
Lectures on

The Cosmological Bootstrap
(with Arkani-Hamed, Lee and Pimentel)

Motivation

The physics of the early universe is encoded in the spatial correlations between

cosmological structures at late times:

〈δρ(x1) · · · δρ(xN)〉

〈δT (θ1) · · · δT (θN)〉

?

〈ζ(x1) · · · ζ(xN)〉

What are the rules for consistent correlators?

Which correlations can arise from a consistent history?

Cosmological Bootstrap

⇒ correlators are fixed by consistency requirements alone.



S-matrix Bootstrap

⇒ scattering amplitudes are fixed by Lorentz invariance, locality and unitarity:

A(s, t) =
∑

anms
ntm +

g2

s−M 2
PS

(
1 +

2t

M 2

)

M, S

• No Lagrangian and Feynman diagrams are needed to derive this.

• Basic principles allow only a small menu of possibilities.

Cosmological Collider Physics

⇒ massive particles (up to 1014 GeV) can be created by the rapid expansion

of the inflationary spacetime:

particle
decay

particle
creation

end of inflation

The cosmological bootstrap is a systematic way to study this physics.

Outline for the rest of the lectures:

I. Review of Cosmological Correlations

II. Bootstrapping Inflationary Correlators

III. Summary and Future Directions
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1 Review of Cosmological Correlations

1.1 Observed Correlations

Two important facts:

1.
The CMB is correlated
over superhorizon scales:

hTT i

2.
The initial conditions are
approximately scale-invariant:

P (k) ≡ k3

2π2
〈ζkζ−k〉′ ≈ const.

1.2 Horizon Problem

In the standard Big Bang, we can’t explain the observed correlations:

recombination

singularity

surface of 
last-scattering

The CMB (naively) consists of 104 disconnected regions.

• Why is it so uniform?

• Why is it correlated?
= horizon problem

3



1.3 Inflation

The horizon problem is solved if the early universe went through an extended

period of quasi-de Sitter expansion (= inflation):

H(t) ≡ 1

a

da

dt
≈ const.

ε(t) ≡ − Ḣ

H2
� 1 .

The comoving horizon then becomes

η =

∫
dt

a(t)
≈ − 1

aH
,

which receives large contributions from early times (t→ 0 or η → −∞).

This solves the horizon problem.

1.4 Slow-Roll Inflation

Consider

S =
1

2

∫
d4x
√−g

(
M 2

plR− (∇φ)2 − 2V (φ)
)
.

This supports inflation in regions where the potential is flat
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1.5 Quantum Fluctuations

Inflaton fluctuations satisfy

δ̈φ− 2

η
˙δφ+ k2δφ ≈ 0 .

Write

φ̂k(η) = fk(η) âk + f ∗k (η) â†−k , where [âk, â
†
k′] = (2π)3δD(k + k′) ,

fk(η) =
H√
2k3

(1 + ikη) e−ikη .

We then find 〈0| φ̂kφ̂−k |0〉 = |fk(η)|2

Pφ(k, η) ≡ k3

2π2
|fk(η)|2 kη→0−−−−→

(
H

2π

)2

.

Using ζ = (H/φ̇)δφ, we get

Pζ(k, η) =

(
H

φ̇

)2

Pφ(k, η) ≈ 1

4π2

(
H2

φ̇

)2 ∣∣∣∣
−kη=1

≡ Ask
ns−1 .

Massive fields are also produced during inflation, but don’t survive:

m = 0

m > 3
2H

0 < m < 3
2H

superhorizon

⌘
3
2 ±iµ
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�k(⌘)

⌘
1/k

The imprints of new massive particles can be found in higher-order correlations

of the inflaton.
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1.6 Non-Gaussianity

The main diagnostic of primordial non-Gaussianity is the bispectrum:

〈ζk1
ζk2
ζk3
〉 =

(2π2)2

(k1k2k3)2
B(k1, k2, k3) δD(k1 + k2 + k3) .

amplitude: fNL ≡
5

18

B(k, k, k)

P 2(k)

shape:

local equilateral flattened

Planck

constraints:
f loc

NL < 5 f equil
NL < 40 fflat

NL < 20

Inflationary correlators are computed in the in-in formalism

〈Q̂(η)〉 ≡ 〈in| Q̂(η) |in〉 =

= 〈0|
[
T̄ ei

∫ η
−∞ dη′HI

int(η
′)
]
Q̂I(η)

[
Tei

∫ η
−∞ dη′′HI

int(η
′′)
]
|0〉

= −i
∫ η

−∞
dη′〈0|

[
Q̂I(η), HI

int(η
′)
]
|0〉 + · · ·

where Q̂ ≡ ζ̂k1
ζ̂k2
· · · ζ̂kn.
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Contact Interactions

(∂µφ)4

8Λ4
⇒ ⇔ Lint = − φ̇

4Λ4
˙δφ(∂µδφ)2 + · · · ,

The corresponding bispectrum is

B(k1, k2, k3)

P 2
=

8

k1k2k3

φ̇2

Λ4

Poly[k5]

K2
,

where K ≡ k1 + k2 + k3.

• The signal peaks in the equilateral configuration, k1 = k2 = k3.

• The squeezed limit, limk3→0〈ζk1
ζk2
ζk3
〉, is an analytic function of k3/k1.

Graviton Exchange

The non-Gaussianity in slow-roll inflation comes from graviton exchange:

The corresponding bispectrum is

B(k1, k2, k3)

P 2
=

ε

k1k2k3


∑

n 6=m
knk

2
m +

8

K

∑

n>m

k2
nk

2
m


 +

ns − 1

k1k2k3

∑

n

k3
n .

• The signal is still analytic in the squeezed limit.
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Massive Particles

Non-analyticity in the squeezed limit arises from massive particles:

F =

∼ −g2

∫
dη

η2

dη′

η′2
ei(k1+k2)ηei(k3+k4)η′ G(|k1 + k2|, η, η′) .

↑ ↑
written for conformally

coupled scalars
complicated function
of Hankel functions

Instead of trying to compute the integral, we note that G satisfies

(
η2∂2

η − 2η∂η + k2
Iη

2 +m2
)
G(kI , η, η

′) = −iη2η′2 δ(η − η′) ,

which implies

1

kI

(
k2
I∂

2
kI
− 2kI∂kI − k2

I∂
2
k1+k2

+m2
)

(k2
IF ) = g2kI

E
.

Using

u−1 ≡ k1 + k2

kI

v−1 ≡ k3 + k4

kI

F̂ (u, v) ≡ kIF ,

we can write this as

(
u2(1− u2)∂2

u − 2u3∂u +m2 − 2
)
F̂ = g2 uv

u+ v
.

As we will see, this equation can also be derived from the symmetries of the

boundary theory.
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2 Bootstrapping Inflationary Correlators

2.1 Time Without Time

All cosmological correlations can be traced back to the spacelike boundary of

the inflationary quasi-de Sitter spacetime:

Time dependence in the bulk = momentum dependence on the boundary.

Is there a purely boundary way to derive these correlators?

2.2 De Sitter Space

The metric of de Sitter space is

ds2 =
−dη2 + dx2

(Hη)2
.

In the limit η → 0, these isometries of the metric act as conformal transforma-

tions on R3.

Consider a massive scalar field in de Sitter space:

φ̈− 2

η
φ̇−∇2φ+

m2

H2

φ

η2
= 0 .

At late times, the solution is

φ(η,x) ≈ η∆+O+(x) + η∆−O−(x) ,

where

∆± =
3

2
±
√

9

4
− m2

H2
≡ 3

2
± iµ .
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Define O ≡ O+ (with ∆ ≡ ∆+) and its shadow Õ ≡ O− (with ∆̃ ≡ ∆−).

Correlators of O and Õ are related by

〈Õ(k1)Õ(k2) · · · Õ(kN)〉′ = 〈O(k1)O(k2) · · ·O(kN)〉′
(k1k2 · · · kN)2∆−3

.

The form of the boundary correlators is constrained by conformal symmetry.

2.3 Conformal Field Theory

A conformal transformation leaves the metric invariant up to a scale change:

xi → x̃i ,

gij(x)→ g̃ij(x̃) = Ω2(x)gij(x) .

The elements of the conformal group are:

T: x̃i = ai Ω(x) = 1

R: x̃i = Rijxj Ω(x) = 1

D: x̃i = λxi Ω(x) = λ−1

SCT: x̃i =
xi − bix2

1− 2 b · x+ b2x2
Ω(x) = 1− 2 b · x+ b2x2 .

Acting on scalar primary operators O, we have

O(x)→ Õ(x̃) = Ω(x)∆O(x) ,

where ∆ is the scaling dimension of the operator.

Correlators must then satisfy

〈O1(x̃1) . . . ON(x̃N)〉 = Ω(x1)
∆1 · · ·Ω(xN)∆N 〈O1(x1) . . . ON(xN)〉 .

Two- and three-point functions are uniquely fixed

〈O1O2〉 =
1

x2∆1
12

δ∆1,∆2
,

〈O1O2O3〉 =
c123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
31

,

where On ≡ On(xn) and xnm ≡ |xn − xm|.
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The four-point function of (identical) scalar operators is

〈OOOO〉 =
f(u, v)

x2∆
12 x

2∆
34

, where

u ≡
(
x12x34

x13x24

)2

,

v ≡
(
x23x14

x13x24

)2

.

These constraints can also be expressed as Ward identities:

D : 0 =
N∑

n=1

(
∆n + xjn

∂

∂xjn

)
〈O1 · · ·ON〉 ,

SCT : 0 =
N∑

n=1

(
∆nx

i
n + xinx

j
n

∂

∂xjn
− x2

n

2

∂

∂xn,i

)
〈O1 · · ·ON〉 .

In cosmology, we are interested in these constraints in Fourier space:

D : 0 =
N∑

n=1

(
(∆n − 3)− kjn

∂

∂kjn

)
〈O1 · · ·ON〉′ ,

SCT : 0 =
N∑

n=1

(
(∆n − 3)

∂

∂kn,i
− kjn

∂2

∂kjnkn,i
+
kin
2

∂2

∂kjnkn,j

)
〈O1 · · ·ON〉′ .

In the following, we will study the solutions to these equations.
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2.4 De Sitter Four-Point Functions

spin-raising 
operators

soft limit

weight-shifting
operators

Kinematics

The four-point function of conformally coupled scalars can be written as

〈ϕk1
ϕk2

ϕk3
ϕk4
〉′ =

kI

k1

k2

k4

k3

=
1

kI
F̂ (u, v) ,

where we have introduced

u−1 =
k1 + k2

kI
, v−1 =

k3 + k4

kI
.

This ansatz solves the dilatation Ward identity.

Conformal Symmetry

After some work, the conformal Ward identity can be written as

(∇u −∇v)F̂ = 0 ,

where ∆u ≡ u2(1− u2)∂2
u − 2u3∂u (hypergeometric).
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Contact Interactions

The simplest solutions correspond to contact interactions:

F̂c ≡ =
∑

n

cn(u, v)

E2n+1
,

↑
ϕ4, (∂µϕ)4, · · ·

which have poles at vanishing total energy

E ≡
∑

n

kn =
u+ v

uv
kI .

Note that F
(n)
c = ∆n

uF
(0)
c , where F

(0)
c ≡ uv/(u+ v).

Exchange Interactions

For tree exchange, we try

(∆u +M 2)F̂ = F̂c ,

(∆v +M 2)F̂ = F̂c ,

where F̂c is a contact solution.

Using the simplest contact interaction as a source, we have

[
u2(1− u2)∂2

u − 2u3∂u +M 2
]
F̂ = g2 uv

u+ v
, (?)

where M 2 = µ2 +
1

4
.
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Singularities

The equation has a number of interesting singularities:

• Flat-space limit: lim
u→−v

F̂ = A4 (u+ v) log(u+ v)

The correlator contains

the scattering amplitude.

• Factorization limit: lim
u,v→−1

F̂ = A3 log(1 + u)× A3 log(1 + v)

⇥

• Folded limit: lim
u→+1

F̂ ∝ log(1− u)

k1

k2

k3

k4

This singularity should be absent

in the standard vacuum.

• Collapsed limit: lim
u→0

F̂ ∝ u
1
2+iµ

k1

k2

k3

k4

This non-analyticity corresponds to

spontaneous particle production.

Imposing regularity in the folded limit and the correct normalization in the

factorization limit uniquely fixes the solution.
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EFT Expansion

A formal solution of (?) is

F̂ =
F̂

(0)
c

∆u +M 2
=
∑

n

1

n!

(
−∆u

M 2

)n
F̂

(0)
c

M 2

=
F̂

(0)
c

M 2
− F̂

(1)
c

M 4
+

1

2

F̂
(2)
c

M 6
+ · · ·

↑ ↑ ↑
ϕ4 ϕ2(∂µϕ)2 (∂µϕ)4

This misses particle production!

Particle Production

Consider v → 0. Writing et ≡ u/v ≡ ξ and f ≡ (uv)−1/2F̂ , eq. (?) becomes

[
d2

dt2
+ µ2

]
f =

1

2 cosh(1
2t)

⇐ forced harmonic oscillator.

The homogeneous solutions are f± = e±iµt = ξ±iµ.

Around ξ = 0, the inhomogeneous solution is

f<(ξ) =
√
ξ

∞∑

n=0

(−1)n
ξn

(n+ 1
2)2 + µ2

.

Around ξ =∞, we have

f>(ξ) =
1√
ξ

∞∑

n=0

(−1)n
ξ−n

(n+ 1
2)2 + µ2

.

Matching the solutions at ξ = 1, we find

F̃<(ξ) =





∞∑

n=0

(−1)n
ξn+1

(n+ 1
2)2 + µ2

ξ ≤ 1 ,

∞∑

n=0

(−1)n
ξ−n

(n+ 1
2)2 + µ2

+
π

cosh πµ

ξ
1
2−iµ − ξ 1

2+iµ

2iµ
ξ ≥ 1 .

EFT expansion particle production
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General Solution

The homogeneous solutions are

F̂±(u) =

(
iu

2µ

) 1
2±iµ

2F1

[
1
4 ±

iµ
2 ,

3
4 ±

iµ
2

1± iµ

∣∣∣∣∣u
2

]
.

Around u = 0, the inhomogeneous solution is

F̂<(u, v)
∞∑

m,n=0

cmn(µ)u2m+1(u/v)n .

Around u =∞, we have F>(u, v) = F<(v, u).

Matching at u = v, we find

F̂<(u, v) =





∞∑

m,n=0

cmnu
2m+1(u/v)n u ≤ v ,

∞∑

m,n=0

cmnv
2m+1(v/u)n +

π

cosh πµ
F̂h(u, v) u ≥ v ,

where F̂h(u, v) ≡ F̂+(v)F̂−(u)− F̂−(v)F̂+(u).

The freedom to add homogeneous solutions is fixed by the boundary conditions

lim
u→+1

F̂ = regular

lim
u,v→−1

F̂ =
1

2
log(1 + u) log(1 + v) .

The final result is

F̂ (u, v) =





∞∑

m,n=0

cmnu
2m+1(u/v)n +

π

2 coshπµ
ĝ(u, v) u ≤ v ,

∞∑

m,n=0

cmnv
2m+1(v/u)n +

π

2 coshπµ
ĝ(v, u) u ≥ v ,

where ĝ(u, v) is a known function [arXiv:1811.00024].
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Flat-Space Limit

An interesting limit is u→ −v (or E =
∑
kn → 0).

In this limit, the solution has a branch cut singularity:

0�v�1

The discontinuity across the cut is

lim
u→−v

Disc[F̂ ′]

2πi
=

1

(k1 + k2)2 − (k1 + k2)2
= A4 .

This relates curved-space particle production to flat-space scattering.

Soft Limit and Spectroscopy

The particle production piece dominates in the soft limit u→ 0:

lim
u→0

F̂ = g2 e−πµ
(u
v

)1/2 sin[µ log(u/v)]

µ
.

These oscillations are the analog of resonances in collider physics.

Centre-of-mass energy (GeV)

Cr
os

s s
ec

tio
n 

(n
b)

Fo
ur

-p
oi

nt
 fu

nc
tio

n

Momentum ratio

EFT
EFT

particle 
production

resonance
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2.5 Exchange of Spinning Particles

Strategy

Find differential operators that relate scalar exchange to spin exchange:

It turns out that this is best implemented in embedding space and then Fourier

transformed.

CFT in Embedding Space

Consider d+ 2 dimensional Minkowski space, with coordinates

XM , M = −1, 0, 1, . . . , d .

X± ≡ X0 ±X−1

The embedding of Rd into R1,d+1 is defined by

• X2 = 0 (null cone)

• X+ = 1 (Euclidean section)
⇒ XM = (X+, X−, X i) = (1, x2, xi)
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Lorentz transformations on R1,d+1 become conformal transformations on Rd:

• XM → ΛM
NX

N

• XM → λXM
⇒ gij → g̃ij = Ω2(x)gij, with Ω(x) = λ(X).

Conformal transformations of fields on Rd are scaling transformations on R1,d+1:

O(λX) = λ−∆O(X) ⇔ O(x̃) = Ω(x)∆O(x) .

Conformal correlators in embedding space are simply the most general Lorentz-

invariant expressions with the correct scaling behavior.

Examples

• Two- and three-point functions of scalar operators:

〈O1O2〉 =
1

X∆1
12

δ∆1,∆2
,

〈O1O2O3〉 =
c123

X
(∆1+∆2−∆3)/2
12 X

(∆2+∆3−∆1)/2
23 X

(∆3+∆1−∆2)/2
31

,

where Xnm ≡ Xn ·Xm = −1
2x

2
nm.

• Four-point function of identical scalars:

〈OOOO〉 =
1

X∆
12X

∆
34

f(u, v) , where
u ≡ X12X34

X13X24
,

v ≡ u(2↔ 4) .
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Fields with Spin

OM1M2...(X) ⇒ Oi1i2...(x) = OM1M2...(X)
∂XM1

∂xi1
∂XM2

∂xi2
· · · .

↑
∂XM

∂xi
= (0, 2xi, δ

j
i )Extra components are removed by

• XMOM ···(X) = 0 (transversality)

• OM ··· +XM(· · · ) ∼ OM ··· (“gauge invariance”)

Lorentz transformations on R1,d+1 become conformal transformations on Rd.

Examples

• Two-point function of spin-S fields

〈Σ(S)
1 Σ

(S)
2 〉 =

(
Z1 · Z2 −

Z1 ·X2 Z2 ·X1

X12

)S
〈Σ1Σ2〉 ,

where Σ
(S)
n ≡ ZM1

n · · ·ZMS
n ΣM1...MS

(Xn).

• Scalar-scalar-spin-S three-point function

〈O1O2Σ
(S)
3 〉 =

(
(Z3 ·X1)(X2 ·X3)− (Z3 ·X2)(X1 ·X3)

(X12X13X23)1/2

)S
〈O1O2Σ3〉 .

Spin-Raising Operator

Consider

〈ϕϕΣ〉 = (X4−∆
12 X∆

23X
∆
31)
−1/2 ,

〈ϕϕ̃Σ〉 = (X3−∆
12 X∆−1

23 X∆+1
31 )−1/2 =

(
X12X23

X31

)1/2

〈ϕϕΣ〉 ,

〈ϕϕ̃Σ(1)〉 =
(Z3 ·X1)(X2 ·X3)− (Z3 ·X2)(X1 ·X3)

(X12X23X31)1/2
〈ϕϕ̃Σ〉 .
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Ex: Show that

〈ϕϕ̃Σ(1)〉 = − 2

∆
S32 〈ϕϕΣ〉 ,

where S32 = (X3 ·X2)Z3 ·
∂

∂X3
− (Z3 ·X2)X3 ·

∂

∂X3
.

We see that S32 raises the spin at 3 and lowers the weight at 2.

In Fourier space, we get

S32 = zi3

[
K i

32 +
1

2
ki3K

j
32K

j
32

]
, Ki

32 ≡ ∂ki3 − ∂ki2 .

Finally, we preform a shadow transform to get

〈ϕϕΣi〉 = k2〈ϕϕ̃Σi〉 = k2S i32 〈ϕϕΣ〉 ≡ S iL〈ϕϕΣ〉 .

Repeated application of S iL would raise the spin further.

Raising Internal Spin

Using the spin-raising operator, we can write

F̂S =
S∑

λ=0

P
(λ)
i1...iSj1...jS

(S i1L · · · S iSL )(Sj1R · · · SjSR ) F̂0 .

↑ ↑ ↑ ↑
spin-S exchange

polarization
tensor

spin raising spin-0 exchange

Writing this in terms of u and v, we get

F̂S =
S∑

λ=0

ΠS,λ(angles)D(S,λ)
uv F̂0 .

For spin-1 and spin-2 exchange, we find

F̂1 = (Π1,1Duv + Π1,0 ∆u) F̂0 ,

F̂2 =
(
Π2,2D

2
uv + Π2,1Duv(∆u − 2) + Π2,0 ∆u(∆u − 2)

)
F̂0 ,

where Duv ≡ (uv)2∂u∂v.
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Soft Limit and Spectroscopy

In the collapsed limit u→ 0, this gives

lim
u→0

F̂S =
kI

✓0✓k k0

∝
(
k2
I

kk′

)∆∑

λ

IS,λ(∆)P λ
S (cos θ)P−λS (cos θ′) .

↑
fixed by

conformal symmetry

The spin of the new particles is encoded in the angular dependence:

0 90 180 270 360

0

1

✓

✓ [�]

Fo
ur

-p
oi

nt
 fu

nc
tio

n

This is the analog of the angular dependence of the final state particles in

collider physics.

22



2.6 Inflationary Three-Point Functions

Strategy

Find a differential operator that relates the four-point function of conformally

coupled scalars to that of massless scalars:

W
' ' ' '���� ��

Evaluate one leg on the time-dependent background to obtain inflationary

three-point functions.

Massless External Fields

Recall that

〈ϕϕϕϕ〉 =
1

X2
12X

2
34

f(u, v) ,

〈φφφφ〉 =
1

X3
12X

3
34

h(u, v) .

Ex: Show that

〈φφφφ〉 =WLWR〈ϕϕϕϕ〉 ,

where WL ≡
(

∂

∂X1,M
+
XM

1

3

∂2

X2
1

)(
∂

∂XM
2

+
X2,M

3

∂2

X2
2

)
weight-raising

operator
↑

2∆− 1

For scalar exchange, we find

F∆=3 =WLWRF̂∆=2 ,

where WL(·) ≡ 1

2

(
1− k1k2

k1 + k2
∂k1+k2

)[
1− u2

u2
∂u(u ·)

]
.

For spin exchange, WL,R is more complicated (in Fourier space).
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Perturbed de Sitter

The inflationary bispectrum is

B = lim
k4→0

F∆=3−ε + perms ,

where

F∆=3−ε =WLWR F∆=2−ε

=WL

(
W̄R + ε δWR + · · ·

)
(F∆=2 + ε F∆=2 + · · · )

↑ ↑
0 1 for k4 → 0.

We hence find

B(k1, k2, k3) = εWL lim
v→1

F∆=2 + perms . (?)

For spin exchange, only the longitudinal mode contributes:

F S
∆=2 → ΠS,0D(S,0)

uv F̂ S=0
∆=2 .

Contact Interactions

For the simplest contact solution, we have

lim
v→1

F̂ (0)
c =

u

u+ 1
.

Substituting this into (?), we get

B(k1, k2, k3) =
ε

4K2

[∑

n

k5
n +

∑

n 6=m
(2k4

nkm − 3k3
nk

2
m)

+
∑

n 6=m6=l
(k3
nkmkl − 4k2

nk
2
mkl)

]
,

which (up to a shadow transform) is the bispectrum arising from (∂µφ)4.
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Graviton Exchange

For massless spin-2 exchange, we have

lim
v→1

∆u(∆u − 2)F̂∆=2 = lim
v→1

∆uF̂
(−1)
c = lim

v→1
F̂ (0)
c

=
u

u+ 1
.

Substituting this into (?), we get

B(k1, k2, k3) = ε


∑

n 6=m
knk

2
m +

8

K

∑

n>m

k2
nk

2
m


+ (ns − 1)

∑

n

k3
n ,

which (up to a shadow transform) is the standard three-point function of slow-

roll inflation.

Massive Particles

The effects of massive particles during inflation are characterized in terms of

just two basis functions:

This result is valid for all momenta, not just soft limits.
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3 Future Directions

3.1 Amplitudes Meet Cosmology

Remarkably, correlation functions contain scattering amplitudes:

=lim
E!0

1

Ep ⇥

p1

p2

k2k1

where E ≡∑ |kn|.

Insights from the physics of scattering amplitudes should therefore translate

to cosmology.

3.2 Spinning Correlators

Spinning correlators can also be bootstrapped from our scalar building blocks:

X

n

D(n)
L D(n)

R

3.3 Graviton Correlators

An important special case are graviton correlators:

�ij

?

In de Sitter space, very little is known beyond three-point functions.

In flat space, a consistent S-matrix of gravitons is very constrained.

What is the cosmological analog of these results?
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3.4 Factorization

For massless spin exchange, we find

Does consistent factorization allow for an efficient construction of graviton

correlators?

3.5 Double Copy

Gravity amplitudes can be written as the square of gauge theory amplitudes:

Gravity = YM2

Is there an analog of this for cosmological correlators?

3.6 Loop Corrections

How does the bootstrapping of de Sitter correlators generalize to loops?

One-loop amplitudes can be written as

Is there a cosmological analog of this?

3.7 Ultraviolet Completion

What is the space of consistent UV completions of inflationary correlators?
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• What is the cosmological analog of positivity bounds?

• What is the Veneziano correlator in de Sitter space?
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