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These exercises are intended to provide practice with cosmological perturbation theory, and

further background to the lectures. All exercises can be completed by hand in approx. 10 pages.

1 Lecture 1

1.1 ADM formalism

In the ADM formalism, the metric for domain-walls (σ = 1) and cosmologies (σ = −1) is

ds2 = σN2dz2 + gij(dx
i +N idz)(dxj +N jdz), (1)

and the action is

S =
1

2κ2

∫
dz d3xN

√
g
[
KijK

ij −K2 +N−2(Φ̇−N iΦ,i)
2 + σ(−R+ gijΦ,iΦ,j + 2κ2V (Φ))

]
, (2)

where κ2 = 8πGN and the extrinsic curvature

Kij =
1

2
£ngij =

1

N

(1

2
ġij −∇(iNj)

)
. (3)

We use dots as a shorthand for ∂z, and commas for partial derivatives. All covariant derivatives,

raised indices, and the scalar curvature R are evaluated using the spatial 3-metric gij .

Vary the ADM action with respect to the lapse N and shift N i to obtain the Hamiltonian and

momentum constraints:

0 = −KijK
ij +K2 −N−2(Φ̇−N iΦ,i)

2 + σ(−R+ gijΦ,iΦ,j + 2κ2V (Φ)), (4)

0 = ∇jKj
i −K,i −

Φ,i

N
(Φ̇−N jΦ,j). (5)

[Optional: Verify (3) by evaluating the Lie derivative £ngij = nµgij,µ + 2gµ(in
µ
,j), where nµ =

N−1(1,−N i) is the unit normal to constant-z slices.]

1.2 Background equations of motion

Derive the background equations of motion by inserting the ansatz

Φ = ϕ(z), N = 1, Ni = 0, gij = a2(z)δij , (6)

into the ADM action, as well as evaluating the Hamiltonian constraint. For monotonic evolution,

we can invert ϕ = ϕ(z) to z = z(ϕ). Show we then have:

H =
ȧ

a
= −1

2
W (ϕ), (7)

ϕ̇ = W ′(ϕ), (8)

2σκ2V (ϕ) = W ′2(ϕ)− 3

2
W 2(ϕ). (9)
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1.3 Solving the constraints in comoving gauge

In comoving gauge, we have

δϕ = 0, gij = a2(δij + hij), hij = 2ζδij + γij , N = 1 + δN, Ni = a2(ν,i + νi)

where the perturbations depend on both z and xi. The graviton is transverse-traceless while νi is

transverse (i.e., γij,j = 0, γii = 0, and νi,i = 0). We will work to linear order throughout.

(a) Show the inverse 3-metric is1

gij = a−2(δij − hij). (10)

(b) Show that to linear order

Ki
j = Hδij −HδNδij +

1

2
ḣij − ν,ij − ν(i,j) (11)

(c) Evaluating the momentum constraint, show that

νi = 0, δN =
ζ̇

H
. (12)

(d) Evaluate the Hamiltonian constraint to show that

ν = ε ∂−2ζ̇ +
σ

a2H
ζ, (13)

where ε = ϕ̇2/2H2 = (1/H) .̇ Note that in momentum space, ∂−2 is simply −q−2.

Here, the curvature of the 3-metric gij is R = −4a−2∂2ζ, as one can show noting that

Rij = Γkij,k + Γkkj,i +O(h2). (14)

We now know the lapse and shift to linear order in comoving gauge:

N = 1 +
ζ̇

H
, Ni = a2ε ∂−2ζ̇,i +

σ

H
ζ,i (15)

Substituting these into the ADM action, one can go on to evaluate the quadratic action for the

perturbations, but we’ll leave this for another time. Note, however, that to obtain the action

to quadratic order, we only need evaluate the lapse and shift to linear order: in the action, the

second-order pieces of N and Ni appear multiplying the zeroth order Hamiltonian and momen-

tum constraints. As we saw above, the latter vanish for a(z) and ϕ(z) obeying the background

equations of motion. This same approach can be extended to obtain the perturbed action to cu-

bic order: see Maldacena’s famous astro-ph/0210603. The analogous calculation for combined

domain-walls/cosmologies, as well as the higher-order version of the exercises here, can be found

in 1011.0452 and 1104.3894.

1For compactness, we write all indices that should be raised with δij as lowered, thus (10) is shorthand for

gij = a−2δikδjl(δkl − hkl). Any repeated lower indices are then summed over. With this convention, the only raised

indices appearing are those raised with the full inverse 3-metric gij .
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2 Lecture 2

2.1 Solving the constraints in synchronous gauge

In synchronous gauge,

Φ = ϕ+ δϕ, N = 1, Ni = 0, gij = a2(δij + hij), hij = −2ψδij + 2χ,ij + 2ω(i,j) + γij (16)

where the perturbations depend on both z and xi. The vector ωi is transverse and γij is transverse-

traceless (i.e., ωi,i = 0, γij,j = 0, γii = 0).

(a) Evaluating the momentum constraint, show that

0 = ḣij,j − ḣ,i − 2ϕ̇δϕ,i (17)

and hence

ψ̇ =
1

2
ϕ̇δϕ, ω̇i = 0. (18)

(b) Using R = 4a−2∂2ψ, show the Hamiltonian constraint is

ḣ =
2σ

a2H
∂2ψ +

ϕ̇

H
δϕ̇− σκ2V ′(ϕ)

H
δϕ, (19)

and then using the solution of the momentum constraint above, that

∂2χ̇ =
σ

a2H
∂2ψ +

ϕ̇

2H
δϕ̇+

(3

2
ϕ̇− σκ2V ′(ϕ)

2H

)
δϕ. (20)

2.2 The holographic stress tensor

Let’s now focus on a domain wall for which σ = +1, staying in synchronous gauge.2 We want to

evaluate the 1-point function for the stress tensor of the dual QFT, in the presence of a nontrivial

background metric which acts as a source. Hamiltonian holographic renormalisation gives

〈T ij 〉g =
(−2
√
g

Πi
j

)
(3)

= κ̄−2
(
Kδij −Ki

j

)
(3)
, (21)

where κ̄2 = 8πGN in AdS units and the subscript (3) indicates selecting the piece with dilatation

weight three. Our task is now to expand this expression to linear order in the perturbations,

enabling us to read off the stress tensor 2-point function in the dual QFT as in the lectures.

(a) Using your results from the previous question, show that

κ̄2δ〈T ij 〉 =
1

2
(ḣδij − ḣij)(3) =

[( 1

a2H
∂2ψ +

ϕ̇

2H
δϕ̇
)
πij −

1

2
γ̇ij + (. . .)δϕ

]
(3)

(22)

The omitted terms proportional to δϕ correspond to the mixed correlator 〈TijO〉 and aren’t

of interest here. The transverse projector πij = δij − ∂i∂j∂−2, which in momentum space

(using now q̄i for the domain-wall momenta) is πij = δij − q̄iq̄j/q̄2.

(b) Recall that the comoving curvature perturbation is

ζ = −ψ − H

ϕ̇
δϕ (23)

2Also known as Fefferman-Graham gauge in the holographic literature.
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and the domain-wall response function Ω̄ is defined as

Π(ζ) = 2a3εζ̇ = Ω̄ζ. (24)

By evaluating ζ̇ directly, and comparing with its expression in terms of the response function,

show that

δϕ̇ =
H

a3ϕ̇
Ω̄ψ + (. . .)δϕ (25)

(c) Show that

κ̄2δ〈T ij 〉 =
[( 1

a2H
∂2ψ +

Ω̄

2a3
ψ
)
πij −

2E

a3
γij + (. . .)δϕ

]
(3)

(26)

and hence, after removing the term proportional to (a2H)−1∂2ψ with a counterterm,

κ̄2δ〈T ij 〉 =
1

2
Ω̄(0)ψ(0)πij − 2Ē(0)γ(0)ij + (. . .)δϕ. (27)

Using this result, one can read off the transverse-traceless and trace pieces of the stress tensor

2-point function:

A(q̄) = −4κ̄−2Ē(0)(q̄), B(q̄) = −1

4
κ̄−2Ω̄(0)(q̄) (28)

where κ̄−2 ∝ N̄2, the square of the number of colours in the dual QFT, and

〈〈Tij(q̄)Tkl(−q̄)〉〉 = A(q̄)Πijkl +B(q̄)πijπkl. (29)

Here, Πijkl = πi(kπl)j − 1
2πijπkl is the transverse-traceless projector.

3 Lecture 3

(a) Integrate the beta function

β(ϕ) = − dϕ

d ln Λ
= −λϕ+ 2πCϕ2, (30)

to find ϕ as a function of the UV cutoff length scale Λ, fixing the constant of integration

such that ϕ→ φΛλ as Λ→ 0.

(b) Show this beta function follows from invariance of the partition function of the deformed

CFT,

Z = 〈e−
∫
ϕΛ−λO〉0, (31)

under changes of Λ. For this, note there are three types of contribution: those from the

explicit factors of Λ−λ, those from the variation of the coupling ϕ = ϕ(Λ), and those from

operator collisions which should be evaluated using the OPE,

O(x1)O(x2) =
α

|x12|2∆
+

C

|x12|∆
O(x1) + . . . , (32)

where the UV dimension of O is ∆ = 3− λ.
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