

¹⁵⁴Gd(n, γ) and ^{nat}Gd(n, γ) cross section

measurement at the n_TOF facility

A. Manna and many others

15th Russbach School on Nuclear Astrophysics, 21 March 2018

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA il presente materiale è riservato al personale dell'università di bologna e non può essere utilizzato ai termini di legge da altre persone o per fini non istituzionali

Outline

- Scientific Motivations
 - and data in literature
- Gd samples
- Experiment (Aug 2017)

Resolved Resonance Region

Isotope	Facility	Energy	Enrichment	Capture Detector	Transmission ?
¹⁵² Gd	ORELA DUBNA	< 2.6 keV < 235 eV	32% 36%	C ₆ F ₆ Nal	yes yes
¹⁵⁴ Gd	Nevis Lab ORELA DUBNA	< 1 keV < 2.6 keV < 224 eV	66 %	C ₆ F ₆ Nal	yes

Unresolved Resonance Region

Gd Samples

Gd Samples

Other samples:

- ¹⁹⁷Au (1.308 g)
 Carbon (6.24 g)
- Carbon (6.24 g)
- Lead (17.00 g)

R = 1.5 cm

Isotope	Protons	note	26 ~ 1018
¹⁹⁷ Au	4×10^{16}	Cyclic – after calibration	2.0 × 10-
¹⁵⁴ Gd	1.88 × 10 ¹⁸		
natGd	2.3 × 10 ¹⁷		
Carbon	4×10^{16}	From ⁸⁸ Sr and ⁸⁹ Y campaign	
Lead	1.2 × 10 ¹⁷		
Empty	3.5 × 10 ¹⁷		
Others	2.0×10^{17}	Filters bkg	

Full calibration (¹³⁷Cs, ⁸⁸Y, Am-Be and Cm-C composite γ-ray source) **every week** !!! 14th August 2017 10th September 2017

CmC0_A_u1_C6D6 CmC0_A_u2_C6D6 88Sr and 89Y campaign 10² 10² CmC0_A_u1_C6D6 CmC0_A_u2_C6D6 10 10 counts/bin/bunches 1 counts/bin/bunches 1 CmC1_A_u1_C6D6 CmC1_A_u2_C6D6 10⁻³ 10-4 ²⁴⁴Cm-¹³C ×10³ 200 300 600 700 800 400 500 600 amplitude-charge (channel) 100 400 500 200 300 700 800 900 1000 amplitude-charge (channel) 10³ CmC0_A_u4_C6D6 102 10² CmC0_A_u3_C6D6 CmC1_A_u4_C6D6 10 10 1 counts/bin/bunches 1 0_____1 0_____2 F 1 CmC1_A_u3_C6D6 10-3 10-3 10-4 10 ×10³ $< 10^{3}$ 200 300 500 200 500 600 700 100 400 600 700 800 900 1000 100 300 400 800 900 1000 amplitude-charge (channel) amplitude-charge (channel)

JITOF

JNTOF

Istituto Nazionale di Fisica Nucleare

INFN

JNTOF

INTOF

70

60

10⁻¹⁵

50

80

90 neutron energy (eV)

 \wedge

NTOF

INTOF

Background: ^{152,154}**Gd** are relevant in the study of *s process* because of their impact on **s-process abundances**. Measurements are present in literature, however large **discrepancies** are still present and called for a more systematic and accurate study.

Experiment: capture cross section measurement successfully performed in August 2017 at **EAR-1** with an array of 4 C_6D_6 detectors.

Goal: Improve resonance parameters of ¹⁵⁴Gd (and perhaps few strong ¹⁵²Gd neutron resonances) for an accurate determination of **stellar cross sections** with overall uncertainty below **5%** for thermal energies of interest to *s process*, from few keV to about kT = 100 keV, *i.e.* 20 meV < E_n < 1 MeV

... data seem promising

Alice Manna - alice.manna2@unibo.it

Table 1: Gadolinium isotopes							
Isotope	Binding energy	Natural abundance	ORNL enrichment				
	(MeV)	%	%				
$^{152}\mathrm{Gd}$	6.25	0.20	32 - 51				
$^{154}\mathrm{Gd}$	6.44	2.15	> 66 and 99.3				
155 Gd	8.54	14.73	> 90				
$^{156}\mathrm{Gd}$	6.36	20.47	93 - 99				
$^{157}\mathrm{Gd}$	7.94	15.68	> 90				
$^{158}\mathrm{Gd}$	5.94	24.87	> 95				
$^{160}\mathrm{Gd}$	5.64	21.9	95 - 98				

Gd – Evaluation

