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Motivation

The physics of the early universe is encoded in the spatial correlations between

cosmological structures at late times:

10 billion yrs

380,000 yrs

10-34 sec
?

A central challenge of modern cosmology is to construct a consistent history

of the universe that explains these correlations.

In these lectures, I will describe a new approach to determine cosmological

correlation functions from consistency conditions alone = bootstrap.



We will take inspiration from the S-matrix bootstrap, where the structure

of scattering amplitudes is fixed by Lorentz invariance, locality and unitarity:

A(s, t) =
∑

anms
ntm +

g2

s−M 2
PS

(
1 +

2t

M 2

)

• No Lagrangian and Feynman diagrams are needed to derive this.

• Basic principles allow only a small menu of possibilities.

Can we obtain a similar understanding of cosmological correlators?

The connection to scattering amplitudes is also relevant because the early uni-

verse was like a giant particle collider = cosmological collider physics

particle
decay

particle
creation

end of inflation

The cosmological bootstrap is a systematic way to study this physics.

Outline for the rest of the lectures:

I. Review of Cosmological Correlations

II. Bootstrapping Inflationary Correlators

III. Summary and Future Directions
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1 Review of Cosmological Correlations

1.1 Observed Correlations

Observations have revealed two important facts:

• The CMB fluctuations are correlated over superhorizon scales:

hTT i

superhorizon

They were created before the hot Big Bang!

• The primordial fluctuations were approximately scale invariant:

hTT i

In Fourier space, this means

〈ζk1
ζk2
〉 =

2π2

k3
1

P (k1) δD(k1 + k2) , with P (k1) ≈ const ,

where ∇2ζ = R(3) is the comoving curvature perturbation.

Quantum fluctuations during inflation explain these facts.
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1.2 Horizon Problem

In the standard Big Bang, light travels a finite distance before recombination:

recombination

singularity

surface of 
last-scattering

The CMB (naively) consists of 104 disconnected regions.

• Why is it so uniform?

• Why is it correlated?
= horizon problem

Related to the horizon problem are the flatness problem, the monopole prob-

lem, the entropy problem, etc.

1.3 Inflation

All of these problems are solved if the early universe went through an extended

period of quasi-de Sitter expansion:

H ≡ 1

a

da

dt
≈ const. (1.1)

The comoving horizon then becomes

η =

∫
dt

a(t)
≈ − 1

aH
, (1.2)

which receives large contributions from early times.
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1.4 Quantum Fluctuations

Consider a massless scalar field during inflation:

S =
1

2

∫
dηd3x a2

(
φ̇2 − (∂iφ)2

)
, (1.3)

where a(η) = −(Hη)−1.

Write the corresponding quantum operator as

φ̂k(η) = φk(η)âk + c.c. where [âk, â
†
k′] = (2π)3δD(k + k′) ,

a(η)φk(η) =
1√
2k

(
1− i

kη

)
e−ikη .

(1.4)

Bunch-Davies mode function

The quantum variance of the operator is 〈0| φ̂kφ̂−k |0〉 = |φk(η)|2
and the corresponding power spectrum is

Pφ(k, η) ≡ k3

2π2
|φk(η)|2 kη→0−−−−→

(
H

2π

)2

. (1.5)

If φ is the inflaton, then ζ = (H/φ̇)δφ, and we get

Pζ(k, η) =

(
H

φ̇

)2

Pφ(k, η)
kη→−1−−−−−→ 1

4π2

(
H2

φ̇

)2 ∣∣∣∣
−kη=1

≡ Ask
ns−1 . (1.6)

Massive fields are also produced, but don’t survive until late times:

m = 0

m > 3
2H

0 < m < 3
2H

superhorizon

⌘
3
2 ±iµ

<latexit sha1_base64="dfSSEodHdvawRG+4WSHLrBoo8E8="></latexit>

�k(⌘)

⌘
1/k

Their imprints can still be found in the correlations of the light fields.
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1.5 Non-Gaussianity

So far, we have only measured the two-point function of scalar fluctuations.

In the future, we will look for higher-point correlations (= non-Gaussianity).

1.5.1 Bispectrum

The main diagnostic of primordial non-Gaussianity is the bispectrum:

〈ζk1
ζk2
ζk3
〉 =

(2π2)2

(k1k2k3)2
B(k1, k2, k3) δD(k1 + k2 + k3) . (1.7)

The amplitude of the bispectrum is defined as

fNL ≡
5

18

B(k, k, k)

P 2(k)
. (1.8)

Observational constraints on fNL depend on the momentum dependence (or

‘shape’) of the bispectrum.

1.5.2 In-In Formalism

particle physics vs. cosmology

The in-in master formula is:

〈Q̂(η)〉 ≡ 〈in| Q̂(η) |in〉

= 〈0|
[
T̄ ei

∫ η
−∞ dη′HI

int(η
′)
]
Q̂I(η)

[
Tei

∫ η
−∞ dη′′HI

int(η
′′)
]
|0〉

= −i
∫ η

−∞
dη′〈0|

[
Q̂I(η), HI

int(η
′)
]
|0〉 + · · · (1.9)

tree level loops

where Q̂ ≡ ζ̂k1
ζ̂k2
· · · ζ̂kn.
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1.6 Examples

1.6.1 Contact Interactions

Consider higher-derivative interactions during inflation.

For example:

(∂µφ)4

8Λ4
⇒ ⇔ Lint = − φ̇

4Λ4
π̇(∂µπ)2 + · · · ,

where π(x) ≡ φ(x)− φ̄(η).

Ex: Show that corresponding bispectrum is of the form

B(k1, k2, k3)

P 2
=

8

k1k2k3

φ̇2

Λ4

Poly[k5]

K2
, (1.10)

where K ≡ k1 + k2 + k3.

Note that:

• The signal peaks in the equilateral configuration, k1 = k2 = k3.

• The squeezed limit, limk3→0〈ζk1
ζk2
ζk3
〉, is an analytic function of k3/k1.

Solution.—Feeding Hint = −Lint into the in-in master formula, we find

B

P 2
= − 4i

k1k2k3

φ̇2

Λ4

0∫

−∞

dη
(
−k2

1k
2
2k

2
3 η

2 − (k1 · k2)k2
3(1− ik1η)(1− ik2η)

)
eiKη

+ perms.+ c.c. , (1.11)

↑ ↑
π̇3 π̇(∂iπ)2

where we have used the Bunch-Davies mode function. Evaluating the integral, we get

B

P 2
=

8

k1k2k3

φ̇2

Λ4

1

K2

(∑

n

k5
n +

∑

n6=m

(2k4
nkm− 3k3

nk
2
m) +

∑

n6=m 6=l

(k3
nkmkl− 4k2

nk
2
mkl)

)
, (1.12)

which is of the form shown in (1.10).
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1.6.2 Graviton Exchange

A universal amount of non-Gaussianity in slow-roll inflation comes from gravi-

ton exchange:

This was computed by Maldacena in 2002. The result is

B(k1, k2, k3)

P 2
=

ε

k1k2k3


∑

n 6=m
knk

2
m +

8

K

∑

n>m

k2
nk

2
m


+

ns − 1

k1k2k3

∑

n

k3
n , (1.13)

where ε = −Ḣ/H2. Note that the signal is still analytic in the squeezed limit.

1.6.3 Massive Particles

Non-analyticity in the squeezed limit arises from massive particles:

F =

∼ −g2

∫
dη

η2

dη′

η′2
ei(k1+k2)ηei(k3+k4)η′ G(|k1 + k2|, η, η′) . (1.14)

↑ ↑
written for conformally

coupled scalars
complicated function
of Hankel functions

Instead of trying to compute the integral, we note that G satisfies

(
η2∂2

η − 2η∂η + k2
Iη

2 +m2
)
G(kI , η, η

′) = −iη2η′2 δ(η − η′) . (1.15)

Since k3
IG depends only on kIη and kIη

′, we can trade η-derivatives for kI-

derivatives. This gives

1

kI

(
k2
I∂

2
kI
− 2kI∂kI − k2

I∂
2
k1+k2

+m2 − 2
)

(k2
IF ) = g2kI

E
. (1.16)
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It is useful to write this as

(
u2(1− u2)∂2

u − 2u3∂u +m2 − 2
)
F̂ = g2 uv

u+ v
, (1.17)

where F̂ (u, v) ≡ kIF , with u−1 ≡ (k1 + k2)/kI and v−1 ≡ (k3 + k4)/kI .

Permutation symmetry implies a second equation with u↔ v.

In the next section, I will first show that this differential equation for F can

be derived without refering to the bulk, and then present its solutions.
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2 Bootstrapping Inflationary Correlators

2.1 Time Without Time

All cosmological correlations can be traced back to the spacelike boundary of

the inflationary quasi-de Sitter spacetime:

The time dependence of bulk interactions is encoded in the momentum depen-

dence of these boundary correlators.

Is there a purely boundary way to derive these correlators?

2.2 De Sitter Space

The metric of de Sitter space (in conformal coordinates) is

ds2 =
−dη2 + dx2

(Hη)2
. (2.1)

Besides ordinary spatial rotations and translations, the metric is invariant un-

der spacetime dilatations and special conformal transformations:

D:
η → λη

x→ λx
(2.2)

SCT:

η → η

1 + 2(b · x) + b2(x2 − η2)

x→ x + (x2 − η2)b

1 + 2(b · x) + b2(x2 − η2)

(2.3)

In the limit η → 0, these symmetries act as conformal transformations on R3.
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Consider a massive scalar field in de Sitter space:

φ′′ − 2

η
φ′ −∇2φ+

m2

H2

φ

η2
= 0 . (2.4)

At late times, the solution is

φ(η,x) ≈ C+η
∆+O+(x) + C−η

∆−O−(x) , (2.5)

where

∆± =
3

2
±
√

9

4
− m2

H2︸ ︷︷ ︸
iµ

. (2.6)

In the limit η → 0, the second part of the solution dominates.

Bunch-Davies mode functions.— For general m, the solution of (2.4), with Bunch-Davies

initial conditions, is

φk(η) =
H

k3/2
×
√
π

2
e−

π
2
µ+iπ

4 (−kη)3/2H
(1)
iµ (−kη) , (2.7)

where H
(1)
iµ is a Hankel function of the first kind.

Two important special cases are

m2 = 0 : φk(η) =
H√
2k3

(
1 + ikη

)
e−ikη , (2.8)

m2 = 2H2 : φk(η) =
H√
2k3

ikη e−ikη . (2.9)

The case of conformally coupled scalars (m2 = 2H2) is particular useful for analytic com-

putations. It will play an important role in these lectures.

We define the operator O ≡ O+ (with ∆ ≡ ∆+) and its shadow Õ ≡ O− (with

∆̃ ≡ ∆− = 3−∆). Correlators of O and Õ are related by

〈Õ(k1)Õ(k2) · · · Õ(kN)〉′ = 〈O(k1)O(k2) · · ·O(kN)〉′
(k1k2 · · · kN)2∆−3

. (2.10)

The form of the boundary correlators is constrained by conformal symmetry.
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2.3 Conformal Field Theory

Consider Rd, with ds2 = gijdx
idxj.

A conformal transformation is a coordinate transformation xi → x̃i that leaves

the metric invariant up to a scale change,

gij(x)→ g̃ij(x̃) = Ω2(x)gij(x) . (2.11)

For d > 2, the infinitesimal transformation xi → xi + εi(x) is a conformal

transformation if

εi(x) = ai + rijxj + αxi + x2bi − 2(b · x)xi , (2.12)

T R D SCT

where rij = −rji.

Derivation.—The metric transforms as

gij → g̃ij =
dxa

dx̃i
dxa

dx̃j
gab = (δai − ∂iεa)(δbj − ∂jεb)gab

= gij − (∂iεj + ∂jεi) .

For a conformal transformation, we require ∂iεj + ∂jεi to be proportional to the metric,

∂iεj + ∂jεi = f(x) gij . (?)

The factor f(x) is found by taking the trace on both sides:

f(x) =
2

d
∂ · ε .

Acting with ∂k on (?), permuting the indices and taking a linear combination, we find

2∂i∂jεk = (−gij∂k + gki∂j + gjk∂i)f . (??)

Contracting with gij, this becomes

2�εi = (2− d)∂if .

Applying ∂j to this expression, and using (?), we find

gij�f = (2− d)∂i∂jf .

Contracting this with gij, we obtain (d−1)�f = 0, so that the previous expression becomes

∂i∂jf = 0 .
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The function f(x) is therefore at most linear in x. Substituting f(x) = A+Bix
i into (??),

we see that ∂i∂jεk is constant, which means that εi is at most quadratic in x:

εi = ai + bijx
j + cijkx

jxk .

Since the constraints (?) and (??) hold for all x, we can treat each power of the transfor-

mation separately. Substituing the linear term into (?), we find

bij = α gij + rij ,

where rij = −rji. Similarly, substituting the quadratic term into (??), we get

cijk = gijbk + gikbj − gjkbi , bi ≡
1

d
glmclmi .

The special conformal transformation then takes the form

εi = cijkx
jxk

= (gijbk + gikbj − gjkbi)xjxk

= 2(b · x)xi − x2bi ,

which establishes the result (2.12).

The corresponding finite transformations are

T: x̃i = ai Ω(x) = 1 (2.13)

R: x̃i = Rijxj Ω(x) = 1 (2.14)

D: x̃i = λxi Ω(x) = λ−1 (2.15)

SCT: x̃i =
xi − bix2

1− 2 b · x+ b2x2
Ω(x) = 1− 2 b · x+ b2x2 . (2.16)

The special conformal transformation can also be written as

x̃i

x̃2
=
xi

x2
− bi , (2.17)

i.e. it can be thought of as an translation, preceded and followed by an inversion.

The distance between two points transforms as

|xn − xm| → |x̃n − x̃m| =
|xn − xm|
(ΩnΩm)1/2

, (2.18)

where Ωn = Ω(xn).
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Next, consider

〈O(x1) · · ·O(xN)〉 =
1

Z

∫
[dO]O(x1) · · ·O(xN) exp(−S[O]) . (2.19)

We wish to understand how these correlators are constrained by conformal

symmetry.

Acting on scalar primary operators O, a conformal transformation implies

O(x)→ Õ(x̃) = Ω(x)∆O(x) , (2.20)

where ∆ is the scaling dimension of the operator.

The above correlators must then satisfy

〈O1(x̃1) . . . ON(x̃N)〉 = Ω(x1)
∆1 · · ·Ω(xN)∆N 〈O1(x1) . . . ON(xN)〉 . (2.21)

Derivation.—To verify the stated identity, we write

〈O1(x̃1) · · ·ON(x̃N)〉 =
1

Z

∫
[dO]O1(x̃1) · · ·ON(x̃N) exp(−S[O])

=
1

Z

∫
[dÕ] Õ1(x̃1) · · · ÕN(x̃N) exp(−S[Õ])

=
1

Z

∫
[dO] Ω(x1)−∆1O1(x̃1) · · ·Ω(xN)−∆NON(x̃N) exp(−S[O])

= Ω(x1)−∆1 · · ·Ω(xN)−∆N 〈O1(x1) . . . ON(xN)〉 ,

where we have assumed that both the action S and the integral measure [dO] are invariant

under the transformation.

Ex: Show that (2.21) implies

〈O1O2〉 =
1

x2∆1
12

δ∆1,∆2
, (2.22)

〈O1O2O3〉 =
c123

x∆t−2∆3
12 x∆t−2∆1

23 x∆t−2∆2
31

, (2.23)

where On ≡ On(xn), xnm ≡ |xn − xm| and ∆t ≡
∑

∆n.
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Solution.—Specializing to dilatations, the identity (2.21) implies

〈O1(λx1)O2(λx2)〉 = λ−∆1λ−∆2〈O1(x1)O2(x2)〉 .

Invariance under rotations and translations implies that the two-point function can only

be a function of |x1 − x2|, i.e.

〈O1(x1)O2(x2)〉 = f(|x1 − x2|) ,

with f(λx) = λ−∆1−∆2f(x), and hence

〈O1(x1)O2(x2)〉 =
c12

|x1 − x2|∆1+∆2
,

where c12 is a constant coefficient, which can be set to c12 ≡ 1 by a constant rescaling of

the operators. For a SCT, the constraint (2.21) implies

1

|x̃1 − x̃2|∆1+∆2
=

(Ω1Ω2)(∆1+∆2)/2

|x1 − x2|∆1+∆2
=

Ω∆1
1 Ω∆2

2

|x1 − x2|∆1+∆2
,

where we have used (2.18) in the first equality. We see that this is only satisfied if ∆1 = ∆2,

which proves (2.22).

Solution.—Invariance under rotations, translations, and dilatations force the three-point

function to have the form

〈O1O2O3〉 =
c

(abc)
123

xa12x
b
23x

c
31

,

where xnm ≡ |xn − xm| and

a+ b+ c = ∆1 + ∆2 + ∆3 ≡ ∆t .

Invariance under SCTs demands

a = ∆1 + ∆2 −∆3 = ∆t − 2∆3 ,

b = ∆2 + ∆3 −∆1 = ∆t − 2∆1 ,

c = ∆3 + ∆1 −∆2 = ∆t − 2∆2 ,

which leads to (2.23).

The four-point function of scalar operators is

〈O1O2O3O4〉 = f(u, v)
4∏

n<m

x∆t/3−∆n−∆m
nm , (2.24)
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where we have introduced the conformally invariant cross-ratios

u ≡
(
x12x34

x13x24

)2

, v ≡
(
x12x34

x23x14

)2

. (2.25)

Comment.—The reason that there are two cross-ratios can be understood as follows:

• Using SCTs, we can move x4 to infinity.

• Using T , we can move x1 to zero.

• Using R and D, we can move x3 to (1, 0, . . . , 0).

• Using R, with x3 fixed, we can move x2 to (x, y, 0, . . . , 0).

This leaves two undetermined quantities x and y, giving two independent conformal in-

variants:

u = zz̄ , v = (1− z)(1− z̄) ,

where z ≡ x+ iy.

The above constraints can also be expressed as Ward identities.

Consider xi → x̃i = xi + εi(x) and define δO(x) ≡ Õ(x)−O(x).

For a dilatation, we get

δO(x) = Õ(x)−O(x)

= Õ(x̃− ε)−O(x)

= (1 + α)−∆O(x)− αxj∂jO(x)−O(x)

= −α
[
∆ + xj∂j

]
O(x)

≡ αDO(x) . (2.26)

Similarly, for a special conformal transformation, we find

δO(x) = Õ(x)−O(x)

= Õ(x̃− ε)−O(x)

= (1− 2 b · x)−∆O(x)− (x2bj − 2(b · x)xj)∂jO(x)−O(x)

= bi
[
2∆xi + 2xix

j∂j − x2∂i
]
O(x)

≡ biKiO(x) . (2.27)

The invariance of the correlators then implies

N∑

n=1

〈O1 · · · δOn · · ·ON〉 = 0 , (2.28)
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or, explicitly,

D : 0 =
N∑

n=1

(
∆n + xjn

∂

∂xjn

)
〈O1 · · ·ON〉 , (2.29)

SCT : 0 =
N∑

n=1

(
∆nx

i
n + xinx

j
n

∂

∂xjn
− x2

n

2

∂

∂xn,i

)
〈O1 · · ·ON〉 . (2.30)

Ex: Show that (2.22) and (2.23) are solutions of these Ward identities.

In cosmology, we are interested in these constraints in Fourier space:

D : 0 =
N∑

n=1

(
(∆n − 3)− kjn

∂

∂kjn

)
〈O1 · · ·ON〉′ , (2.31)

SCT : 0 =
N∑

n=1

(
(∆n − 3)

∂

∂kin
− kjn

∂2

∂kjnkin
+
kin
2

∂2

∂kjnkin

)
〈O1 · · ·ON〉′ . (2.32)

In the following, we will study the solutions to these equations.
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2.4 De Sitter Four-Point Functions

2.4.1 A Road Map

The fundamental object will be the four-point function of conformally coupled

scalars, F = 〈ϕϕϕϕ〉, mediated by the exchange of a massive scalar.

Everything else can be derive from this building block:

spin-raising 
operators

soft limit

weight-shifting
operators

2.4.2 Kinematics

The four-point function of conformally coupled scalars can be written as

〈ϕk1
ϕk2

ϕk3
ϕk4
〉′ =

kI

k1

k2

k4

k3

=
1

kI
F̂ (u, v) , (2.33)

where we have introduced the dimensionless variables

u−1 =
k1 + k2

kI
, v−1 =

k3 + k4

kI
. (2.34)

Ex: Show that this ansatz solves the dilatation Ward identity (2.31).

2.4.3 Conformal Ward Identities

After some work, the conformal Ward identity (2.32) can be written as

(∇u −∇v)F̂ = 0 , (2.35)

where ∆u ≡ u2(1− u2)∂2
u − 2u3∂u (hypergeometric).
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2.4.4 Contact Interactions

The simplest solutions to (2.40) correspond to contact interactions:

F̂c ≡ =
∑

n

cn(u, v)

E2n+1
, (2.36)

↑
ϕ4, (∂µϕ)4, · · ·

which have poles at vanishing total energy

E ≡
∑

n

kn =
u+ v

uv
kI . (2.37)

Note that F
(n)
c = ∆n

uF
(0)
c , where F

(0)
c ≡ uv/(u+ v).

2.4.5 Exchange Interactions

For tree exchange, we try

(∆u +M 2)F̂ = F̂c , (2.38)

(∆v +M 2)F̂ = F̂c , (2.39)

where F̂c is a contact solution.

Ex: Show that F̂c must satisfy (∇u −∇v)F̂c = 0.

Solution.—Consider ∇v (2.38) − ∇u (2.39). This leads to

0 = (∇v −∇u)F̂c ,

which is the claimed result.

Using the simplest contact interaction as a source, we have

[
u2(1− u2)∂2

u − 2u3∂u +M 2
]
F̂ = g2 uv

u+ v
, (2.40)

which is the same as (1.17) if M 2 ≡ m2 − 2 = µ2 +
1

4
.

Let’s study this!
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2.4.6 Singularities

The equation has a number of interesting singularities:

• Flat-space limit: lim
u→−v

F̂ = A4 (u+ v) log(u+ v)

The correlator contains

the scattering amplitude.

• Factorization limit: lim
u,v→−1

F̂ = A3 log(1 + u)× A3 log(1 + v)

⇥

• Folded limit: lim
u→+1

F̂ ∝ log(1− u)

k1

k2

k3

k4

This singularity should be absent

in the standard vacuum.

• Collapsed limit: lim
u→0

F̂ ∝ u
1
2+iµ

k1

k2

k3

k4

This non-analyticity corresponds to

spontaneous particle production.

Imposing regularity in the folded limit and the correct normalization in the

factorization limit uniquely fixes the solution.
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2.4.7 EFT Expansion

A formal solution of (2.40) is

F̂ =
F̂

(0)
c

∆u +M 2
=
∑

n

1

n!

(
∆u

M 2

)n
F̂

(0)
c

M 2
(2.41)

=
F̂

(0)
c

M 2
+

F̂
(1)
c

M 4
+

1

2

F̂
(2)
c

M 6
+ · · · (2.42)

↑ ↑ ↑
ϕ4 ϕ2(∂µϕ)2 (∂µϕ)4

However, this EFT expansion misses the important physics of particle produc-

tion in the expanding spacetime.

2.4.8 Particle Production

Consider first the limit v → 0, where the source is small.

Writing et ≡ u/v ≡ ξ and f ≡ (uv)−1/2F̂ , equation (2.40) becomes

[
d2

dt2
+ µ2

]
f =

1

2 cosh(1
2t)

, (2.43)

which is the equation of a forced harmonic oscillator.

The homogeneous solutions are

f± = e±iµt = ξ±iµ . (2.44)

Around ξ = 0, the inhomogeneous solution is

f<(ξ) =
√
ξ
∞∑

n=0

(−1)n
ξn

(n+ 1
2)2 + µ2

, (2.45)

which is convergent for ξ ≤ 1 and divergent for ξ > 1.

Around ξ =∞, we have

f>(ξ) =
1√
ξ

∞∑

n=0

(−1)n
ξ−n

(n+ 1
2)2 + µ2

, (2.46)

which is convergent for ξ ≥ 1 and divergent for ξ < 1.
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Matching the solutions at ξ = 1, we find

F̃<(ξ) =





∞∑

n=0

(−1)n
ξn+1

(n+ 1
2)2 + µ2

ξ ≤ 1 ,

∞∑

n=0

(−1)n
ξ−n

(n+ 1
2)2 + µ2

+
π

cosh πµ

ξ
1
2−iµ − ξ 1

2+iµ

2iµ
ξ ≥ 1 .

(2.47)

EFT expansion non-perturbative correction

The general solution is derived in a similar way.

The homogeneous solutions are

F̂±(u) =

(
iu

2µ

) 1
2±iµ

2F1

[
1
4 ±

iµ
2 ,

3
4 ±

iµ
2

1± iµ

∣∣∣∣∣u
2

]
. (2.48)

Around u = 0, the inhomogeneous solution is

F̂<(u, v)
∞∑

m,n=0

cmn(µ)u2m+1(u/v)n , (2.49)

where cmn(µ) are known coefficients [arXiv:1811.00024].

Around u =∞, we have

F>(u, v) = F<(v, u) . (2.50)

Matching at u = v, we find

F̂<(u, v) =





∞∑

m,n=0

cmnu
2m+1(u/v)n u ≤ v ,

∞∑

m,n=0

cmnv
2m+1(v/u)n +

π

cosh πµ
F̂h(u, v) u ≥ v ,

(2.51)

where F̂h(u, v) ≡ F̂+(v)F̂−(u)− F̂−(v)F̂+(u).

We still have the freedom to add homogeneous solutions. In fact, we must add

them to satisfy the boundary conditions

lim
u→+1

F̂ = regular (2.52)

lim
u,v→−1

F̂ =
1

2
log(1 + u) log(1 + v) . (2.53)
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The final result is

F̂ (u, v) =





∞∑

m,n=0

cmnu
2m+1(u/v)n +

π

2 coshπµ
ĝ(u, v) u ≤ v ,

∞∑

m,n=0

cmnv
2m+1(v/u)n +

π

2 coshπµ
ĝ(v, u) u ≥ v ,

(2.54)

where ĝ(u, v) is a known function [arXiv:1811.00024].

2.4.9 Flat-Space Limit

An interesting limit is u→ −v (or E =
∑
kn → 0).

In this limit, the solution has a branch cut singularity:

0�v�1

The discontinuity across the cut is

lim
u→−v

Disc[F̂ ′]

2πi
=

1

(k1 + k2)2 − (k1 + k2)2
= A4 . (2.55)

This relates curved-space particle production to flat-space scattering.

2.4.10 Soft Limit

Another important limit is u, v → 0.

In this limit, the particle production piece dominates:

lim
u,v→0

F̂ (u, v) = g2
(uv

4

) 1
2+iµ

(1 + i sinh πµ)
Γ(1

2 + iµ)2Γ(−iµ)2

2π
+ c.c. (2.56)

↑ ↑ ↑
positivity oscillations e−πµ, for large µ
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2.4.11 Spectroscopy

In the collapsed limit, the signal oscillates with a frequency given by the mass

of the new particles. This is the analog of resonances in collider physics.

Centre-of-mass energy (GeV)
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Momentum ratio
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EFT

particle 
production

resonance

2.5 Exchange of Spinning Particles

2.5.1 Strategy

Find differential operators that relate scalar exchange to spin exchange:

It turns out that the spin raising is best implemented in embedding space and

then Fourier transformed.

2.5.2 CFTs in Embedding Space

Conformal transformations are complicated, especially for spinning operators.

By embedding Rd into R1,d+1, they become as simple as Lorentz transforma-

tions.
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Projective Null Cone

Consider d+ 2 dimensional Minkowski space, with coordinates

XM , M = −1, 0, 1, . . . , d .

X± ≡ X0 ±X−1

The embedding of Rd into R1,d+1 is defined by

• X2 = 0 (null cone)

• X+ = 1 (Euclidean section)
⇒ XM = (X+, X−, X i) = (1, x2, xi)

Lorentz transformations on R1,d+1 become conformal transformations on Rd:

• XM → ΛM
NX

N

• XM → λXM
⇒ gij → g̃ij = Ω2(x)gij, with Ω(x) = λ(X).
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Conformal transformations of fields on Rd are scaling transformations on R1,d+1:

O(λX) = λ−∆O(X) ⇒ O(x̃) = Ω(x)∆O(x) . (2.57)

To determine conformal correlators, we simply write the most general Lorentz-

invariant expression that is consistent with the scaling in (2.57).

Examples

• The two- and three-point functions of scalar operators are:

〈O1O2〉 =
1

X∆1
12

, (2.58)

〈O1O2O3〉 =
c123

X
(∆1+∆2−∆3)/2
12 X

(∆2+∆3−∆1)/2
23 X

(∆3+∆1−∆2)/2
31

, (2.59)

where Xnm ≡ Xn ·Xm.

Using

X12 = δijX
i
1X

j
2 −

1

2
(X+

1 X
−
2 +X−1 X

+
2 )

= δijx
i
1x

j
2 −

1

2
(x2

1 + x2
2)

= −1

2
(x1 − x2)

2

= −1

2
x2

12 ,

(2.60)

we see that this is equivalent to our previous results.

• The scalar four-point function, for identical fields (∆i = ∆), is

〈O1O2O3O4〉 =
1

X∆
12X

∆
34

f(u, v) , (2.61)

with

u ≡ X12X34

X13X24
, v = u(2↔ 4) . (2.62)

Projecting to the Euclidean section, this reproduces our previous result.
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Fields with Spin

Consider symmetric traceless tensors on R1,d+1. They are projected to tensors

on the Euclidean section via

Oi1i2...(x) = OM1M2...(X)
∂XM1

∂xi1
∂XM2

∂xi2
· · · , (2.63)

where
∂XM

∂xi
= (0, 2xj, δ

j
i ) . (2.64)

Extra components are removed by

• XMOM ···(X) = 0 (transversality)

• OM ··· +XM(· · · ) ∼ OM ··· (“gauge invariance”)

Lorentz transformations on R1,d+1 become conformal transformations on Rd:

• ÕM1···(X̃) = ΛM1

N1 · · ·ON1···(X)

• OM1···(λX) = λ−∆OM1···(X)
⇒ Õi1···(x̃) = Ω(x)∆M j1

i1
· · ·Oj1···(x)

Examples

Let

Σ(S)
n ≡ ZM1

n · · ·ZMS
n ΣM1...MS

(Xn) , (2.65)

where Z is an arbitrary null vector.

The two-point function of spin-S fields then is

〈Σ(S)
1 Σ

(S)
2 〉 =

(
Z1 · Z2 −

Z1 ·X2 Z2 ·X1

X12

)S
〈Σ1Σ2〉 , (2.66)

where 〈Σ1Σ2〉 is given by (2.58) and the relative coefficient in the tensor struc-

ture is fixed by transversality.

The scalar-scalar-spin-S three-point function is

〈O1O2Σ
(S)
3 〉 =

(
(Z3 ·X1)(X2 ·X3)− (Z3 ·X2)(X1 ·X3)

(X12X13X23)1/2

)S
〈O1O2Σ3〉 , (2.67)

where 〈O1O2Σ3〉 is given by (2.59).
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2.5.3 Spin-Raising Operator

Consider a conformally coupled scalar ϕ (with ∆ϕ = 2) and its shadow ϕ̃ (with

∆ϕ̃ = 3−∆ϕ = 1). Let Σ and Σ(1) be operators of generic dimension ∆.

Recall that

〈ϕϕΣ〉 = (X4−∆
12 X∆

23X
∆
31)
−1/2 , (2.68)

〈ϕϕ̃Σ〉 = (X3−∆
12 X∆−1

23 X∆+1
31 )−1/2 =

(
X12X23

X31

)1/2

〈ϕϕΣ〉 , (2.69)

〈ϕϕ̃Σ(1)〉 =
(Z3 ·X1)(X2 ·X3)− (Z3 ·X2)(X1 ·X3)

(X12X23X31)1/2
〈ϕϕ̃Σ〉 . (2.70)

Ex: Show that

〈ϕϕ̃Σ(1)〉 = − 2

∆
S32 〈ϕϕΣ〉 , (2.71)

where

S32 = (X3 ·X2)Z3 ·
∂

∂X3
− (Z3 ·X2)X3 ·

∂

∂X3
. (2.72)

Solution.—First, note that

X3 ·
∂

∂X3

〈ϕϕΣ〉 = −∆〈ϕϕΣ〉 ,

Z3 ·
∂

∂X3

〈ϕϕΣ〉 = −∆

2

(
Z3 ·X1

X31

+
Z3 ·X2

X23

)
〈ϕϕΣ〉 ,

so that

S32〈ϕϕΣ〉 = −∆

2

(
Z3 ·X1

X23

X31

− Z3 ·X2

)
〈ϕϕΣ〉

= −∆

2

(
Z3 ·X1

X23

X31

− Z3 ·X2

)(
X31

X12X23

)1/2

〈ϕϕ̃Σ〉

= −∆

2

(Z3 ·X1)(X2 ·X3)− (Z3 ·X2)(X1 ·X3)

(X12X23X31)1/2
〈ϕϕ̃Σ〉

= −∆

2
〈ϕϕ̃Σ(1)〉 .

We see that the operator S32 raises the spin at position 3 and lowers the weight

at position 2. In Fourier space, this operator becomes

S32 = zi3

[
K i

32 +
1

2
ki3K

j
32K

j
32

]
, Ki

32 ≡ ∂ki3 − ∂ki2 . (2.73)
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Finally, we can preform a shadow transform to get

〈ϕϕΣi〉 = k2〈ϕϕ̃Σi〉 = k2S i32 〈ϕϕΣ〉 ≡ S iL〈ϕϕΣ〉 . (2.74)

Repeated application of S iL would raise the spin further.

2.5.4 Raising Internal Spin

Using the spin-raising operator, we can write

F̂S =
S∑

λ=0

P
(λ)
i1...iSj1...jS

(S i1L · · · S iSL )(Sj1R · · · SjSR ) F̂0 . (2.75)

↑ ↑ ↑ ↑
spin-S exchange

polarization
tensor

spin raising spin-0 exchange

Writing this in terms of u and v, we get

F̂S =
S∑

λ=0

ΠS,λD(S,λ)
uv F̂0 , (2.76)

where the polarization sums ΠS,λ and the differential operators D(S,λ)
uv can be

found in [arXiv:1811.00024].

For spin-1 and spin-2 exchange, we find

F̂1 = (Π1,1Duv + Π1,0 ∆u) F̂0 , (2.77)

F̂2 =
(
Π2,2D

2
uv + Π2,1Duv(∆u − 2) + Π2,0 ∆u(∆u − 2)

)
F̂0 , (2.78)

where Duv ≡ (uv)2∂u∂v.

2.5.5 Soft Limit

In the collapsed limit u→ 0, this gives

lim
u→0

F̂S =
kI

✓0✓k k0

∝
(
k2
I

kk′

)∆∑

λ

IS,λ(∆)P λ
S (cos θ)P−λS (cos θ′) . (2.79)
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2.5.6 Spectroscopy

The spin of the new particles is encoded in the angular dependence of the

collapsed limit. This is the analog of the angular dependence of the final state

particles in collider physics.
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2.6 Inflationary Three-Point Functions

2.6.1 Strategy

Find a differential operator that relates the four-point function of conformally

coupled scalars to that of massless scalars:

W
' ' ' '���� ��

Evaluate one leg on the time-dependent background to obtain inflationary

three-point functions.

2.6.2 Massless External Fields

Recall that

〈ϕϕϕϕ〉 =
1

X2
12X

2
34

f(u, v) , (2.80)

〈φφφφ〉 =
1

X3
12X

3
34

h(u, v) . (2.81)
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Ex: Show that

〈φφφφ〉 =WLWR〈ϕϕϕϕ〉 , (2.82)

where

WL ≡ ηMN

(
∂

∂XM
1

+
X1,M

3

∂2

X2
1

)(
∂

∂XN
2

+
X2,N

3

∂2

X2
2

)
. (2.83)

[Hint: Don’t do this by hand!]

We see that the operatorWLWR acts as a weight-raising operator. Transform-

ing WL,R to Fourier space, we can act on our solutions for 〈ϕϕϕϕ〉 to produce

the corresponding 〈φφφφ〉.

For scalar exchange, we find

F∆=3 =WLWRF̂∆=2 , (2.84)

where WL(·) ≡ 1

2

(
1− k1k2

k12
∂k12

)[
1− u2

u2
∂u(u ·)

]
. (2.85)

For spin exchange, the form of WL and WR (in Fourier space) is more compli-

cated and can be found in [arXiv:1811.00024].

As we will see below, only the longitudinal modes of the de Sitter four-point

functions contribute to the inflationary three-point functions.

In that case, we find

F̂
(S,λ=0)
∆=3 =WLWR

(
ΠS,0D(S,0)

uv F̂ S=0
∆=2

)
, (2.86)

=
1

2
U

(S,0)
L U

(S,0)
R

S∏

j=1

(∆u − (S − j)(S − j + 1))F̂ S=0
∆=2

︸ ︷︷ ︸
≡ Â

(S,0)
∆=2

, (2.87)

where

U
(S,0)
L ≡ αSPS−1(α)

+

(
U

(1,0)
L − 1 +

(S − 1)(S − 2)u2α2 − (S + 2)(S − 1)

4u2

)
PS(α) (2.88)

U
(1,0)
L ≡ 1

u

(
1− k1k2

k12
∂k12

)[
(1− u2)∂u(u ·)

]
, (2.89)

with α ≡ (k1 − k2)/kI .
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2.6.3 Perturbed de Sitter

To obtain inflationary three-point functions, we evaluate one of the external

legs on the time-dependent background:

For spin exchange, only the longitudinal mode contributes.

Consider

F
(S,0)
∆=3−ε = U

(S,0)
L U

(S,0)
R Â

(S,0)
∆=2−ε (2.90)

= U
(S,0)
L

(
Ū

(S,0)
R − ε δU (S,0)

R + · · ·
)(

Â
(S,0)
∆=2 + ε δÂ

(S,0)
∆=2 + · · ·

)
, (2.91)

where

δU
(S,0)
R ≡ βSPS−1(β) +

(
1− v2

v
∂v +

3− (4 + (2S − 3)β2)v2

2v2

)
PS(β) , (2.92)

with β ≡ (k3 − k4)/kI .

In the limit k4 → 0, we find

lim
k4→0

Ū
(S,0)
R = 0 , (2.93)

lim
k4→0

δU
(S,0)
R = 1 . (2.94)

The inflationary bispectrum therefore is

B(k1, k2, k3) =
ε

2
k3

3 U
(S,0)
L b̂(u) + perms , (2.95)

where

b̂(u) ≡ lim
v→1

Â
(S,0)
∆=2(u, v) . (2.96)
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2.6.4 Contact Interactions

For the simplest contact solution, we have

b̂(u) = lim
v→1

F̂ (0)
c

=
u

u+ 1
. (2.97)

Substituting this into (2.95), we get

B(k1, k2, k3) =
ε

4K2

[∑

n

k5
n +

∑

n 6=m
(2k4

nkm − 3k3
nk

2
m)

+
∑

n 6=m6=l
(k3
nkmkl − 4k2

nk
2
mkl)

]
, (2.98)

which (up to a shadow transform) is the bispectrum arising from (∂µφ)4,

cf. (1.12).

2.6.5 Graviton Exchange

For massless spin-2 exchange, we have

b̂(u) = lim
v→1

∆u(∆u − 2)F̂∆=2

= lim
v→1

∆uF̂
(−1)
c

= lim
v→1

F̂ (0)
c

=
u

u+ 1
. (2.99)

Substituting this into (2.95), we get

B(k1, k2, k3) = ε


∑

n 6=m
knk

2
m +

8

K

∑

n>m

k2
nk

2
m


+(ns − 1)

∑

n

k3
n , (2.100)

which (up to a shadow transform) is the standard three-point function of slow-

roll inflation.
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2.6.6 Massive Particles

The effects of massive particles during inflation are characterized in terms of

just two basis functions:

(2.101)

This result is valid for all momenta, not just soft limits.
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3 Summary and Future Directions

3.1 Amplitudes Meet Cosmology

Remarkably, correlation functions contain scattering amplitudes:

=lim
E!0

1

Ep ⇥

p1

p2

k2k1

where E ≡∑ |kn|.

Insights from the physics of scattering amplitudes should therefore translate

to cosmology.

3.2 Spinning Correlators

Spinning correlators can also be bootstrapped from our scalar building blocks:

X

n

D(n)
L D(n)

R

3.3 Graviton Correlators

An important special case are graviton correlators:

�ij

?

In de Sitter space, very little is known beyond three-point functions.

In flat space, a consistent S-matrix of gravitons is very constrained.

What is the cosmological analog of these results?
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3.4 Factorization

For massless spin exchange, we find

Does consistent factorization allow for an efficient construction of graviton

correlators?

3.5 Double Copy

Gravity amplitudes can be written as the square of gauge theory amplitudes:

Gravity = YM2

Is there an analog of this for cosmological correlators?

3.6 Loop Corrections

How does the bootstrapping of de Sitter correlators generalize to loops?

One-loop amplitudes can be written as

Is there a cosmological analog of this?

3.7 Ultraviolet Completion

What is the space of consistent UV completions of inflationary correlators?
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• What is the cosmological analog of positivity bounds?

• What is the Veneziano correlator in de Sitter space?
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