INFN Machine Learning course

Prof. Amir Farbin, Prof. Daniele Bonacorsi

. 20-22 May 2019
! Camogli, Italy

eZe ML project:
regression

https:/ / colab.research.google.com/ github /afarbin /INFN-ML-Course/blob /master/

notebooks / Classification-workflow-sklearn.ipynb

[credits: A. Geron, “Hands-On Machine Learning With Scikit-Learn and Tensorflow”]

A project

|dea of this section is to go through an example project end-to-end
* presenting concepts while applying them
Sicps
* frame your problem
* select a performance measure
» get the data
* descriptive statistics = discover and visualize the data to gain insights
* data pre-processing = prepare the data for ML algos
» model selection, model training
* model fine-tuning
* solution presentation

* launch, monitor, maintain your newly deployed system

In some (many!) aspects of most parts, allow me shortcuts and simplification..

* | hope the teaching value of this exercise stays intact..

INFN Machine Learning course 3 D. Bonacorsi

The project

Build a model of housing prices in California using the California
census data.

Pretend to be a recently-hired data scientist in a real estate company
in California, and you are asked to predict the price of a house given
various parameters, having at your disposal the California Housing
Prices dataset:

 from the StatLib repository: R. Kelley Pace and Ronald Barry, “Sparse Spatial
Autoregressions,” Statistics & Probability Letters 33, no. 3 (1997): 291-297

From this dataset, you know:

 population, median income, median housing price, much more.. for each block
group (of 600-3000 people) - called “districts”

= caveats: not updated (data from the 90s) and minor mods (added a categorical attribute, removed a
few features for teaching purposes)

Your model should learn from this data and be able to predict the
median housing price in any district, given all the other metrics

INFN Machine Learning course 4 D. Bonacorsi

42 - $306k
¢ Population
L $258k
40 A
-$209k @
=
=
- 38 A 8
_‘é -$160k 3
*(5‘ = =
— c
©
36 1 L $112k ©
s
g :
& $63k
34 - A
."
® $15k

—124 ~122 ~120
Longitude

INFN Machine Learning course 5 D. Bonacorsi

Frame the problem / ask questions - step 1

Building a model is not the goal. Ask for the goalf(s).

Good questions are:

e “what is my model being used for, eventually?”

= this tells you how you concretely organise the approach to the problem, what algorithms you will
select, what performance measure you will use to evaluate your model, how much effort you
should invest in each (sub-)part of the work

» “what the current status of study of this problem is (if any)?”

= this gives you a reference performance, as well as insights on how to solve the problem

» “what the expected full data pipeline which my solution will insert in?”

= Data pipeline as a sequence of data processing components. Very common in ML. Async and self-
contained components, data store as the only interface, different teams on different components,
tactics for broken components, monitoring, etc

INFN Machine Learning course 6 D. Bonacorsi

Frame the problem / make assumptions - step 2

s it Supervised, Unsupervised, or Reinforcement Learning? Is it a
classification task or a regression task? Should you use batch learning or
online learning techniques?

¢ think)

it is a supervised learning task..

 you are given labeled training examples: each instance comes with the
expected output, i.e. the district's median housing price

it is a univariate regression task..
* you are asked to predict a value, and a single one per district
Batch learning techniques should work just fine..

 data is small enough to fit in memory, there is no continuous flow of
data coming in the system, there is no particular need to adjust to
changing data rapidly

INFN Machine Learning course 7 D. Bonacorsi

“| have the feeling | did nothing so far?”

= E

Regression

Lngnshc Decnsaon
Trees
| Naive Bayes I-\

[)= casscste

i/

' Machine
Lsamlng .

[Genetic Aloonlhm] (A3C

Convolutional Neural
Networks (CNN)

Recurrent Neural
Networks (RNN)

AE
[m GRU |
LSTM™

Adversarial Networks
(GAN)

Kw::;w ﬁ,

l_c_l
Custering ASSOCILB;“M Rule .
ﬁ i

Unsupervised Dimensionality _—
Rewcuon

' FP Growth |

N

Learning
svo
[LDA |
f’
[e— Bagging

Lolmlng

-

Autoencoders

INFN Machine Learning course 8

D. Bonacorsi

III

“Phew, | was wrong!

@c_]
|5'On [T]

=) 9 -t . Nl

Association Rule

Naive Bayes
restign m Classification C Means K—‘

Unsupervised
Learning
. l SVD
I studied my problem, and I .
know where I am headed to. N
‘ Machine
T Learning
. L' Random Forest
u.mlno J Lumlng —* B
[GmAloonmm] (Asc) Nounl fm
-ncoup Boosting
x’ : am
Ca
Convolutional Neural
Networks (CNN)

Generative
Recurrent Neural Adversarial Networks Autoencoders

Networks (RNN) (GAN)
| S

LSTM

INFN Machine Learning course 9 D. Bonacorsi

Frame the problem / check assumptions - step 3

After knowing the full pipeline (out of your own work)e.. recheck
your assumptions.

So far: Supervised. Univariate regression. Batch learning

* "is any other components in the overall work pipeline making my assumptions
unnecessary or tactically wrong?”

Suppose your value predictions are going to be clustered into
coarse-grain categories (e.g. just “cheap”, "medium”,”expensive”).
Then, getting the price perfectly right is not important at all, you
just need to get the category right, and your task should have been

framed as a classification task instead!

INFN Machine Learning course 10 D. Bonacorsi

Notation

m # of instances, i.e. examples in the training set
X “input” variables, or “features” (a vector)
y "output” variable, or “label” (aka “target”)

(x®, yi) the single i training example (it" row)

(—118.29)
33.91
1,416

\ 38,372)

x) = y = 156,400

INFN Machine Learning course 11 D. Bonacorsi

Select a performance measure

A typical performance measure for regression problems is the Root Mean Square Error (RMSE)

* it gives an idea of how much error the system typically makes in its predictions: the smaller it is the better

Or the Mean Absolute Error (MAE) - aka Average Absolute Deviation

RMSE (X, h) = i @ <'>) MAE (X, h) = % E |h (x(")) _ y(i)l
i=1 i=1

1
m

h — my hypothesis for y

Both are ways to measure the distance between two vectors (predictions and labels). Various distance
measures, or norms, are possible:

* RMSE — root of sum of squares = Euclidean norm, or £, norm, often noted Il I,

* MAE — sum of absolutes = Manhattan norm, or £, norm, often noted Il Il

In general:
k 1/k

k
£, _norm of a vector v containing n elements: lIvll, =(lvy| +Iv,| +..+lv |)

» {, gives the # non-zero elements; £_ gives the max absolute value in the vector

Which one?

e The higher the norm index, the more it focuses on large values and neglects small ones. This is why RMSE is more
sensitive to outliers than the MAE (if you have outliers, use MAE; when outliers are exponentially rare (like in a bell-

shaped curve), RMSE performs very well and is generally preferred

INFN Machine Learning course 12 D. Bonacorsi

Get the data, and inspect it

Download data source, and inspect it straight

° !head -20 datasets/housing/housing.csv

[> longitude,latitude,housing _median_age,total_ rooms,total bedrooms,population,households,median_income,median_house_value,ocean_proximity
-122.23,37.88,41.0,880.0,129.0,322.0,126.0,8.3252,452600.0,NEAR BAY
-122.22,37.86,21.0,7099.0,1106.0,2401.0,1138.0,8.3014,358500.0,NEAR BAY
-122.24,37.85,52.0,1467.0,190.0,496.0,177.0,7.2574,352100.0,NEAR BAY
-122.25,37.85,52.0,1274.0,235.0,558.0,219.0,5.6431,341300.0,NEAR BAY

-122.25,37.85,52.0,1627.0,280.0,565.0,259.0,3.8462,342200.0,NEAR BAY
-122.25,37.85,52.0,919.0,213.0,413.0,193.0,4.0368,269700.0,NEAR BAY MOStly numbers, but also
-122.25,37.84,52.0,2535.0,489.0,1094.0,514.0,3.6591,299200.0,NEAR BAY
-122.25,37.84,52.0,3104.0,687.0,1157.0,647.0,3.12,241400.0,NEAR BAY ()
-122.26,37.84,42.0,2555.0,665.0,1206.0,595.0,2.0804,226700.0,NEAR BAY text EiIlCi.f(?})(?tltl‘/E?..

-122.25,37.84,52.0,3549.0,707.0,1551.0,714.0,3.6912,261100.0,NEAR BAY
-122.26,37.85,52.0,2202.0,434.0,910.0,402.0,3.2031,281500.0,NEAR BAY
-122.26,37.85,52.0,3503.0,752.0,1504.0,734.0,3.2705,241800.0,NEAR BAY
-122.26,37.85,52.0,2491.0,474.0,1098.0,468.0,3.075,213500.0,NEAR BAY
-122.26,37.84,52.0,696.0,191.0,345.0,174.0,2.6736,191300.0,NEAR BAY

-122.26,37.85,52.0,2643.0,626.0,1212.0,620.0,1.9167,159200.0,NEAR BAY
-122.26,37.85,50.0,1120.0,283.0,697.0,264.0,2.125,140000.0,NEAR BAY

-122.27,37.85,52.0,1966.0,347.0,793.0,331.0,2.775,152500.0,NEAR BAY

-122.27,37.85,52.0,1228.0,293.0,648.0,303.0,2.1202,155500.0,NEAR BAY
-122.26,37.84,50.0,2239.0,455.0,990.0,419.0,1.9911,158700.0,NEAR BAY

Or use pandas to deal with a DataFrame object - much easier to view and manipulate:

housing = load_housing_data()
hpusing.head()

[longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value ocean_proximity
0 -122.23 37.88 41.0 880.0 129.0 322.0 126.0 8.3252 452600.0 NEAR BAY
1 -122.22 37.86 21.0 7099.0 1106.0 2401.0 1138.0 8.3014 358500.0 NEAR BAY
2 -122.24 37.85 52.0 1467.0 190.0 496.0 177.0 7.2574 352100.0 NEAR BAY
3 -122.25 37.85 52.0 1274.0 235.0 558.0 219.0 5.6431 341300.0 NEAR BAY
4 -122.25 37.85 52.0 1627.0 280.0 565.0 259.0 3.8462 342200.0 NEAR BAY

INFN Machine Learning course 13 D. Bonacorsi

Inspect the data

Each row represents one district. There are 10 attributes (columns):

» longitude, latitude, housing_median_age, total_rooms, total_bedrooms,
population, households, median_income, median_house_value, and
ocean_proximity

The pandas info() method is useful to get a quick description of the data

e total number of rows and columns, each attribute’s type, # non-null values

° housing.info()

ataFrame'>
, 0 to 20639

[» <class 'pandas.gpre.frame
RangeIndex: 20640 entri

Data columns (total 10" columns):

longitude 20640 non-null floaté64

latitude 20640 non-null float64 20,640 instances in the dataset

housing median_age 20640 non-null floaté64

total rooms i_2..()54..()_non—null float64d

total_bedrooms 1 20433 hon-null float64 total_bedrooms attribute has only 20,433
population =20840"non-null floaté64 . . .
households 20640 non-null floaté4 non-null values, meaning that 207 districts
median_income 20640 non-null floaté64 are missing this feature
median_house_value 20640 non-null floaté64

ocean_proximity 20640 non-null object

dtypes: float64(9), object(1l)
memory usage: 1.6+ MB

INFN Machine Learning course 14 D. Bonacorsi

Inspect the data

All attributes numerical, except ocean_proximity. Its type is object, so it could hold any kind of py object,
but you loaded from a CSV file so you know that it must be a text attribute. Probably categorical: use
value_counts()

° housing|["ocean proximity").value counts()

[> <1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5

Name: ocean_proximity, dtype: inté64

The describe() method shows a summary of the numerical attributes

null values are ignored
° housing. describey())

(B longitude latitude housing_median_age total_rooms total_bedrooms Kpop(ation households median_income median_house_value
count 20640.000000 20640.000000 20640.000000 20640.000000 : 20433.000000 :20640.000000 20640.000000 20640.000000 20640.000000
mean -119.569704 35.631861 28.639486 2635.763081 B -53-7.373533- 1425.476744 499.539680 3.870671 206855.816909

std 2.003532 2.135952 12.585558 2181.615252 421.385070 1132.462122 382.329753 1.899822 115395.615874
min -124.350000 32.540000 1.000000 2.000000 1.000000 3.000000 1.000000 0.499900 14999.000000
25% -121.800000 33.930000 18.000000 1447.750000 296.000000 787.000000 280.000000 2.563400 119600.000000
50% -118.490000 34.260000 29.000000 2127.000000 435.000000 1166.000000 409.000000 3.534800 179700.000000
75% -118.010000 37.710000 37.000000 3148.000000 647.000000 1725.000000 605.000000 4.743250 264725.000000
max -114.310000 41.950000 52.000000 39320.000000 6445.000000 35682.000000 6082.000000 15.000100 500001.000000

INFN Machine Learning course 15 D. Bonacorsi

° smatplotlib inline

import matplotlib.pyplot as plt

housing.hist(bins=50, figsize=(20,15))

plt.show()]

C

households

5000

4000

3000

2000

1000

0 1000 2000 3000 4000

longitude

5000 6000

2500

s

1500

1000

500

o
-124

-122

-120 -118 -116

population

-114

8000

6000

4000

2000

0 5000 10000 15000 20000 25000 0000 35000

INFN Machine Learning course

housing_median_age

1200 1

1000 4

[B]

10 20 30 40 50

median_house_value

1000 1

600 4

400 4

200 1

o

[C]

100000 200000 300000 400000 500000

total_bedrooms

5000 1

4000 -1

3000 1

2000 1

1000 1

0-
0

1000 20'00 1)2)0 40'00 50'00 60b0

latitude

3000

2500

2000

1500

34 36 38 40 42

[A]

median_income

1600
1400
1200
1000
800
600
400
200

0 2 4 6 8

10 12 14

total_rooms

5000

4000

3000

2000

1000

0 10000 20000 30000 40000

D. Bonacorsi

Inspect the data

Notice a few things in these histograms:

[A] attribute not expressed in the expected units (USD). Ask who gave you
the data.. it is in tens of thousands of USD

[B] [C] were capped. Note you have a label here. It could be a problem. Your
ML algo may learn that prices never go beyond that limit, which is wrong.
Check if you need precise predictions also in those ranges.. If yes, either you
collect proper labels for the districts whose labels were capped, or you
remove those examples from the training set (and the test set)

The attributes (e.g. [A] [C]) have very different scales — feature scaling (later)

Many histograms are skewed: this may make it a bit harder for some ML algos
to detect patterns = transform attributes to get symmetric distributions

Some steps have been done towards a better understanding of the
kind of data you are dealing with.

INFN Machine Learning course 17 D. Bonacorsi

Create a test set

Take a subset of your data and put it aside.

Why? Because your brain is an amazing pattern detection system
and you should avoid it to trick youl!

* i.e. your brain is highly prone to overfitting. Looking at the test set, you might
see some patterns and be biassed towards some ML model. Then, when you
estimate the generalisation error using the test set, your estimate will be too
optimistic and you will launch a system that will eventually perform on new
data much worse than expected = “data snooping bias”

° [Erom sklearn.model selection import train test split

train set, test set = train test split(housing, test size=0.2, random state=42)

>90% of ML practitioners do this.. but..

INFN Machine Learning course 18 D. Bonacorsi

Sampling: purely random vs stratified

Purely random sampling works OK only if the dataset is large enough.
If not, you risk to introduce a significant sampling bias

Best is to use stratified sampling

* as the population is divided into homogeneous subgroups called strata, sample
the right number of instances from each stratum to guarantee that the test set

you build is representative of the overall population

E.g. if you are told that median income is
an important attribute to predict house
prices in a district, make sure you represent
all categories of salary in your test set

* create e.g. 5 categories, assign examples to each

I o.fE0 o ! e
* then, use the sklearn’s StratifiedShuffleSplit class 1 overaitstracitical randon Rana. serror

1600 4

1400 4

1200 4

1000 4

1, 0.0398261
1

« compare the income category proportions in the

2: 0.318847|:
1
3' 0.350581 41

overall dataset, in the test set generated with 4. oxvsmels
stratified sampling, and in a test set generated s oy

using purely random sampling Pt s

INFN Machine Learning course 19

0.039729 10.040213
0.318798 : 0.324370
0.350533 :0.358527
0.176357 :0.167393
0.114583 : 0.109496

0.973236 :
1732260 !
2.266446 1
5.056334 1
4318374 |

D. Bonacorsi

Strat. %error
-0.243309
-0.015195
-0.013820
0.027480
0.127011

Visualising Geographical Data

For geolocated data, this often gives useful insights.

housing.plot(kind="scatter", x="longitude", y="latitude")

latitude

124 —122 ~120 -118 -116 -114
longitude

INFN Machine Learning course 20 D. Bonacorsi

Visualising Geographical Data

Use matplotlib features to highlight high density patterns.

2l o ,

40 -

@

Q
-038'
-
L —
©
36

34 -

o
—124 —122 ~120 ~118 =116 ~114

longitude

INFN Machine Learning course 21 D. Bonacorsi

Visualising Geographical Data

Display population by circles’ size and house price by colors on a heatmap.

housing.plot(kind="gcatter", x="longitude", y="latitude", alpha=0.4,
s=housing["population"]/100, label="population®, figsize=(10,7),
c="median house value", cmap=plt.get cmap(*jet”), colorbar=True,

)
plt.legend()

2T $306k
e Population
‘t _ $258k
40 1 . .’ e =
..’ L) ® < S » .
B TR) Y R
Ml S N -$209k @
0 % el N =
©
% o
v n
E -$160k =
§5 5%
3 =
©
36 - F$112k ©
. =
) - 1 S —
e . $63k
34 1 2 T
w- 8. o 0
Y - $15k
~124 ~122 ~120 _118 ~116 _114
Longitude

INFN Machine Learning course 22

Housing prices are very
much related to location
(e.g. close to the ocean) and
to the population density.

Use a clustering algo to
detect the main clusters?

Careful about ocean
proximity attribute:
perhaps useful but works
different North vs South, so
not a simple rule..

D. Bonacorsi

Visualising Geographical Data

Display population by circles’ size and house price by colors on a heatmap.

housing.plot(kind="gcatter", x="longitude", y="latitude", alpha=0.4,
s=housing["population")/100, label="population®, figsize=(10,7),
c="median house value", cmap=plt.get cmap(*jet”), colorbar=True,

plt.legend() Housing prices are very
cooncs much related to location
2] g o 200, . } Dopuleton H (e.g. close to the ocean) and
X = to the population density.
- 400000
40 -
Use a clustering algo to
@
0000 detect the main clusters?
38 - * >
g 3
2 3
=] i —
5 c Careful about ocean
J I © 5 5 .
* 200000 ¢ proximity attribute:
. perhaps useful but works
341 100000 different North vs South, so
~ 5
not a simple rule..
-124 -122 -120 -118 -116 -114
longitude
INFN Machine Learning course 23 D. Bonacorsi

Looking for correlations (numerically)

Dataset not huge = compute the standard correlation coefficient
(aka Pearson’s r) between every pair of attributes

* e.g. check how much each attribute correlates with the median house value

[53] corr matrix = housing.corr()

° corr matrix(["median house value").sort values(ascending=False)

[median_house_value 1.000000
median_income 0.687160
total rooms 0.135097 ‘\\“~\\\\\\\‘
housing_median_age 0.114110 Median house value tends to go up
households 0.064506 .
total bedrooms 0. 047689 when the median income goes up
population -0.026920
longitude ~0.047432 , ,
latitude ~0.142724 < Small negative correlation between the

Name: median_house value, dtype: floatéd |,tit;de and the median house value (i.e.

prices have a slight tendency to go down
when you go north)

INFN Machine Learning course 24 D. Bonacorsi

Standard correlation coefficient of various datasets

The correlation coefficient only measures linear correlations

* it may completely miss out on nonlinear relationships (e.g., “if x is close to

zero then y generally goes up”).
1

1 0.8 04 0 04
’ Tz " * « o° ‘& . [=35 .. L :
g g t 0 eqicies R S O s
&x i e 4. £, "~ - Y 8 * ',-' " . -* o
) N 3 o S e ne's e . » "
o oo A V. “ - 1 “ .
. 7 . ‘e S s s ° St 72 LY ,, .
o 1 ® - L .y
. 3 LR/ . y > . T
aed s b * Y u .
2 ~: A RO A e EBT CT AR
T FNRANT e LRy FH

b

1
. _ L e .
he slope

7 _
+1 or -1, and nothing to do with t

0 0 0 0
. |
’ o i i P ..’: > .;. o : -\%ﬁ ‘;.,-. '.:.
XV = B o R i ‘l@
"y D e

b
;3&?? % % N :
'ﬁﬁ' Yé{t‘ -\»:. g~ ’ A X D
0, but axes clearly non independent.. (clearly, non-linear relationship)

D. Bonacorsi

25

INFN Machine Learning course

Looking for correlations (visually

from pandas.tools.plotting import scatter matrix # For older versions of Panda?
from pandas.plotting import scatter matrix

attributes = ["median house_value", "median income", "total rooms",

median_house_value

-
w

median_income

g

total_rooms

]

]

housing_median_age
8
-]

"housing median_age"]
scatter_matrix(housing[attributes], figsize=(12, 8))
save_fig("scatter matrix plot")

1 i

-
=)

w

] ¢
median_house_value

INFN Machine Learning course

T T
w“ =]

median_income

J | g g

total_rooms

o

b 2 -
g housing_median_age

26

house value

medgiian

11 attributes — 112 plots,

here focussing on just 4 — 16 plots

500000 -

400000 -

w

o

o

o

o

o
L

|
200000 -

100000 -

T T T T T

2 4 6 8 100 12 14
median_income

Correlation is strong..

We see the cap at 500k

And we see more if we zoom..

(next)

D. Bonacorsi

16

500000 -

400000 -

w
o
o
o
o
o

200000 -

median house value

100000 -

0) SN0 @8 o —
" g \.
3 X 2 &8
e 0 2N S " 4
ﬁ," L il o
<<
<<

You may want to try removing the
corresponding districts to prevent
your algos from learning to
reproduce these “data quirks”

INFN Machine Learning course

1 I 1 I I 1 1

2 4 6 8 10 12 14
median_income

27 D. Bonacorsi

16

Explore attribute combinations

housing["rooms per household") = housing["total rooms")]/housing["households"]
housing["bedrooms per room")] = housing["total bedrooms")/housing["total rooms"]
housing["population per household")=housing["population"”]/housing["households"] |

median_house_value 1.000000 median_house_ value 1.000000
median_income 0.687170 median_ income 0.687160
........................... 1
total_ rooms 0.135231 I rooms per household 0.146285 1
housing median_age 0.114220 Etotal Tooms ~ """~ °—- 0.135097 ~ ° 7
households 0.064702 housing median_age 0.114110
total_bedrooms 0.047865 households 0.064506
POPRISL an aanatees total bedrooms 0.047689
1 itud -0.047279
ongitude population_per household -0.021985
latitude -0.142826 .
population -0.026920
Name: median_house_value, dtype: float64 .
- . longitude -0.047432
R S r o L
! bedrooms_per room -0.259984 1
............................
f Name: median_house_value, dtype: floaté64
Create and add more meaningful :

attributes. And re-check correlation matrix.

Not bad:

* one of the new variables (bedrooms per room) is more anti-correlated to median house
value than other old variable like the total number of rooms or bedrooms. Apparently
houses with a lower bedroom/room ratio tend to be more expensive.

* The number of rooms per household is also more informative than the total number of
rooms in a district—obviously the larger the houses, the more expensive they are.

INFN Machine Learning course 28 D. Bonacorsi

Data preparation for ML algos: data cleaning

Deal with missing features

* remember total_bedrooms, that had missing entries?
3 options:

» Get rid of the corresponding districts = drop rows

* Get rid of the whole attribute = drop a single column

e Set the values to some value (zero, the mean, the median, etc.) = save it as
you will need it for the test set too, or if/when the systems goes live to replace
new missing values

INFN Machine Learning course 29 D. Bonacorsi

Data prep for ML: Handling Text and Categorical Attributes

Need to convert categories from text to numbers.

from sklearn.preprocessing import OrdinalEncoder

ordinal_encoder = OrdinalEncoder|() This representation has the issue
housing cat encoded = ordinal encoder.fit transform(housing cat) :
housing cat encoded[:10] that ML algos will assume that 2
array([[0.], nearby values are more similar

0 - ! .

{ a. } than 2 distant values.

(1.7,

(0.7,) :

(1.1, ordinal_encoder.categories_

(0.1, [array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],

(1.1, dtype=object)]

(0.1, -
(0.11)

cat_encoder = OneHotEncoder(sparse=False)
housing_cat_lhot = cat_encoder.fit transform(housing cat)

housing cat_lhot A common solution is to create one

array([[1., 0., 0., 0., 0.], binary attribute per category. This is
{3:: N called one-hot encoding, because only
(0., 1., 0., 0., 0.1, one attribute will be equal to 1 (hot),
o o while the others will be 0 (cold).

INFN Machine Learning course 30 D. Bonacorsi

Data preparation for ML algos: Feature scaling

ML algos don’t perform well when the input numerical attributes
have very different scales

There are 2 common ways to get all attributes to have the same
scale:

* min-max scaling (aka normalisation): values are shifted and rescaled so that
they end up all ranging from O to 1 (or any other similar range)

+ useful e.g. for NN

» standardisation: it subtracts the mean value (so standardised values always
have a zero mean), and then it divides by the standard deviation so that the

resulting distribution has unit variance

+ much less affected by outliers w.r.t. normalisation

They can be used altogether.

INFN Machine Learning course 31 D. Bonacorsi

Data preparation for ML algos: Transformation pipelines

Many data transformation steps that need to be executed in
sequence and in the right order: sklearn provides the Pipeline class
to help with such sequences of transformations.

from import Pipeline
from import StandardScaler

num pipeline = Pipeline(|
('imputer’', SimpleImputer(strategy="median")),
('attribs adder', CombinedAttributesAdder()),

('std scaler', StandardScaler()),

1)

housing num tr = num pipeline.fit transform(housing num)

INFN Machine Learning course 32 D. Bonacorsi

Select and Train a Model

Here we are!
* | framed the problem
* | got the data and explored it
* | sampled a training set and a test set

* | wrote transformation pipelines to clean up and prepare data for ML
Now, data is ready, and next is to select and train a ML model
* start simple: a linear model
from import LinearRegression

lin reg = LinearRegression()

lin reg.fit(housing prepared, housing labels)

i alse, copy_X=True,

sklearn.linear_model.LinearRe

Done! It is that simple!

is set to False. If True, the regressors X will be
e mean and dividing by the I2-norm. If you wish to
andardscaler before calling fit onan

INFN Machine Learning course 33 D. Bonacorsi

Did this give you a feeling as of how much time to spend on e.g.
input data preprocessing w.r.t model selection?

INFN Machine Learning course 34 D. Bonacorsi

Select and Train a Mocdel

How is the model working? Let’ s try some predictions!

>>> some_data = housing.iloc[:5]

>>> some_ labels = housing labels.iloc[:5]

>>> some_data_prepared = full pipeline.transform(some_data)

>>> print("Predictions:", lin_reg.predict(some_data_ prepared))

Predictions: [210644.6045 317768.8069 210956.4333 59218.9888 189747.5584]
>>> print("Labels:", list(some_labels))

Labels: [286600.0, 340600.0, 196900.0, 46300.0, 254500.0]

It works, although the predictions are not exactly accurate (e.g. the first is
off by close to 40%!). Measure the RSME on the whole training set:

>>> from import mean_squared error

>>> housing predictions = lin reg.predict(housing prepared)

>>> lin mse = mean_squared error(housing labels, housing predictions)
>>> lin_rmse = np.sqrt(lin_mse)

>>> lin_rmse

68628 19819848922 well.. I get this, as a typical prediction error, when median
housing values range between $120,000 and $265,000..

Clearly not a great score (underfitting) but it is a start! (and it was quick!)

INFN Machine Learning course 35 D. Bonacorsi

Select and Train a Mocdel

This point is one of the most tricky you will encounter in project on
real-world datasets

e i.e. "l need to make a choice. What do | try next?”

* data science is general is done via experienced trials.. no recipes written in
stones on most aspects.. And all may largely be dependant on your dataset..

Common practices help you, though. This case:
» symptoms of underfitting: this is already A LOT to drive your next choice!

e main ways to fix underfitting are:

= select a more powerful model
+ feed the training algorithm with better features What would you ChOOSQ?

« reduce the constraints on the model

INFN Machine Learning course 36 D. Bonacorsi

Select and Train a Mocdel

This point, and not others, is one of the most difficult you will
encounter in project on real-world datasets

e i.e. "l need to make a choice. What do | try next?”

* data science is general is done via experienced trials.. no recipes written in
stones anywhere! And all largely dependant on your dataset!

Common practices help you, though. This case:
* symptoms of underfitting: this is already A LOT to drive your next hoice!

e main ways to fix underfitting are:

= select a more powerful model = you can try, and much cheaper ‘

=+ feed the training algorithm with better features = you can try, but expensive..

+ reduce the constraints on the model = non regularized, so this is ruled out

INFN Machine Learning course 37 D. Bonacorsi

Select and Train a Mocdel

Try a decision tree.

* Because it is a powerful model, capable of finding complex nonlinear relationships in the data

from import DecisionTreeRegressor

tree reg = DecisionTreeRegressor()

tree reg.fit(housing prepared, housing labels)

Now that the model is trained, evaluate it on the training set:

>>> housing_predictions = tree_ reg.predict(housing prepared)

>>> tree mse = mean_squared_error(housing labels, housing predictions)
>>> tree rmse = np.sqrt(tree_mse)

>>> tree_rmse

0.0

Wait, what!? No prediction error AT ALL!? Is it PERFECT!?

* much more likely that the model has badly overfit the data.. | need to be sure though.. How?

| can’t touch the test set (until | am ready to launch a model | am decently
confident about). So | need to use a sub-part of the training set for training,
and a sub-part for.. model validation

INFN Machine Learning course 38 D. Bonacorsi

Model Evaluation w/ k-fold Cross-Validation

You can (statically):

* split the original training set into train and validation sets, train your model on the
(smaller) training sub-set and evaluate it against the validation sub-set

Or (more dynamically)...

 randomly split the training set into k distinct subsets called “folds”

« or think of strata if you think it is the case..

» permute and pick k-1 fields for training and evaluate on the remaining 1, i.e. train and
evaluate your model k times

* the result is an array containing the k evaluation scores (you will average..)

from import cross_val_score
scores = cross_val score(tree_reg, housing prepared, housing labels,
scoring="neg_mean_squared_error", cv=10)

tree_rmse_scores = np.sqrt(-scores)

\ Practical note: sklearn CV approach expects a utility function (greater is
better) rather than a cost function (lower is better), so the scoring function

is actually the opposite of the MSE (i.e. a negative value), which is why
the code above computes -scores before calculating the square root.

INFN Machine Learning course 39 D. Bonacorsi

Model Evaluation w/ k-fold Cross-Validation

Letsloolc at reslits

>>> def display scores(scores):
print("Scores:", scores)
print("Mean:", scores.mean())

print("Standard deviation:", scores.std())

>>> display scores(tree rmse_scores)
Scores: [70194.33680785 66855.16363941 72432.58244769 70758.73896782

71115.88230639 75585.14172901 70262.86139133 70273.6325285
75366.87952553 71231.65726027]
: Mean: 71407.68766037929
Obse rvation: Standard deviation: 2439.4345041191004

 the good: | have k models, so this techniques gives me a standard deviation too

= it came at the cost of multiple trainings, you cannot afford it always..

* the bad: the score with a more complex model is worse than that with a simpler one..
no progress?

= wait - we are comparing LinearRegression w/o CV (RMSE 68628) with DecisionTreeRegressor w CV (RMSE
71407). For a fair comparison, o be sure, run CV also for LinearRegression.. you get 69052 with a std deviation

0177105

Not getting better: it is comparably bad, even with a more complex model
and with proper CV..

INFN Machine Learning course 40 D. Bonacorsi

Model Evaluation: cont'd

(... the karma: “l need to make a choice. What do | try next?” ...)

Try one more model: Random Forest.

* itis an Ensemble Learning technique: build a model on top of many other models

+ it works by training many Decision Trees on random subsets of the features, then averaging out their
predictions

from sklearn.ensemble import RandomForestRegressor

forest reg = RandomForestRegressor(n_estimators=100, random state=42)
forest reg.fit(housing prepared, housing labels)

housing predictions = forest reg.predict(housing prepared) 1) thlS is MUCH better: Random
forest mse = mean_squared error(housing labels, housing predictions) St
forest rmse = np.sqrt(forest mse) Forests look very promising.
forest_rmse

118603.515021376355 |

from sklearn.model_selection import val_score

forest_scores = cross_val_ score(forest_ reg, housin ed, housing labels,
scoring="neg mean_s
forest rmse scores = np.sqrt(-forest scores)

display scores(forest_rmse scores)

2) score on the training set is still <<
than on the validation sets: the
model is still overfitting the
training set.

Scores: [49519.80364233 47461.9115823
49308.39426421 53446.37892622 486347
53496.206997%5 F 50024 5852922

Mean:, 50182.303100336096
Standatd de¥idtIch:™ Z09770810550985693

INFN Machine Learning course 41 D. Bonacorsi

Model Evaluation w/ k-fold Cross-Validation

Possible solutions:
* simplify the model
 constrain it (i.e. regularize it) What would you choose?

* get a lot more training data

INFN Machine Learning course 42 D. Bonacors i

Towards fine-tuning..

Possible solutions:
* simplify the model = we just moved to a more complex.. perhaps try others?
 constrain it (i.e. regularize it) = this is fine tuning of hypermeters

e get a lot more training data — this (alone) might work only in some cases..

INFN Machine Learning course 43 D. Bonacorsi

Towards fine-tuning..

Possible solutions:
 simplify the model = we just moved to a more complex.. perhaps try others?
 constrain it (i.e. regularize it) = this is fine tuning of hypermeters

* get a lot more training data — this (alone) might work only in some cases..

Try out many other models from various categories of ML algos
 e.g. Support Vector Machines with different kernels

* e.g. possibly a Neural Network..
w/o spending too much time (yet) tweaking the hyperparameters

The goal is to shortlist a few (5ish?) promising models, and
continue the work in parallel with them altogether

* yes, the work is self-organising in various branches.. to be constantly compared..

INFN Machine Learning course 44 D. Bonacorsi

Hyper-parameters and model fine-tuning

Let's assume that | have now a shortlist of (few) promising models.

| need to fine-tune them.

One way to do that would be to fiddle with the hyperparameters
manually, until you find a great combination of their values that

“magically” works

* this would be very tedious and time-consuming..

There are various ways to automatically do so:

 GridSearch

« Randomised Search

e Ensemble Methods

INFN Machine Learning course 45 D. Bonacorsi

Grid Search

Grid Search does the search (via CV) of the best parameters across
all permutations in the parameters’ grid

* all you need to do is tell which hyper-parameters you want it to experiment
with, and what values to try out

from sklearn.model selection import GridSearchCV
Note: do not worry about

what these params mean:

param grid = [
try 12 (3x4) combinations of hyperparameters

{'n_estimators': [3, 10, 30], 'max features': —1, 6, 8]}, these are for RandomForest

then try 6 (2x3) combinatio - ocotstrap set as False

{'bootstrap': [False],“ n estimators': [3, 10], 'max features': [2, 3, 4]},]Regressor,others<io]1ave
] different ones..

forest reg = RandomForestRegressor(random state=42)
train across 5 folds, that's a total of (12+6)*5=90 rounds of training

grid_search = GridSearchCV(forest reg, param grid, cv=5, %
scoring='neg mean_ squared_error', Focus on the fact that this

return_train_score=True) .
grid search.fit(housing prepared, housing labels) GridSearch launch 90
training passes in one go!

INFN Machine Learning course 46 D. Bonacorsi

Grid Search

cvres = grid search.cv_results_
for mean_score, params in zip(cvres["mean test score"], cvres["params"]):
print(np.sqrt(-mean_score), params)

63669.05791727153 {'max_features': 2, 'n_estimators': 3}

55627.16171305252 {'max_features': 2, 'n_estimators': 10}

53384.57867637289 {'max features': 2, 'n _estimators': 30}

60965.99185930139 {'max features': 4, 'n estimators': 3} Let's look at the score of
52740.98248528835 {'max_features': 4, 'n_estimators': 10}

50377.344409590376 {'max features': 4, 'n_estimators’': 30} each hyper parameter

58663.84733372485 {'max_features': 6, 'n_estimators': 3} l)' & tast (1 Fi
52006.15355973719 {'max features': 6, 'n estimators': 10} combination tested during

50146.465964159885 {'max features': 6, 'n_estimators': 30} :
57869.25504027614 {'max features': 8, 'n_estimators': 3} the grld search
51711.09443660957 {'max_features': 8, 'n_estimators': 10}
49682.25345942335 {'max_features': 8, 'n_estimators': 30}
62895.088889905004 {'bootstrap': False, 'max features': 2, 'n _estimators': 3}
54658.14484390074 {'bootstrap': False, 'max_features': 2, 'n_estimators': 10}
59470.399594730654 {'bootstrap': False, 'max features': 3, 'n_estimators': 3}
52725.01091081235 {'bootstrap': False, 'max features': 3, 'n _estimators': 10}
57490.612956065226 {'bootstrap': False, 'max features': 4, 'n_estimators': 3}
51009.51445842374 {'bootstrap': False, 'max_features': 4, 'n_estimators': 10}
e W The RMSE score for this combination is 49,682
1{ 'max_features': 8, y'n _estimators': 30} 5
lomcmmececedecccccaccao (code not shown): slightly better than the score
e TP you got earlier using the default
RandomForestRegreser(bootstrap=True, cliterion='mse', max_depth=None, 5
max_featUr8s=87 FaX Tedf nodeés=None, min impurity decrease=0.0, hyperparameter Values (lt was 50,182)
min_impurity split=None, min_samples_leaf=1,
min_samples split=2, min weight fraction leaf=0.0,
n_estimators=30, n_jobs=None, oob_score=False, random state=42,
verbose=0, warm start=False) Some fine tuning worked!

Would you stop here!?

* Hint: the chosen parameters happens to be the maximum values that were evaluated..

INFN Machine Learning course 47 D. Bonacorsi

Randomized Search

Grid Search is fine when exploring relatively few combinations. Move to
Randomized Search if you want a larger hyperparameter search space

Instead of trying out all possible combinations, it evaluates a given
number of random combinations by selecting a random value for
each hyperparameter at every iteration.

* if you let the randomised search run for, say, 1000 iterations, this approach will
explore 1,000 different values for each hyperparameter (instead of just a few
values per hyperparameter as with GridSearch)

cvres = rnd_search.cv_results_
for mean_score, params in zip(cvres['mean_ test_score"], cvres[“"params"]):
print(np.sqrt(-mean_score), params)

from sklearn.model_selection import RandomizedSearchCV 49150.657232934034 {'max_features': 7, 'n_estimators': 180}
from sci .stats import randint 51389.85295710133 {'max_features': 5, n_estimators': 15}
PY P 50796.12045980556 {'max_features': 3, 'n_estimators': 72}
50835.09932039744 {'max_features': 5, 'n_estimators': 21}

param distribs = { __ _ _ _ _ _ _ o _o____o_-. 49280.90117886215 { 'max_features': 7, 'n_estimators': 122}
: n_estimators': randint(low=1, hJ.gh-ZOO),I 50774.86679035961 {'max_features': 3, 'n_estimators': 75}
'max_features': randint(low=1, high=8), , 50682.75001237282 {'max_features': 3, 'n_estimators': 88}

} i At A 49608.94061293652 {'max_features': 5, 'n_estimators': 100}
50473.57642831875 {'max_features': 3, 'n_estimators': 150}

64429.763804893395 {'max_features': 5, 'n_estimators': 2}
forest_reg = RandomForestRegressor(random state=42)

rnd_search = RandomlzedSearchC]k(forese reg -par-am distributions=param distribs,
1 n_iter=10, cv=5, scorlng-'neg mean_squared error', random state=4 Not bad at all

2)
rnd_search.fit(housing prepared, housing labels)

INFN Machine Learning course 48 D. Bonacorsi

Ensemble Methods

This is another way to fine-tune your system: try to combine the
models that perform best, as the group (or “ensemble”) will often
perform better than the best individual model

* we saw this already: RandomForest performed better than the individual
DecisionTrees it relied on

* especially good if the individual models make very difterent types of
prediction errors

INFN Machine Learning course 49 D. Bonacorsi

Analyze the best models and their prediction errors

Crucial to understand why a model is working better than others

« “who drove this model to the point it performs the best?”

Feature importance: e.g. RandomForestRegressor can indicate the relative importance
of each attribute for making accurate predictions

>>> feature_importances = grid search.best_estimator_.feature_importances_ >>> extra_attribs = ["rooms_per_ hhold", "pop_per_hhold", "bedrooms_per_ room"]
>>> feature_importances >>> cat_encoder = full pipeline.named_transformers_|["cat")
array([7.33442355e-02, 6.29090705e-02, 4.11437985e-02, 1.46726854e-02, >>> cat_one_hot_attribs = list(cat_encoder.categories_[0])
1.41064835e~02, 1.48742809e-02, 1.42575993e-02, 3.66158981le-01, >>> attributes = num_attribs + extra_attribs + cat_one_hot_attribs
5.64191792e-02, 1.08792957e-01, 5.33510773e-02, 1.03114883e-02, >>> sorted(zip(feature_importances, attributes), reverse=True)
1.64780994e-01, 6.02803867e-05, 1.96041560e-03, 2.85647464e-03)) [(0.3661589806181342, 'median_income'),

(0.1647809935615905, 'INLAND'),
(0.10879295677551573, 'pop_per_hhold'),
(0.07334423551601242, 'longitude'),
(0.0629090704826203, 'latitude'),
(0.05641917918195401, 'rooms_per_hhold'),

You may want to try dropping some of the (0.05335107734767581, 'bedrooms_per_room'),
(0.041143798478729635, 'housing median_age'),
leSS useful features (0.014874280890402767, 'population'),

(0.014672685420543237, 'total rooms'),

(0.014257599323407807, 'households'),

(0.014106483453584102, 'total bedrooms'),
-

e.g. apparently only one ocean proximity category is 1(0.010311488326303787, '<1H OCEAN'),
(g pp y y _p y g y :(0.002856474637320158, 'NEAR OCEAN'), 1
really useful, so you could drop the others) | (0.00196041559947807, 'NEAR BAY'), !

1

1(6.028038672736599e~05, 'ISLAND')]

But do more!

 add extra features or, on the contrary, get rid of uninformative ones, cleaning up outliers, etc

INFN Machine Learning course 50 D. Bonacorsi

Evaluate Your System on the Test Set

OK. You eventually have a system that performs sufficiently well.
Now is the time to evaluate the final model on the test set.

Easy, and nothing technical different wrt what we did already
» get features and labels from your test set, now
* run your full pipeline to transform the data (transform(), not fit_transform() !)

* evaluate the final model on the test set

Not bad. Communicate out:
final model = grid_search.best_estimator_ - > :
You got an idea of features importances (median
X test = strat test_set.drop("median house value", axis=1l) Income as main predictor), you studied and
yitantisietratifantsnat [Smadianihenansivaluat]=copy() excluded some features (e.g. some of the ocean
vicinity ones), plenty of lesson learned (what
worked and what not), you got a performance
final predictions = final model.predict(X_test_prepared) that can be compared Wlth others

X test_prepared = full pipeline.transform(X_test)

final mse = mean_squared_error(y_test, final predictions) : c .
S = P O Depending on the case, (your boss will) consider

final rmse = np.sqrt(final mse) # => evaluates tod 47,730.2
' to switch the production system to this one.
(then, plenty of monitor, re-checks, etc..)

INFN Machine Learning course 51 D. Bonacorsi

