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1 Symbolic BCFW Recursion in Momentum-Twistor Space

We will denote the n-point N*MHYV tree-amplitude as ‘A%k)’. When expressed in
terms of momentum-twistor variables, MHV (k=0) amplitudes are the identity for
all multiplicity, A" =1, and amplitudes vanish when k<0 or k> (n—4) (for n>3).

The momenta of the particles involved in an amplitude are encoded by momen-
tum (super)twistors denoted ‘z,’. When it is important or necessary to make clear
which set of momentum twistors are involved in an amplitude, this will be indicated
by writing ‘A% (a,b,...)" for AP (20, 2, .. .).

The BCFW recursion relations allow us to determine the n-point N*MHV tree-
amplitude AP in terms of lower-point trees as follows:

AP, n) = AP (1, n-) (1.1)
+ Z AELkLL) (1, . ,a—l,a)R[l, a-1,a,n-1, n]Aﬁf}f) (a, a,...,n—1, ﬁ),

nr+nrp=n+2
kp+kr=k—1

where the ‘shifted’ twistors @ and n are defined according to:

= (aa-1)N(n-1n1) = z,(a-1n-1n1) + z,_1(n~1n1a);

‘ (12)
n=(nn-1)N(a-1lal) = z,(n-1a-1al) + z,_1{a—1a1ln).

Because the recursion relations successively lower k (or n) and all MHV (k=0)
amplitudes are 1, the only non-trivial functions that survive successive recursion via
(1.1) are the so-called ‘R-invariants’ defined according to:

624 (4 (bede) +my(cdea) +n.(deab) + ng{eabe) +n. (abed))

Rla,b,c,d,e] = (abed)(bede){cdea){deab)(eabc) 7

(1.3)

where {z,,..., 2.} can be related to external momentum twistors through (possibly
nested) shifts according to (1.2).



2 How to Do Supersymmetry (without Anticommutation)

Superfunctions multiply in the obvious way; and so a product of £ R-invariants will
take the form of 5k 4-brackets (---) in the denominator with & (1x4) fermionic 0-
functions in the numerator. Fermionic d-functions also simply multiply, but because!

/dnadﬁb d(aina + bimy)6(agna + bamy) = (arbs — azby), (2.1)

for anti-commuting variables, it is most natural to consider the k xn matrix ‘C’ of
n-coefficients (with one row of C' coming from each R-invariant) and think of these
superfunctions to be in the form,

n

4k

f(z)84(C-n) H H (> cent). (2.2)
where f(z) is an ordinary (bosonic) function, and C' is a kxn matrix of ordinary
functions. As illustrated in the simple case in (2.1), the reason for thinking of super-
functions in this way is that all component functions—obtained by projecting out
(via integration) 4k of the n’s will result in simply multiplication of f(z) by 4 (kxk)
determinants of the matrix C'. To see this, notice that for each of the SU(4)-indices
Ie€{l,...,4}, n-integration results in a determinant,

k n
/dngl.--dngk [T (> cont) =@ am) =det (€5, Ca). (23)
a=1 a=1

(This is a natural generalization of (2.1).) Thus, we see that the product of k R-
invariants corresponds to a superfunction with (Z) * bosonic components—corresponding
to a choice of a (kx k) minor of the matrix C for each I €{1,..., 4}.

The point of this aside is that we will consider superfunctions (in MATHEMATICA)
to correspond to a pair of purely bosonic data,

f(z) 8°4(C(2) ) = {f(2),C(2)}, (2:4)

from which all component functions can be extracted by multiplying f(z) by 4 (kxk)
minors of the matrix C'(z). For superfunctions that are products of R-invariants, f(z)
is the product of their bosonic parts, and C'(z) is a matrix whose k rows are generated
one-by-one from each R-invariant in the product.

1Recall that fermionic §-functions are trivial: [dnd(f(n))= [dn f(n) for any Grassmann 1.



3

Glossary of MATHEMATICA Functions to Know (and Love)

The following is a list of MATHEMATICA functions used in the live-demonstration of
the implementation of tree-level BCFW (listed roughly in order of appearance).

Replace[x,y] (same as ‘x/.y’) and ReplaceRepeated|x,y] (same as ‘x//y’)
Rule[x,y] (same as ‘x->y’) and RuleDelayed[x,y] (same as ‘x:>y’)
Set[x,y] (same as ‘x=y’) and SetDelayed|x,y] (same as ‘x:=y’)

Which|[] (see also If[])

And[x, y] (same as ‘x&&y’") and Or[x, y] (same as ‘x||y’)

Equal[x, y] (same as ‘x==y") and SameQ[x, y] (same as ‘x===y’), etc.
With[], (see also Block[], Module[])

Table[function[index], {index,indexRange}] (see also Sum][], Prod[])
Join[] (see also Flatten[])

Select([list, testFunction[]]: selects those elements of list that are mapped to
True under testFunction.

Apply[function[], exprn] (same as ‘function@@exprn’—see also ‘f@@@exprn’)
e.g. f0@{x,y} returns f[x, y]; feee{{x,v},{zw}} returns {f[x, y], f[z, w]}.
Map(function[], list] (same as: ‘function/@list’)

Function[{x}, function[x]] (same as ‘function[#]&’)

Total[], Times|], Plus[], etc.

ReplacePart|]

Range[], Partition[], RotateLeft[], etc.

SparseArray[] (and Normal(])

Thread|] (especially in the context of Thread[Rule[]])

Cases| |

Det[] (please remember to never reinvent Det[]!)

RandomlInteger|]

If any of the functions above are unfamiliar, consult MATHEMATICA’s Documentation

Center for more details (and illustrative examples). This can be accessed quickly by

prepending a ‘?’” to a function in the notebook interface (e.g. by typing ‘?Partition’).

You will often find that many built-in functions have optional additional arguments

(that can be extremely useful to know!).

Finally, if you think that ‘Function’ is a bit odd or irrelevant, you are wrong:

(especially when constructed using the ¢ (#)&@’ syntax) Function is one of the most
useful programming constructs in MATHEMATICA—and the same goes for Map (/@)
and Apply (@@ and @@Q). Get to know and love their syntax and usage—it will

dramatically improve your programming prowess.
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