Embed the input non-linearly into a high(er) dimensional space
In the new space, things that were non separable may become 

separable

Pool regions of the new space together
Bringing together things that are semantically similar. Like 

pooling.

Non-Linear

Function

Pooling

Or

Aggregation

Input
high-dim

Unstable/non-smooth 
 features

Stable/invariant
features



Y LeCun
MA Ranzato

Non-Linear Expansion → Pooling

Entangled data manifolds

Non-Linear Dim

Expansion,

Disentangling

Pooling.

Aggregation



Y LeCun
MA Ranzato

Sparse Non-Linear Expansion → Pooling

Use clustering to break things apart, pool together similar things

Clustering,

Quantization,

Sparse Coding

Pooling.

Aggregation



• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [ 34 ,

4
3 ]. Also, we found that the photometric distortions

of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge

Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.
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Figure 3: GoogLeNet network with all the bells and whistles.

(a) Inception module, naı̈ve version
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(b) Inception module with dimensionality reduction

Figure 2: Inception module

ber of filters in the previous stage. The merging of output
of the pooling layer with outputs of the convolutional lay-
ers would lead to an inevitable increase in the number of
outputs from stage to stage. While this architecture might
cover the optimal sparse structure, it would do it very inef-
ficiently, leading to a computational blow up within a few
stages.

This leads to the second idea of the Inception architec-
ture: judiciously reducing dimension wherever the compu-
tational requirements would increase too much otherwise.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch. However, embed-
dings represent information in a dense, compressed form
and compressed information is harder to process. The rep-
resentation should be kept sparse at most places (as required
by the conditions of [2]) and compress the signals only
whenever they have to be aggregated en masse. That is,
1⇥1 convolutions are used to compute reductions before
the expensive 3⇥3 and 5⇥5 convolutions. Besides being
used as reductions, they also include the use of rectified lin-
ear activation making them dual-purpose. The final result is
depicted in Figure 2(b).

In general, an Inception network is a network consist-
ing of modules of the above type stacked upon each other,
with occasional max-pooling layers with stride 2 to halve
the resolution of the grid. For technical reasons (memory

efficiency during training), it seemed beneficial to start us-
ing Inception modules only at higher layers while keeping
the lower layers in traditional convolutional fashion. This is
not strictly necessary, simply reflecting some infrastructural
inefficiencies in our current implementation.

A useful aspect of this architecture is that it allows for
increasing the number of units at each stage significantly
without an uncontrolled blow-up in computational com-
plexity at later stages. This is achieved by the ubiquitous
use of dimensionality reduction prior to expensive convolu-
tions with larger patch sizes. Furthermore, the design fol-
lows the practical intuition that visual information should
be processed at various scales and then aggregated so that
the next stage can abstract features from the different scales
simultaneously.

The improved use of computational resources allows for
increasing both the width of each stage as well as the num-
ber of stages without getting into computational difficulties.
One can utilize the Inception architecture to create slightly
inferior, but computationally cheaper versions of it. We
have found that all the available knobs and levers allow for
a controlled balancing of computational resources resulting
in networks that are 3� 10⇥ faster than similarly perform-
ing networks with non-Inception architecture, however this
requires careful manual design at this point.

5. GoogLeNet

By the“GoogLeNet” name we refer to the particular in-
carnation of the Inception architecture used in our submis-
sion for the ILSVRC 2014 competition. We also used one
deeper and wider Inception network with slightly superior
quality, but adding it to the ensemble seemed to improve the
results only marginally. We omit the details of that network,
as empirical evidence suggests that the influence of the ex-
act architectural parameters is relatively minor. Table 1 il-
lustrates the most common instance of Inception used in the
competition. This network (trained with different image-
patch sampling methods) was used for 6 out of the 7 models
in our ensemble.

All the convolutions, including those inside the Incep-
tion modules, use rectified linear activation. The size of the
receptive field in our network is 224⇥224 in the RGB color
space with zero mean. “#3⇥3 reduce” and “#5⇥5 reduce”
stands for the number of 1⇥1 filters in the reduction layer
used before the 3⇥3 and 5⇥5 convolutions. One can see
the number of 1⇥1 filters in the projection layer after the
built-in max-pooling in the pool proj column. All these re-
duction/projection layers use rectified linear activation as
well.

The network was designed with computational efficiency
and practicality in mind, so that inference can be run on in-
dividual devices including even those with limited compu-
tational resources, especially with low-memory footprint.

LeNet-5 (1998)

AlexNet (2012)

ZFNet(2013)

GoogleNet/Inception(2014)

VGGNet (2014)

ResNet(2015)

https://medium.com/@sidereal/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
152 Layers

22 Layers
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works. To handle the complexity of graph data, new gen-
eralizations and definitions for important operations have
been rapidly developed over the past few years. For in-
stance, Figure 1 illustrates how a kind of graph convolution
is inspired by a standard 2D convolution. This survey aims
to provide a comprehensive overview of these methods, for
both interested researchers who want to enter this rapidly
developing field and experts who would like to compare
graph neural network algorithms.

A Brief History of Graph Neural Networks The nota-
tion of graph neural networks was firstly outlined in Gori
et al. (2005) [16], and further elaborated in Micheli (2009)
[17] and Scarselli et al. (2009) [18]. These early studies learn
a target node’s representation by propagating neighbor in-
formation via recurrent neural architectures in an iterative
manner until a stable fixed point is reached. This process
is computationally expensive, and recently there have been
increasing efforts to overcome these challenges [19], [20]. In
our survey, we generalize the term graph neural networks to
represent all deep learning approaches for graph data.

Inspired by the huge success of convolutional networks
in the computer vision domain, a large number of methods
that re-define the notation of convolution for graph data have
emerged recently. These approaches are under the umbrella
of graph convolutional networks (GCNs). The first promi-
nent research on GCNs is presented in Bruna et al. (2013),
which develops a variant of graph convolution based on
spectral graph theory [21]. Since that time, there have been
increasing improvements, extensions, and approximations
on spectral-based graph convolutional networks [12], [14],
[22], [23], [24]. As spectral methods usually handle the
whole graph simultaneously and are difficult to parallel
or scale to large graphs, spatial-based graph convolutional
networks have rapidly developed recently [25], [26], [27],
[28]. These methods directly perform the convolution in the
graph domain by aggregating the neighbor nodes’ informa-
tion. Together with sampling strategies, the computation can
be performed in a batch of nodes instead of the whole graph
[25], [28], which has the potential to improve efficiency.

In addition to graph convolutional networks, many alter-
native graph neural networks have been developed in the
past few years. These approaches include graph attention
networks, graph autoencoders, graph generative networks,
and graph spatial-temporal networks. Details on the catego-
rization of these methods are given in Section 3.

Related surveys on graph neural networks. There are
a limited number of existing reviews on the topic of graph
neural networks. Using the notation geometric deep learning,
Bronstein et al. [8] give an overview of deep learning
methods in the non-Euclidean domain, including graphs
and manifolds. While being the first review on graph con-
volution networks, this survey misses several important
spatial-based approaches, including [15], [20], [25], [27],
[28], [29], which update state-of-the-art benchmarks. Fur-
thermore, this survey does not cover many newly devel-
oped architectures which are equally important to graph
convolutional networks. These learning paradigms, includ-
ing graph attention networks, graph autoencoders, graph
generative networks, and graph spatial-temporal networks,
are comprehensively reviewed in this article. Battaglia et

(a) 2D Convolution. Analo-
gous to a graph, each pixel
in an image is taken as a
node where neighbors are de-
termined by the filter size.
The 2D convolution takes a
weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of
a node are ordered and have a
fixed size.

(b) Graph Convolution. To get
a hidden representation of the
red node, one simple solution
of graph convolution opera-
tion takes the average value
of node features of the red
node along with its neighbors.
Different from image data, the
neighbors of a node are un-
ordered and variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

al. [30] position graph networks as the building blocks for
learning from relational data, reviewing part of graph neu-
ral networks under a unified framework. However, their
generalized framework is highly abstract, losing insights on
each method from its original paper. Lee et al. [31] conduct
a partial survey on the graph attention model, which is
one type of graph neural network. Most recently, Zhang et
al. [32] present a most up-to-date survey on deep learning
for graphs, missing those studies on graph generative and
spatial-temporal networks. In summary, none of the existing
surveys provide a comprehensive overview of graph neural
networks, only covering some of the graph convolution
neural networks and examining a limited number of works,
thereby missing the most recent development of alternative
graph neural networks, such as graph generative networks
and graph spatial-temporal networks.

Graph neural networks vs. network embedding The
research on graph neural networks is closely related to
graph embedding or network embedding, another topic
which attracts increasing attention from both the data min-
ing and machine learning communities [33] [34] [35] [36],
[37], [38]. Network embedding aims to represent network
vertices into a low-dimensional vector space, by preserving
both network topology structure and node content informa-
tion, so that any subsequent graph analytics tasks such as
classification, clustering, and recommendation can be easily
performed by using simple off-the-shelf machine learning
algorithm (e.g., support vector machines for classification).
Many network embedding algorithms are typically unsu-
pervised algorithms and they can be broadly classified into
three groups [33], i.e., matrix factorization [39], [40], ran-
dom walks [41], and deep learning approaches. The deep
learning approaches for network embedding at the same
time belong to graph neural networks, which include graph
autoencoder-based algorithms (e.g., DNGR [42] and SDNE
[43]) and graph convolution neural networks with unsuper-
vised training(e.g., GraphSage [25]). Figure 2 describes the
differences between network embedding and graph neural

https://arxiv.org/pdf/1901.00596.pdf



Transfer Learning
• Training Challenges


• Can take a long time… maybe weeks.


• Parallelization can help… if you have lots of resources.


• You may not have enough training data for task you want to accomplish.


• Transfer learning: I want to a DNN to perform task A on sample 1.


• Train on large dataset B of same type as A (e.g. images) on a specific task 2… 


• or use pre-trained model.


• Modify output task B ⟶ A.


• Fine-tune: train to perform task A on sample 1.


• ⟹ Train faster, get better results, use smaller training data.


• You can find pre-trained models for image recognition, NLP, and many other tasks.



Recurrent DNNs



Motivation
• DNN inputs: 

• Fixed size: images, video, raw data from detector… 

• Variable size: audio, text, particles in event… sequences. 

• Usual NNs map input to output.  

• No memory of previous information. 

• Recurrent NN: feed some output back into self. 

• DNNs can represent arbitrary functions… RNNs can represent arbitrary programs.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



RNN input/output

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Basic RNN
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Sequence Predictor
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Other RNNs



Types of Networks



Combining Architectures
• Different data are naturally suited for different architectures:


• Audio: 1-D CNN, RNN


• Image: 2D CNN


• Text: RNN


• You can combine architectures: 


• Video: 2D CNN on frames ⟶ RNN in time.


• You can simultaneously look at multiple types of data:


• Siamese: 2 parallel data inputs (same or different types)

Video Captioning

http://cs231n.stanford.edu/slides/2018/cs231n_2018_ds08.pdf

https://www.codeproject.com/Articles/1253224/Keras-Implementation-of-Siamese-like-Networks



Example: Captioning

https://www.cs.utexas.edu/~vsub/naacl15_project.html



Semi-supervised Learning
• Basic idea: Train network to reproduce the input.  

• Example: Auto-encoders 

• De-noising auto-encoders: add noise to input only. 

• Sparse auto-encoders:  

• Sparse latent (code) representation can be exploited for 
Compression, Clustering, Similarity testing, …  

• Anomaly Detection

• Reconstruction Error 

• Outliers in latent space 

• Transfer Learning

• Small labeled training sample?  

• Train auto-encoder on large unlabeled dataset (e.g. data). 

• Train in latent space on small labeled data. (e.g. rare 
signal MC). 

• Easily think of a dozen applications.



Generative Models



VAE: Variational 
Autoencoders
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Abstract

How can we perform efficient inference and learning in directed probabilistic
models, in the presence of continuous latent variables with intractable posterior
distributions, and large datasets? We introduce a stochastic variational inference
and learning algorithm that scales to large datasets and, under some mild differ-
entiability conditions, even works in the intractable case. Our contributions is
two-fold. First, we show that a reparameterization of the variational lower bound
yields a lower bound estimator that can be straightforwardly optimized using stan-
dard stochastic gradient methods. Second, we show that for i.i.d. datasets with
continuous latent variables per datapoint, posterior inference can be made espe-
cially efficient by fitting an approximate inference model (also called a recogni-
tion model) to the intractable posterior using the proposed lower bound estimator.
Theoretical advantages are reflected in experimental results.

1 Introduction

How can we perform efficient approximate inference and learning with directed probabilistic models
whose continuous latent variables and/or parameters have intractable posterior distributions? The
variational Bayesian (VB) approach involves the optimization of an approximation to the intractable
posterior. Unfortunately, the common mean-field approach requires analytical solutions of expecta-
tions w.r.t. the approximate posterior, which are also intractable in the general case. We show how a
reparameterization of the variational lower bound yields a simple differentiable unbiased estimator
of the lower bound; this SGVB (Stochastic Gradient Variational Bayes) estimator can be used for ef-
ficient approximate posterior inference in almost any model with continuous latent variables and/or
parameters, and is straightforward to optimize using standard stochastic gradient ascent techniques.

For the case of an i.i.d. dataset and continuous latent variables per datapoint, we propose the Auto-
Encoding VB (AEVB) algorithm. In the AEVB algorithm we make inference and learning especially
efficient by using the SGVB estimator to optimize a recognition model that allows us to perform very
efficient approximate posterior inference using simple ancestral sampling, which in turn allows us
to efficiently learn the model parameters, without the need of expensive iterative inference schemes
(such as MCMC) per datapoint. The learned approximate posterior inference model can also be used
for a host of tasks such as recognition, denoising, representation and visualization purposes. When
a neural network is used for the recognition model, we arrive at the variational auto-encoder.

2 Method

The strategy in this section can be used to derive a lower bound estimator (a stochastic objective
function) for a variety of directed graphical models with continuous latent variables. We will restrict
ourselves here to the common case where we have an i.i.d. dataset with latent variables per datapoint,
and where we like to perform maximum likelihood (ML) or maximum a posteriori (MAP) inference
on the (global) parameters, and variational inference on the latent variables. It is, for example,
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http://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and.html
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Figure 4: A training-time variational autoencoder implemented as a feed-
forward neural network, where P(X|z) is Gaussian. Left is without the
“reparameterization trick”, and right is with it. Red shows sampling opera-
tions that are non-differentiable. Blue shows loss layers. The feedforward
behavior of these networks is identical, but backpropagation can be applied
only to the right network.

want to optimize is:

EX⇠D [log P(X)�D [Q(z|X)kP(z|X)]] =
EX⇠D [Ez⇠Q [log P(X|z)]�D [Q(z|X)kP(z)]] .

(8)
If we take the gradient of this equation, the gradient symbol can be moved
into the expectations. Therefore, we can sample a single value of X and a
single value of z from the distribution Q(z|X), and compute the gradient of:

log P(X|z)�D [Q(z|X)kP(z)] . (9)

We can then average the gradient of this function over arbitrarily many
samples of X and z, and the result converges to the gradient of Equation 8.

There is, however, a significant problem with Equation 9. Ez⇠Q [log P(X|z)]
depends not just on the parameters of P, but also on the parameters of Q.
However, in Equation 9, this dependency has disappeared! In order to make
VAEs work, it’s essential to drive Q to produce codes for X that P can reliably
decode. To see the problem a different way, the network described in Equa-
tion 9 is much like the network shown in Figure 4 (left). The forward pass of
this network works fine and, if the output is averaged over many samples
of X and z, produces the correct expected value. However, we need to

10
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Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

Further work is needed to tackle this from of instability. We think that extending this framework

10



Under review as a conference paper at ICLR 2016

Figure 8: A ”turn” vector was created from four averaged samples of faces looking left vs looking
right. By adding interpolations along this axis to random samples we were able to reliably transform
their pose.

to other domains such as video (for frame prediction) and audio (pre-trained features for speech
synthesis) should be very interesting. Further investigations into the properties of the learnt latent
space would be interesting as well.
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Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

https://arxiv.org/pdf/1511.06434v2.pdf

https://arxiv.org/pdf/1511.06434v2.pdf


(a) Azimuth (pose) (b) Elevation

(c) Lighting (d) Wide or Narrow

Figure 3: Manipulating latent codes on 3D Faces: We show the effect of the learned continuous
latent factors on the outputs as their values vary from �1 to 1. In (a), we show that one of the
continuous latent codes consistently captures the azimuth of the face across different shapes; in (b),
the continuous code captures elevation; in (c), the continuous code captures the orientation of lighting;
and finally in (d), the continuous code learns to interpolate between wide and narrow faces while
preserving other visual features. For each factor, we present the representation that most resembles
prior supervised results [7] out of 5 random runs to provide direct comparison.

(a) Rotation (b) Width

Figure 4: Manipulating latent codes on 3D Chairs: In (a), we show that the continuous code
captures the pose of the chair while preserving its shape, although the learned pose mapping varies
across different types; in (b), we show that the continuous code can alternatively learn to capture the
widths of different chair types, and smoothly interpolate between them. For each factor, we present
the representation that most resembles prior supervised results [7] out of 5 random runs to provide
direct comparison.

8 Conclusion

This paper introduces a representation learning algorithm called Information Maximizing Generative
Adversarial Networks (InfoGAN). In contrast to previous approaches, which require supervision,
InfoGAN is completely unsupervised and learns interpretable and disentangled representations on
challenging datasets. In addition, InfoGAN adds only negligible computation cost on top of GAN and
is easy to train. The core idea of using mutual information to induce representation can be applied to
other methods like VAE [3], which is a promising area of future work. Other possible extensions to

7
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Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G. The train-
ing procedure for G is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions G and D, a unique solution exists, with G recovering the training data
distribution and D equal to 1

2 everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.

1 Introduction

The promise of deep learning is to discover rich, hierarchical models [2] that represent probability
distributions over the kinds of data encountered in artificial intelligence applications, such as natural
images, audio waveforms containing speech, and symbols in natural language corpora. So far, the
most striking successes in deep learning have involved discriminative models, usually those that
map a high-dimensional, rich sensory input to a class label [14, 22]. These striking successes have
primarily been based on the backpropagation and dropout algorithms, using piecewise linear units
[19, 9, 10] which have a particularly well-behaved gradient . Deep generative models have had less
of an impact, due to the difficulty of approximating many intractable probabilistic computations that
arise in maximum likelihood estimation and related strategies, and due to difficulty of leveraging
the benefits of piecewise linear units in the generative context. We propose a new generative model
estimation procedure that sidesteps these difficulties. 1

In the proposed adversarial nets framework, the generative model is pitted against an adversary: a
discriminative model that learns to determine whether a sample is from the model distribution or the
data distribution. The generative model can be thought of as analogous to a team of counterfeiters,
trying to produce fake currency and use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit currency. Competition in this game drives
both teams to improve their methods until the counterfeits are indistiguishable from the genuine
articles.

⇤Jean Pouget-Abadie is visiting Université de Montréal from Ecole Polytechnique.
†Sherjil Ozair is visiting Université de Montréal from Indian Institute of Technology Delhi
‡Yoshua Bengio is a CIFAR Senior Fellow.
1All code and hyperparameters available at http://www.github.com/goodfeli/adversarial
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Example: http://cs.stanford.edu/people/karpathy/gan/
https://arxiv.org/abs/1406.2661
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. Source:

http://www.kdnuggets.com/2017/01/generative-adversarial-
networks-hot-topic-machine-learning.html
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:
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end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:
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end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.
Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the
quantity V (G,D)

V (G,D) =

Z

x
pdata(x) log(D(x))dx+

Z

z
pz(z) log(1�D(g(z)))dz

=

Z

x
pdata(x) log(D(x)) + pg(x) log(1�D(x))dx (3)

For any (a, b) 2 R2 \ {0, 0}, the function y ! a log(y) + b log(1 � y) achieves its maximum in
[0, 1] at a

a+b . The discriminator does not need to be defined outside of Supp(pdata) [ Supp(pg),
concluding the proof.

Note that the training objective for D can be interpreted as maximizing the log-likelihood for es-
timating the conditional probability P (Y = y|x), where Y indicates whether x comes from pdata
(with y = 1) or from pg (with y = 0). The minimax game in Eq. 1 can now be reformulated as:

C(G) =max
D

V (G,D)

=Ex⇠pdata [logD
⇤
G(x)] + Ez⇠pz [log(1�D⇤

G(G(z)))] (4)
=Ex⇠pdata [logD

⇤
G(x)] + Ex⇠pg [log(1�D⇤

G(x))]

=Ex⇠pdata


log

pdata(x)

Pdata(x) + pg(x)

�
+ Ex⇠pg


log

pg(x)

pdata(x) + pg(x)

�
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G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.
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Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.
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VAE vs GAN
• GAN 

• Generates from noise… can’t select what you 
generate. 

• Adversarial network only discriminates… results in 
current “style” but no object. 

• VAE 

• Cost function instead of adversarial network… 
results in blurry images.
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Pivot
Adversarial game

Classifier f

X

data

p(signal|data)

✓f

f (X ; ✓f )

Lf (✓f )

...

p(signal|data)

Regression of Z from f ’s output

Adversary r

�1(f (X ; ✓f ); ✓r )

�2(f (X ; ✓f ); ✓r )

. . .

✓r

...

Z

p✓r (Z |f (X ; ✓f ))

P(�1,�2, . . . )

Lr (✓f , ✓r )

Consider a classifier f built as usual, minimizing the

cross-entropy Lf (✓f ) = Ex⇠XEy⇠Y |x [- log p✓f (y |x)].
Pit f against an adversary network r producing as

output the posterior p✓r(z |f (X ; ✓f ) = s).

Set r to minimize the cross entropy

Lr(✓f , ✓r) = Es⇠f (X ;✓f )Ez⇠Z |s[- log p✓r(z |s)].

Goal is to solve: ✓̂f , ✓̂r = arg min✓f max✓r Lf (✓f )-Lr(✓f , ✓r)

Intuitively, r penalizes f for outputs that can be used to infer Z .

https://arxiv.org/abs/1611.01046
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Abstract

Several techniques for domain adaptation have been proposed to account for
differences in the distribution of the data used for training and testing. The majority
of this work focuses on a binary domain label. Similar problems occur in a scientific
context where there may be a continuous family of plausible data generation
processes associated to the presence of systematic uncertainties. Robust inference
is possible if it is based on a pivot – a quantity whose distribution does not depend
on the unknown values of the nuisance parameters that parametrize this family
of data generation processes. In this work, we introduce and derive theoretical
results for a training procedure based on adversarial networks for enforcing the
pivotal property (or, equivalently, fairness with respect to continuous attributes) on
a predictive model. The method includes a hyperparameter to control the trade-
off between accuracy and robustness. We demonstrate the effectiveness of this
approach with a toy example and examples from particle physics.

1 Introduction

Machine learning techniques have been used to enhance a number of scientific disciplines, and they
have the potential to transform even more of the scientific process. One of the challenges of applying
machine learning to scientific problems is the need to incorporate systematic uncertainties, which
affect both the robustness of inference and the metrics used to evaluate a particular analysis strategy.

In this work, we focus on supervised learning techniques where systematic uncertainties can be
associated to a data generation process that is not uniquely specified. In other words, the lack of
systematic uncertainties corresponds to the (rare) case that the process that generates training data is
unique, fully specified, and an accurate representative of the real world data. By contrast, a common
situation when systematic uncertainty is present is when the training data are not representative
of the real data. Several techniques for domain adaptation have been developed to create models
that are more robust to this binary type of uncertainty. A more generic situation is that there are
several plausible data generation processes, specified as a family parametrized by continuous nuisance
parameters, as is typically found in scientific domains. In this broader context, statisticians have for
long been working on robust inference techniques based on the concept of a pivot – a quantity whose
distribution is invariant with the nuisance parameters (see e.g., (Degroot and Schervish, 1975)).

Assuming a probability model p(X,Y, Z), where X are the data, Y are the target labels, and Z are the
nuisance parameters, we consider the problem of learning a predictive model f(X) for Y conditional
on the observed values of X that is robust to uncertainty in the unknown value of Z. We introduce a
flexible learning procedure based on adversarial networks (Goodfellow et al., 2014) for enforcing that
f(X) is a pivot with respect to Z. We derive theoretical results proving that the procedure converges
towards a model that is both optimal and statistically independent of the nuisance parameters (if
that model exists) or for which one can tune a trade-off between accuracy and robustness (e.g., as
driven by a higher level objective). In particular, and to the best of our knowledge, our contribution is
the first solution for imposing pivotal constraints on a predictive model, working regardless of the

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Toy example (without adversarial training)

(Left) The conditional probability distributions
of f (X ; ✓f )|Z = z changes with z .

(Right) The decision surface strongly depends on X2.

Toy example (with adversarial training)

(Left) The conditional probability distributions
of f (X ; ✓f )|Z = z are now (almost) invariant with z!

(Right) The decision surface is now independent of X2.

Figure 2: Toy example. (Left) Conditional probability densities of the decision scores at Z = ��, 0,� without
adversarial training. The resulting densities are dependent on the continuous parameter Z, indicating that f is
not pivotal. (Middle left) The associated decision surface, highlighting the fact that samples are easier to classify
for values of Z above �, hence explaining the dependency. (Middle right) Conditional probability densities of
the decision scores at Z = ��, 0,� when f is built with adversarial training. The resulting densities are now
almost identical to each other, indicating only a small dependency on Z. (Right) The associated decision surface,
illustrating how adversarial training bends the decision function vertically to erase the dependency on Z.

where � � 0 is a hyper-parameter controlling the trade-off between the performance of f and its
independence with respect to the nuisance parameter. Setting � to a large value will preferably
enforces f to be pivotal while setting � close to 0 will rather constraint f to be optimal. When the
lower bound is strict, let us note however that there may exist distinct but equally good solutions ✓f , ✓r
minimizing Eqn. 11. In this zero-sum game, an increase in accuracy would exactly be compensated
by a decrease in pivotality and vice-versa. How to best navigate this Pareto frontier to maximize a
higher-level objective remains a question open for future works.

Interestingly, let us finally emphasize that our results hold using only the (1D) output s of f(·; ✓f ) as
input to the adversary. We could similarly enforce an intermediate representation of the data to be
pivotal, e.g. as in (Ganin and Lempitsky, 2014), but this is not necessary.

5 Experiments

In this section, we empirically demonstrate the effectiveness of the approach with a toy example
and examples from particle physics. Notably, there are no other other approaches to compare to in
the case of continuous nuisance parameters, as further explained in Sec. 6. In the case of binary
parameters, we do not expect results to be much different from previous works.

5.1 A toy example with a continous nuisance parameter

As a guiding toy example, let us consider the binary classification of 2D data drawn from multivariate
gaussians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x|Z = z ⇠ N
✓
(1, 1 + z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z here represents our uncertainty about the location of the mean
of the second gaussian. Our goal is to build a classifier f(·; ✓f ) for predicting Y given X , but such
that the probability distribution of f(X; ✓f ) is invariant with respect to the nuisance parameter Z.

Assuming a gaussian prior z ⇠ N (0, 1), we generate data {xi, yi, zi}Ni=1, from which we train a
neural network f minimizing Lf (✓f ) without considering its adversary r. The network architecture
comprises 2 dense hidden layers of 20 nodes respectively with tanh and ReLU activations, followed
by a dense output layer with a single node with a sigmoid activation. As shown in Fig. 2, the resulting
classifier is not pivotal, as the conditional probability densities of its decision scores f(X; ✓f ) show
large discrepancies between values z of the nuisance parameters. While not shown here, a classifier
trained only from data generated at the nominal value Z = 0 would also not be pivotal.

5
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Over FittingOverfitting 
¾ Overfitting occurs when a model is excessively complex, such as 

having too many parameters relative to the number of observations. A 
model that has been overfit has poor predictive performance, as it 
overreacts to minor fluctuations in the training data. 
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Regression: 

Classification: 



5 Layer Regression – Different Activation 
¾ Training accuracy vs Test accuracy, loss function 
¾ We reach a Test accuracy at 97.35% (sigmoid), 98.06% (tanh) 
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sigmoid 

tanh 



Regularization - Dropout 
¾ Dropout is an extremely effective, simple and recently introduced 

regularization technique by Srivastava et al (2014). 
 
 
 
 
 
 
 

¾ While training, dropout is implemented by only keeping a neuron 
active with some probability p (a hyperparameter), or setting it to zero 
otherwise. 

¾ It is quite simple to apply dropout in Keras. 
# apply a dropout rate 0.25 (drop 25% of the neurons) 
model.add(Dropout(0.25)) 
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Results Using p_dropout=0.25 
¾ Resolve the overfitting issue 
¾ Sustained 98.26% accuracy 
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98.26%  
test accuracy 



DL Software and 
Technical Challenges



numpy, Theano, Keras
• Numpy  

• Provides a tensor representation. 

• It’s interface has been adopted by everyone. 

• e.g. HDF5, Then, TensorFlow, … all have their own tensors. 

• You can use other tensors, for the most part interchangeably with numpy. 

• Provides extensive library of tensor operations. 

• D = A * B + C, immediately computes the product of A and B matrices, and then computes the sum with C. 

• Theano 

• Allows you write tensor expressions symbolically. 

• A * B + C is an expression. 

• Compiles the expression into fast executing code on CPU/GPU: F(A,B,C) 

• You apply the Compiled function to data get at a result.  

• D=F(A,B,C)  

• Keras 

• Neutral Networks can be written as a Tensor mathematical expression. 

• Keras writes the expression for you.



DNN Software
• Basic steps 

• Prepare data 

• Build Model 

• Define Cost/Loss Function 

• Run training (most commonly Gradient Decent) 

• Assess performance. 

• Run lots of experiments… 

• 2 Classes of DNN Software: (Both build everything at runtime) 

• Hep-Framework-Like: e.g. Torch, Caffe, … 

• C++  Layers (i.e. Algorithms)  steered/configured via interpreted script:  

• General Computation Frameworks: Theano and TensorFlow   

• Everything build by building mathematical expression for Model, Loss, Training from primitive ops on 
Tensors 

• Symbolic derivatives for the Gradient Decent 

• Builds Directed Acyclic Graph of the computation, performs optimizations 

• Theano-based High-level tools make this look like HEP Frameworks (e.g. pylearn2, Lasagna, Keras, …)

import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x") # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)
C = [...] # Cost computed as a function

# of Relu

s = tf.Session()
for step in xrange(0, 10):

input = ...construct 100-D input array ... # Create 100-d vector for input
result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input
print step, result

Figure 1: Example TensorFlow code fragment

W

b

x

MatMul

Add

ReLU

...

C

Figure 2: Corresponding computation graph for Figure 1

Category Examples
Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...
Stateful operations Variable, Assign, AssignAdd, ...
Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations Save, Restore
Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations Merge, Switch, Enter, Leave, NextIteration

Table 1: Example TensorFlow operation types

by the session interface is Run, which takes a set of out-
put names that need to be computed, as well as an op-
tional set of tensors to be fed into the graph in place of
certain outputs of nodes. Using the arguments to Run,
the TensorFlow implementation can compute the transi-
tive closure of all nodes that must be executed in order
to compute the outputs that were requested, and can then

arrange to execute the appropriate nodes in an order that
respects their dependencies (as described in more detail
in 3.1). Most of our uses of TensorFlow set up a Session
with a graph once, and then execute the full graph or a
few distinct subgraphs thousands or millions of times via
Run calls.

3



Technical Challenges
• Datasets are too large to fit in memory. 

• Data comes as many h5 files, each containing O(1000) 
events, organized into directories by particle type. 

• For training, data needs to be read, mixed, “labeled”, 
possibly augmented, and normalized…. can be time 
consuming. 

• Very difficult to keep the GPU fed with data. GPU 
utilization often < 10%, rarely > 50%. 

• Keras python multi-process generator mechanism has 
limitations… 







1. Tensor operation parallelism: 
GPUs, FPGA, and ASICs 
(Google’s Tensor Processing Unit). 

• Note additional HN, Data, 
Model parallelism with multi-
GPU

G 
P 
U

G 
P 
U

G 
P 
U

G 
P 
U

N 
o 
d 
e

Data
Model HP2Model HP1

Model HP4Model HP3

2. Hyper-parameter scan: 
simultaneously train 
multiple models. e.g. 1 
model per GPU or node. 

D1 D2

D3 D4

Model HP4

D1 D2

D3 D4

Model HP3

D1 D2

D3 D4

Model HP2

D1 D2

D3 D4

Model HP1

3. Data Parallelism: 
Each GPU or 
Node computes 
gradient on sub-
set of data.  
Sync’ing 
gradients 
bottlenecked by 
bus or network.

Model HP4

D1

Model Part D

Model Part B

Model Part C

Model Part A

D2

Model Part D

Model Part B

Model Part C

Model Part A

D3

Model Part D

Model Part B

Model Part C

Model Part A

D4

Model Part D

Model Part B

Model Part C

Model Part A

Model HP3

D1

Model Part D

Model Part B

Model Part C

Model Part A

D2

Model Part D

Model Part B

Model Part C

Model Part A

D3

Model Part D

Model Part B

Model Part C

Model Part A

D4

Model Part D

Model Part B

Model Part C

Model Part A

Model HP2

D1

Model Part D

Model Part B

Model Part C

Model Part A

D2

Model Part D

Model Part B

Model Part C

Model Part A

D3

Model Part D

Model Part B

Model Part C

Model Part A

D4

Model Part D

Model Part B

Model Part C

Model Part A

Model HP1

D1

Model Part D

Model Part B

Model Part C

Model Part A

D2

Model Part D

Model Part B

Model Part C

Model Part A

D3

Model Part D

Model Part B

Model Part C

Model Part A

D4

Model Part D

Model Part B

Model Part C

Model Part A

4. Model Parallelism: Large model spread 
over many GPUs or nodes. Less network 
traffic but only efficient for large models.   

Distributed Training



Keras

https://keras.io/


