Lecture 1:
Introduction to Machine Learning:
From Linear Regression to Deep Learning

Amir Farbin



Plans and Disclaimers

e Plan:

e Lecture 1: Broad Perspective on ML... some formalism

Lecture 2: Exploration of Data Science / Machine Learning Tools

Lecture 3: Closer Look at the Techniques |

Lecture 4: Deep Learning

Lecture 5: Closer Look at the Techniques Il

Lecture 6: Exploration of Deep Learning Tools
e Example Implementations of various architectures and techniques
e Deep Learning in HEP
o Disclaimers:
e | have a very HEP/LHC perspective... some background in B and neutrino physics.
e Would love to learn about more nuclear physics problems.

e Lots of stolen graphics... mostly from Wikipedia.



Lecture 1

e What is Machine Learning?
e HEP Data

e What is it?

e How to think about it.

e What do we do with it?
* Machine Learning

e A Formulation

e Linear Techniques — Kernel Techniques — Decision Trees — Neutral Networks
— Deep Learning

e Bayesian vs Frequentist



Al vs ML vs DL
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https://www.wired.com/2017/01/move-coders-physicists-will-soon-rule-silicon-valley/
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MOVE OVER, CODERS—
PHYSICINTS WILL SOON RULE
SILIGON VALLEY

S ————EEETT
it’s happening across Silicon Valley. Because structurally and technologically, the things that just about every internet
company needs to do are more and more suited to the skill set of a physicist.

SCIENCE SECURITY TRANSPORTATION

But this is a particularly ripe moment for physicists in computer tech, thanks to the rise of machine learning, where machines

learn tasks by analyzing vast amounts of data. This new wave of data science and Al is something that suits physicists
right down to their socks.

——

these neural networks are really just math on an enormous scale, mostly linear algebra and probability theory.
Chris Bishop, who heads Microsoft’s Cambridge research lab, ... “There is something very natural about a physicist

going into machine learning,” he says, “more natural than a computer scientist.”
~ e
Physicists know how to handle data—at MIT, Cloudant’s founders handled massive datasets from the the Large Hadron

Collider—and building these enormously complex systems requires its own breed of abstract thought.
et

They come because they’re suited to the work. And they come because of the money. As Boykin says: “The salaries in tech

are arguably absurd.” But they also come because there are so many hard problems to solve.
B

Machine learning will change not only how the world analyzes data but how it builds software.
In other words, all the physicists pushing into the realm of the Silicon Valley engineer is a sign of a much bigger

change to come. Soon, all the Silicon Valley engineers will push into the realm of the physicist.
= ——————e————



https://www.wired.com/2017/01/move-coders-physicists-will-soon-rule-silicon-valley/

Al vs ML vs DL

» Artificial Intelligence: Any technigue that mimics human behavior
 Code, Logic, Symbolic systems, Knowledge Bases
* Machine Learning: Any technique that learns from experience (aka Data)

e Logistic regression (aka fits), Decision Trees, Clustering, Kernel Methods

* Representation Learning: Techniques that learn representations of data
amenable to specific or general tasks

e Shallow Auto-encoders
* Neural Networks: Biologically inspired ML

* Deep Learning: Multi-layered Neural Networks

e MLP, DNN, CNN, RNN, ...
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Supervised ML

* Tasks: Classification, Classification with missing
iInputs, Regression, Transcription, Machine
Translation, Structured Output

 “Traditional” Technigues:

* Linear/Logistic Regression

e Support Vector Machines

e Decision Trees



Un-supervised ML

* Tasks: Clustering, Anomaly Detection, Imputation
of Missing Values, Synthesis & Sampling,
Denoising, Density Estimation

 “Traditional” Technigues:

* Principle Component Analysis

* k-means Clustering



Ingredients of ML

* Problem Formulation. Specity:

e Data Set Inputs/Outputs

ML technique: F ( Input | Parameters ) = Output

- Target: Cost (aka loss) function
o Supervised: Compare F vs Ground Truth Output
o Unsupervised: e.g. Cluster like inputs
o Semi-supervised: F(Input) = Input

- Training: Optimization

 Choose how to find best parameters



HEP Data



HOW dO we
‘'see” particles”

- Charged particles ionize media
* Image the ions.

* In Magnetic Field the curvature of
trajectory measures momentum.

 Momentum resolution degrades as
less curvature: o(p) ~c p @ d.

* d due to multiple scattering.
 Measure Energy Loss (~ # ions)

* dE/dx = Energy Loss / Unit Length =
f(m, v) = Bethe-Block Function

 |dentify the particle type
» Stochastic process (Laudau)
* Loose all energy — range out.

* Range characteristic of particle type.

Energy loss in air [keV/cm]
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How do we “see” particles”

e Particles deposit their energy in a stochastic process know as
“showering”, secondary particles, that in turn also shower.

* Number of secondary particles ~ Energy of initial particle.
* Energy resolution improves with energy: o(E) / E = a//JE ® b/E @ c.
* a =sampling, b = noise, ¢ = leakage.
* Density and Shape of shower characteristic of type of particle.
» Electromagnetic calorimeter. Low Z medium

* Light particles: electrons, photons, 0 —=yy interact with electrons
iINn medium

* Hadronic calorimeters: High Z medium

* Heavy particles: Hadrons (particles with quarks, e€.g. charged
pions/protons, neutrons, or jets of such particles)

* Punch through low Z.

* Produce secondaries through strong interactions with the
nucleus in medium.

* Unlike EM interactions, not all energy is observed.
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How do we “see” particles”

e Charged Particles traveling faster than speed of light in medium
emit Cherenkov light (analogous to sonic boom).

e Light emitted in cone, with angle function of speed and mass.

 Depending on context, allow for particle identitication and/or
speed measurement.

Neutrino Neutrino ~_ @ ¢
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Cherenkov light Cherenkov light

The generated charged particle emits the Cherenkov light.




Neutrino Detectors

* Need large mass/volume to maximize chance of neutrino interaction.
* Technologies:
« Water/Oil Cherenkov
e Segmented Scintillators
Liquid Argon Time Projection Chamber: promises ~ 2x detection efficiency.
* Provides tracking, calorimetry, and ID all in same detector.
* Chosen technology for US’s flagship LBNF/DUNE program.
e Usually 2D read-out... 3D inferred.
* Gas TPC: full 3D

Liquid Argon TPC
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HEP Data e

The lowest-level (raw) data we generally have are the .n.
digitized outputs of detectors... e.g. voltages. Cell Is
Reconstruction is a series of sequential algorithms that Builder
construct features from outputs of the previous algorithm. - “I
S

e “raw” — “features eBTTaction A Cell
Highest level of Reconstruction output is usually particle B ection B Calibrato:
candidates.

My

Analysi |
nalysis, usually “Traditional” use Cluster

« choosing candidates — 4-vectors, separated by PID <~ of MLinHEP Builder
-

. . Clusters
e 4-vectors — kinematic features (e.g. masses)

Cluster
Calibrator |

o kinematic features — signal/background

o statistical analysis — hypothesis test, limits,
measurements

* Background estimation e Jet Finder ,

Transient Data Store

* Lots of systematics

15 orrection



HEP Experlments

e 5 technical components to HEP experiment:

 Accelerator. e.g. LHC collisions creating quickly decaying heavy
particles. Extremely high rate: 40 * O(50) Million collisions/sec.

 Detector. a big camera. ~ e.g. LHC 1.5 MB/event (60 TB/s)

* Pictures of long-lived decay products of short lived heavy/
Interesting particles.

e Sub-detectors parts: Tracking, Calorimeters, Muon system,
Particle ID (e.g. Cherenkov, Time of Flight)

DAQ/Trigger: Hardware/software

« Software: Reconstruction (Raw data -> particle “features”) /
Analysis

Computing: GRID Monarch Model “Cloud” Computing/Data
Management (software/hardware)




A bit of Formalism



Data Formulation

* |ets formalize what we mean by a dataset with a Probabilistic Model:
e Assumption: Observed Data is a mixture of M different processes
* Data set of N data points, {{xq}}
» each {xq}i consisting of
* d observations {x4}
e probability f; of uniquely coming from one of M classes
* each class has label c¢jis indexed by j
* dependent on parameters {ax}; (some parameters of of interest, some nuisance parameters)

e Dependent on other parameters {§)}

*=> P({x}|6) = Px}\{fi.ci{{adi}, {Bi}) = 2, 1 P{x}|ci{aw {B1)

e Typical HEP Examples:

* Analysis: {xq} = {4-vectors}, cj= {signal, background}, f; = cross-section * integrated luminosity * efficiency * acceptance,
{a/}= signal/background properties, {3} = detector properties

e Particle ID: {xq} = {measurements}, c;= {particle type}, f; = rate * efficiency, {a¥}= particle properties, {8} = detector

properties
18



What is it good for?

e |f we know P(X|6), what is it good for?

e Prediction: Assume 8 — distribution of {x4}.
e Classification: Observation {xq} = most likely class ¢

e Regression: Dataset {{xq};} = parameters of interest

taj or {By

e Hypothesis test. Dataset {{xq}i} = is H+ true (or Ho
null hypothesis)

19



Data Analysis

* QObjectives:

 Searches (hypothesis testing): Likelihood Ratio Test (Neyman-Pearson lemma)

P(x|H;)
P(x|Ho)

* Limits (confidence intervals): Also based on Likelihood > kg
* Measurements: Maximum Likelihood Estimate
Likelihood

p({x}|0) = Pois(n|v(0) Hp T.|0)

* nlIndependent Events (e) with Identically Distributed Observables ({x})

* Significant part of Data Analysis is approximating the likelihood as best as we
can.



Obtaining the Likelihood

e How do we obtain P(X|6)?

* In HEP, we have precise algorithmic simulations that generate
{Xq} given 6.

* We estimate P by comparing observed xq with simulated {xg}.

* \We can build analytical first principle models. Matrix Element
Method is such a technique.

e But it’s technically difficult, computationally expensive, and
only tractable with physics and detector simplifications.

 We can using ML to learn P from simulation or data.

21



1

Algorithmic Simulation =

* Physics is all about establishing a very precise “model” of the underlying phenomena... so in
general we can model our data very well.

Lepton/
Quark 4-vectors

—1
* For example for LHC we do multi-step ab-initio simulations:
Soft QCD: Quark Fragmentation
and Hadronization
1. Generation: Standard Model and New Physics are expressed in language of Quantum ol
Field Theory. A

Particle
4-vectors

= Feynman Diagrams simplify perturbative prediction of HEP interactions among the
most fundamental particles (leptons, quarks)

1

energies where theory is too strong to compute perturbatively.
Interactions with

2. Hadronization: Quarks turn to jets of particles via Quantum Chromodynamics (QCD) at [
= Use semi-empirical models tuned to Data. 1

Simulation: Particle ]

3. Simulation: Particles interact with the Detector via stochastic processes

Energy
Deposits in Detector

= Use detailed Monte Carlo integration over the “micro-physics”

4. Digitization: Ultimately the energy deposits lead to electronic signals in the O(100 Million) 1]
channels of the detector. Digitization: Detector
Response and Pileup Mixing
= Model using test beam data and calibrations. —

* Qutput is fed through same reconstruction as real data.
Detector Response




Likelihood Approximations

Need P({xa}|6) of an observed event (/). The better we do, the more sensitive our
measurements.

Steps 2 (Hadronization) and 3 (Simulation) can only be done in the forward mode. ..
= cannot evaluate the likelihood.

S0 we simulate a lot of events and generally use histograms (a crude Probability Density
Estimator (PDE) technique)

* {xq} = {100M Detector Channels} or even { particle 4-vectors } are too high dimensional.
o Curse of dimensionality... more on this later

* Instead we derive {xq} = { small set of physics motivated observables } = Lose
information.

» Isolate signal dominating regions of {x4} = Lose efficiency.

« Sometimes use ML-based classifiers to further reduce dimensionality and improve
significance

* Profile the likelihood in 1 or 2 (ideally uncorrelated) observables.



Machine Learning



Basic Formulation

o Al Algorithm: Input — Al Algorithm — Output
® X — F(6) — y:y = F(X|6)
e X: observable inputs
* 0. Model parameters (most likely learned)
e y: observable outputs
» Typical HEP ML task: |solate signal in real data { Xq }i
* Formulate problem: X = x4, y = 0 or 1 if ¢ = background or signal
* Obtain training data: generate simulated labeled Dataset {xq, C}i
» Separate dataset: into Train, Test, and possibly Validation subsets
* Choose: Pick an ML algorithm F
e Train: Use labeled Dataset {xq, c}ito obtain 6
e Test: Estimate P(F(X|0)|c; using Test sample
e Optimize: Select F(X|0) > cut to optimize sensitivity for a hypothesis test
® P(F(X|6)| signal ) / P(F(X|6)| background )
* Validate: Obtain signal / background efficiency using Validation sample

e Apply: to data {xg}i

25



ML Models (Linear)

e Linear Models: F(f) — WZX+5b
e Solve equation g’ — W7T + g

e for “weights” w in matrix W and biases b

e by minimizing e = 2
* Note

e Wis d by m matrix

e X IS d component vector

e yis m component vector

e Simple example: b=0,Wis1byd

S| §1

e — Analytic solution

W=(X"X)"'X'Y

S|
2

20



ML Models (LDA)

e Linear Discriminant Analysis (Fisher Discriminant)
e Assume 2 classes: 0 and 1

e Means po, Y1 and covariance matrices 2o, 21
. Model: Y = WX
* Again Wis 1 byd, b=0
— — )
(W - fig — W - [iy)
WYXy W - WYX, W

e Maximal separation between means

e Maximize: § —

e Smallest possible variance

e Analytic Solution: W — (EO —|— E]_)_l (,Lb_f) — ,u_i)

27



ML Models (Linear SVM)

* Support Vector Machines:

* Same setup... 1/ = W . T+ [;

e Note that this is an equation for a hyperplane — formulate problem
as finding the hyperplane that optimally separates two classes.

e Maximize boundary between two classes = plane depends on

points closest to the plane / most difficult to separate... the Support
Vectors.

e Solving this problems is equivalent to solving a dual problem of
solving for a; N

(@) =0 aw®) -F+0b

7
e Where yi={+1,-1} depending on class.

e g, >0.

* Dot product measures similarity.

e — Sign of output dependent on sign of the most similar
example in training set.

e Support vectors still most important for defining boundary

28



ML Models (Kernel SVM)

e |f boundary not linear = Kernel Trick:

—

N
e Replace dot product: f(Z) = Z a;yik(Z;, T)

BN N e
£ o™
° o )

e Example: if x is in radial coordinates,
then kernel gets back proper dot
product.

e Example: Gaussian Kernels

e Euclidian Distance in the
exponential

Gaussian

* |f close to an example in training
data = large value

Radial Basis Functions

* Equivalent to template matching

Examples from: http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf 29



Features

e X — ®(X) — Linear Model

¢ are features or representation derived from X
* ¢Is:
e (Generic, e.g. polynomials — e.g. SVM

e Manually constructed — Feature Engineering

e Learned — Feature Learning

30



Artificial Neural Network

e —

* A simple one layer NN

* FX|a=Wb)=f(WX+b)

- W, b = "weights”, “biases”

- f(x)= “activation function”

- Must be non-linear.

- Universal Computation Theorem.



Training == Optimization

* Training = Minimizing cost function
w.r.t. parameters a

C[F(Xtrain‘o_z)a ﬁrain] — C(O_Z)
* (Gradient Decent (Newton’s Method):

e (GGradient points to direction of
maximal change.

* |terate (€ sets the step size ==

Learning Rate)

O_Zi—l—l — O_Zz — GVC(O_Z)




Bayesian vs Frequentist

e Supervised Learning:
e Data: (X,Y)
e True:f(X)=Y

e Learn: f(XI@) ~f"

e Bayesian Learning:
e Frequentist.

e For example: 6 is Gaussian
* (X Y)random. distributed = learn u, o
¢ laeal 9 exists. e Allows you to propagate
uncertainties = estimate

uncertainty on output Y

e Estimate 6.
e Bayesian:

e (X,Y) fixed.

e (Qisrandom.

e |Learn p(6)



Decision Trees

Doesn’t fit the F(X | W,b) formulation. ,
E] is sex male? E

Powerful technique / E

(survived )

is age > 9.5?
e Random Forest g

/ \ 0.73 36%
e Boosting (died )

is sibsp > 2.5?
0.17 61%
Covered by Daniele f E
. . (died})  {survived)
Up to recently, in HEP, Boost Decision Trees (BDTs) 0.05 2% 0.89 2%

on well constructed/chosen features
Titanic Survivors
* have been the best performing techniques, and

e become the standard to beat,

34



Deep Learning



Artificial Neural Networks

* Biologically inspired computation, (first attempts in 1943)
* Probabilistic Inference: e.g. signal vs background
» Universal Computation Theorem (1989)

* Multi-layer (Deep) Neutral Networks:

* Not a new idea (1965), just impractical to train. Vanishing
Gradient problem (1991)

* Solutions:
 New techniques: e.g. better activation or layer-wise training

* More training: big training datasets and lots of
computation ... big data and GPUs

 Deep Learning Renaissance. First DNN in HEP (2014).
* Amazing Feats. Audio/Image/Video recognition, captioning,

and generation. Text (sentiment) analysis. Language
Translation. Video game playing agents.

* Rich field: Variety of architectures, technigues, and
applications.

Images from Wikipedia


http://link.springer.com/article/10.1007%2FBF02551274
https://en.wikipedia.org/wiki/Deep_learning#cite_note-ivak1965-25
https://en.wikipedia.org/wiki/Deep_learning#cite_note-HOCH2001-36
https://arxiv.org/abs/1402.4735
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Feature Learning

* Feature Engineering: €.g. Event Reconstruction ~ Feature Extraction, Pattern Recognition, Fitting, ...
 Deep Neutral Networks can Learn Features from raw data.
 Example: Convolutional Neural Networks - Inspired by visual cortex
e Input. Raw data... for example 1D = Audio, 2D = Images, 3D = Video
* Convolutions ~ learned feature detectors
Feature Maps
* Pooling - dimension reduction / invariance

» Stack: Deeper layers recognize higher level concepts.

Feature maps
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Deep Neutral Networks
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Assessing

True Positive Rate (TPR): Efficiency

vs FPR

ROC

Total
population

Predicted
condition

Predicted
condition
positive
Predicted
condition
negative

False Positive Rate (FPR). Background
efficiency, 1/Background Rejection

Receiver Operator Curve (ROC): TPR

Area Under Curve (AUC): Area under

relevant elements

false negatives

true positives

selected elements

true negatives

Performance

i

false positives

Y

How many relevant
items are selected?
e.g. How many sick
people are correctly
identified as having
the condition.

Sensitivity= —

True condition

Condition positive

True positive

False negative,
Type Il error

True positive rate (TPR), Recall, Sensitivity,

probability of detection, Power

_ 2 True positive
~— 2 Condition positive

False negative rate (FNR), Miss rate

_ 2 False negative
~— 2 Condition positive

Condition negative

How many negative
selected elements
are truly negative?
e.g. How many
healthy peple are
identified as not
having the condition.

Specificity =

Prevalence =

P(TP)

2 Condition positive
2 Total population

False positive,
Type | error

True negative

False positive rate (FPR), Fall-out,

probability of false alarm

_ 2 False positive
— 2 Condition negative

Specificity (SPC), Selectivity, True negative

_ 2 True negative
rate (TNR) = $Condition negative

Positive predictive value (PPV),

Precision =

2 True positive
2 Predicted condition positive

False omission rate (FOR) =

2 False negative
2 Predicted condition negative

Positive likelihood ratio (LR+) = %

Negative likelihood ratio (LR-) = ENB

P(FP) 100%

Accuracy (ACC) =

2 True positive + Z True negative
2 Total population

False discovery rate (FDR) =

2 False positive
2 Predicted condition positive

Negative predictive value (NPV) =

2 True negative
2 Predicted condition negative

Diagnostic odds

DOR F, score =

i

o I(.R+ ) 2. Precision - Recalll
= L[R= Precision + Recall



DEEP LEARNING
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Data Representation

« Data are stored in “tensors”.

* Basically an N- Dimensional Array with a “shape”
* shape = (): Scalar
« shape = (N,): Vector
* shape = (N,M): Matrix
» shape = (N1, N2, N3, ..., Nr): Rank R Tensor

* Inputs: X
* Can be arbitrary shape. Typically first dimension is the example index (usually an “event” or collision in HEP)

« Example: Let's say your examples are students, and your data is their age, sex, years at University,
undergrad/grad, and department

e« X=[[20,0, 2,0, 4], # 20 year old, O=male, 2=junior, O=undergrad, 4=computer science
[ 25,1, 2,1, 3], # 25 year old, 1=female, 2=3nd year, O=grad, 4=physics
[ 23, 0,0, 1, 3] ] # 25 year old, 1=make, 2=1st year, O=grad, 4=physics
* X[0] =[20, 0, 2, 0, 4]: the first students data.
« X[O][3] = 1. This is a graduate student
* QOutputs: Y
« Can be arbitrary shape. Typically first dimension is the example index (usually an “event” or collision in HEP)

* Example: Y = 0/1, student does not / does know python

42



Machine Learning Problem Formulation

Split Datasets:

* (Xtrain, Ytrain) = training dataset
* (Xiest, Yiest) = test dataset
(X ) = unlabeled data
Set Goal.
* Inference algorithm/function F(X | a) = Ypredict.

 F can be a heuristic. e.g. if (computer science student) then (student knows python).
e F can be anything
* a are parameters of the function, for Neural Networks, these are weights.

* Note that in a simple classification problem, Yiain can be 0 or 1 for any example. But Ypredict Will
usually be between 0 and 1.

Training: (for Neural Networks)
* Optimize (usually a minimization) a cost function F(X | a) = C( F(Xrain| @), Yirain ) W.r.t. a
* For example, C = [F(X | @) - Yiain]?
* Qyained= result of training

Validation:
« Compute cost function on test data C( F(Xest| Qtrained), Ytest )
e Other metrics. For example:
» Select Yiest=1 and see how often F(Xtest| Qtrained) > 0.5
Inference:

* Ypredict = F(X| qtrained)



