
Notes on BCFW Recursion in Mathematica

Jacob L. Bourjaily

Niels Bohr International Academy and Discovery Center, Niels Bohr Institute

University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark

Abstract: Basic reference formulary and key functions know for coding BCFW

recursion in Mathematica, prepared for the International School on Amplitudes,

Cosmology, Holography, and Positive Geometries in Lecce, Italy, 2019.

Contents

1 Symbolic BCFW Recursion in Momentum-Twistor Space 1

2 How to Do Supersymmetry (without Anticommutation) 2

3 Glossary of Mathematica Functions to Know (and Love) 3

1 Symbolic BCFW Recursion in Momentum-Twistor Space

We will denote the n-point NkMHV tree-amplitude as ‘A(k)
n ’. When expressed in

terms of momentum-twistor variables, MHV (k= 0) amplitudes are the identity for

all multiplicity, A(0)
n =1, and amplitudes vanish when k<0 or k>(n 4) (for n>3).

The momenta of the particles involved in an amplitude are encoded by momen-

tum (super)twistors denoted ‘za’. When it is important or necessary to make clear

which set of momentum twistors are involved in an amplitude, this will be indicated

by writing ‘A(k)
n (a, b, . . .)’ for A(k)

n (za, zb, . . .).

The BCFW recursion relations allow us to determine the n-point NkMHV tree-

amplitude A(k)
n in terms of lower-point trees as follows:

A(k)
n

(
1, . . . , n

)
= A(k)

n−1

(
1, . . . , n 1

)
(1.1)

+
∑

nL+nR=n+2
kL+kR=k−1

A(kL)
nL

(
1, . . . , a 1, â

)
R[1, a 1, a, n 1, n]A(kR)

nR

(
â, a, . . . , n 1, n̂

)
,

where the ‘shifted’ twistors â and n̂ are defined according to:

â ≡ (a a 1)
⋂

(n 1n 1) ≡ za〈a 1n 1n 1〉+ za−1〈n 1n 1 a〉;
n̂ ≡ (nn 1)

⋂
(a 1 a 1) ≡ zn〈n 1 a 1 a 1〉+ zn−1〈a 1 a 1n〉.

(1.2)

Because the recursion relations successively lower k (or n) and all MHV (k=0)

amplitudes are 1, the only non-trivial functions that survive successive recursion via

(1.1) are the so-called ‘R-invariants’ defined according to:

R[a, b, c, d, e] ≡
δ1×4

(
ηa〈bcde〉+ηb〈cdea〉+ηc〈deab〉+ηd〈eabc〉+ηe〈abcd〉

)
〈a b c d〉〈b c d e〉〈c d e a〉〈d e a b〉〈e a b c〉

, (1.3)

where {za, . . . , ze} can be related to external momentum twistors through (possibly

nested) shifts according to (1.2).

– 1 –

2 How to Do Supersymmetry (without Anticommutation)

Superfunctions multiply in the obvious way; and so a product of k R-invariants will

take the form of 5k 4-brackets 〈· · · 〉 in the denominator with k (1×4) fermionic δ-

functions in the numerator. Fermionic δ-functions also simply multiply, but because1∫
dηadηb δ(a1ηa + b1ηb)δ(a2ηa + b2ηb) = (a1b2 − a2b1), (2.1)

for anti-commuting variables, it is most natural to consider the k×n matrix ‘C’ of

η-coefficients (with one row of C coming from each R-invariant) and think of these

superfunctions to be in the form,

f(z) δk×4
(
C ·η

)
≡ f(z)

4∏
I=1

k∏
α=1

(n∑
a=1

Cα
a η

I
a

)
, (2.2)

where f(z) is an ordinary (bosonic) function, and C is a k×n matrix of ordinary

functions. As illustrated in the simple case in (2.1), the reason for thinking of super-

functions in this way is that all component functions—obtained by projecting out

(via integration) 4k of the η’s will result in simply multiplication of f(z) by 4 (k×k)

determinants of the matrix C. To see this, notice that for each of the SU(4)-indices

I∈{1, . . . , 4}, η-integration results in a determinant,∫
dηIa1· · · dη

I
ak

k∏
α=1

(n∑
a=1

Cα
a η

I
a

)
= (a1 · · · ak) ≡ det

(
Cα
a1
, . . . , Cα

ak

)
. (2.3)

(This is a natural generalization of (2.1).) Thus, we see that the product of k R-

invariants corresponds to a superfunction with
(
n
k

)4
bosonic components—corresponding

to a choice of a (k×k) minor of the matrix C for each I∈{1, . . . , 4}.
The point of this aside is that we will consider superfunctions (in Mathematica)

to correspond to a pair of purely bosonic data,

f(z) δk×4
(
C(z)·η

)⇔{
f(z), C(z)

}
, (2.4)

from which all component functions can be extracted by multiplying f(z) by 4 (k×k)

minors of the matrix C(z). For superfunctions that are products of R-invariants, f(z)

is the product of their bosonic parts, and C(z) is a matrix whose k rows are generated

one-by-one from each R-invariant in the product.

1Recall that fermionic δ-functions are trivial:
∫
dη δ(f(η))≡

∫
dη f(η) for any Grassmann η.

– 2 –

3 Glossary of Mathematica Functions to Know (and Love)

The following is a list of Mathematica functions used in the live-demonstration of

the implementation of tree-level BCFW (listed roughly in order of appearance).

• Replace[x,y] (same as ‘x/.y’) and ReplaceRepeated[x,y] (same as ‘x//.y’)

• Rule[x,y] (same as ‘x->y’) and RuleDelayed[x,y] (same as ‘x:>y’)

• Set[x,y] (same as ‘x=y’) and SetDelayed[x,y] (same as ‘x:=y’)

• Which[] (see also If[])

• And[x, y] (same as ‘x && y’) and Or[x, y] (same as ‘x||y’)

• Equal[x, y] (same as ‘x==y’) and SameQ[x, y] (same as ‘x===y’), etc.

• With[], (see also Block[], Module[])

• Table[function[index], {index,indexRange}] (see also Sum[], Prod[])

• Join[] (see also Flatten[])

• Select[list, testFunction[]]: selects those elements of list that are mapped to

True under testFunction.

• Apply[function[], exprn] (same as ‘function@@exprn’—see also ‘f@@@exprn’)

e.g. f@@{x,y} returns f[x, y]; f@@@{{x,y},{z,w}} returns {f[x, y], f[z,w]}.
• Map[function[], list] (same as: ‘function/@list’)

• Function[{x}, function[x]] (same as ‘function[#]&’)

• Total[], Times[], Plus[], etc.

• ReplacePart[]

• Range[], Partition[], RotateLeft[], etc.

• SparseArray[] (and Normal[])

• Thread[] (especially in the context of Thread[Rule[]])

• Cases[]

• Det[] (please remember to never reinvent Det[]!)

• RandomInteger[]

• . . .

If any of the functions above are unfamiliar, consult Mathematica’s Documentation

Center for more details (and illustrative examples). This can be accessed quickly by

prepending a ‘?’ to a function in the notebook interface (e.g. by typing ‘?Partition’).

You will often find that many built-in functions have optional additional arguments

(that can be extremely useful to know!).

Finally, if you think that ‘Function’ is a bit odd or irrelevant, you are wrong:

(especially when constructed using the ‘(#)&@’ syntax) Function is one of the most

useful programming constructs in Mathematica—and the same goes for Map (/@)

and Apply (@@ and @@@). Get to know and love their syntax and usage—it will

dramatically improve your programming prowess.

– 3 –

	Symbolic BCFW Recursion in Momentum-Twistor Space
	How to Do Supersymmetry (without Anticommutation)
	Glossary of Mathematica Functions to Know (and Love)

