The gravitational S-matrix

Steven B. Giddings UCSB and CERN

An important goal: understand ultra-high energy ($E \gg M_{p}$) collisions in gravítational theory.

An important goal: understand ultra-high energy ($E \gg M_{p}$) collisions in gravitational theory. Why?

An important goal: understand ultra-high energy ($E \gg M_{p}$) collisions in gravítational theory. Why?

1) Any candidate theory of quantum gravity should describe this regime, at least in principle. (E.g. could put on big computer.)
2) Generally high-energy scattering probes the most fundamental structure of a theory.
3) Such scattering encounters a deep conceptual paradox, driving at the heart of the conflict between general relativity and quantum mechanics.
4) Reasons 2 and 3 suggest that its study may point the way to new principles critical to understanding the quantum mechanics of gravity.
5) If we're very lucky, it could be studied at the LHC.

Plan of talk: overview of this and related issues

A complete theory of quantum gravity should describe (or avoid) ultraplanckian collisions

A complete theory of quantum gravity should describe (or avoid) ultraplanckian collisions

The reason:
e^{-}

Boost to $E \gg M_{p}$

A complete theory of quantum gravity should describe (or avoid) ultraplanckian collisions

The reason:

Boost to $E \gg M_{p}$

Just need: 1) Lorentz ínvariance

2) very weak notion of locality

Indeed, nature provides us with observed cosmic accelerators (presumably AGN) reaching already up to

$$
\sim 10^{12} \mathrm{GeV}
$$

Moreover, ...

In extra dímensional scenarios yielding TeVscale gravity, even

at LHC!
(A review: arXiv:0709.1107)

LI violation might alter this story, but:

- hard to violate such symmetry a small amount
- stringent constraints
- potentially alters basic properties of black holes
- still find the problem of black holes and evaporation in more complicated contexts

\Rightarrow won't consider

$E \gg M_{p}:$ dynamícs

- Control impact parameter b-- wavepackets
- Large E: ~semíclassical pícture
- Classically, produce black hole, + radiation
- Quantum corrections: Hawkíng radiation

We then confront the "information paradox."

We then confront the "information paradox."
Lightening review:
Hawking, updated: nice slice argument

$$
\begin{aligned}
& \text { Localíty: } \\
& \left|\psi_{N S}\right\rangle \Rightarrow \rho_{H R} \sim \operatorname{Tr}_{i n}\left|\psi_{N S}\right\rangle\left\langle\psi_{N S}\right| \\
& S_{H R}\left(x^{-}\right) \sim-\operatorname{Tr}\left(\rho_{H R} \ln \rho_{H R}\right) \\
& \text { Increases to } \sim A_{B H} \\
& \text { at } t_{\text {evap }} \\
& \therefore \text { information lost } \\
& \text { (Hawking, 1976) }
\end{aligned}
$$

The problem is, QM is remarkably robust:

Banks, Peskin, Susskind (1984)
 ~- studied such info loss:

The problem is, QM is remarkably robust:

Banks, Peskin, Susskind (1984)
 -- studied such info loss:

Basic idea: transmitting info requires energy
\therefore loss of info violates energy conservation
\therefore such virtual effects
\Rightarrow Massive E nonconservation
$T \sim M_{p}$, in this room
So: let's try to keep unitary evolution!

If information isn't lost, maybe it's left behind: in remnants?

If information isn't lost, maybe 'it's left behind: in remnants?

But: begin w/ arbitrarily large black hole \Rightarrow infinite species $\quad M \sim M_{p}$
\Rightarrow Infinite production instabilities
(See e.g. hep-th/9310101, hep-th/9412159)

The "paradox:" a conflict between

Lorentz/diff invariance (macroscopic)

Quantum mechanics

Locality
(macroscopic)

The "paradox:" a conflict between

Lorentz/diff invariance (macroscopic)

The "paradox:" a conflict between

Lorentz/diff invariance (macroscopic)

Quantum
 mechanics
(macroscopic)
QM, LI ~~ can't see how to modify, respecting consistency and observation
A weak point: locality?

What do the dominant quantum gravity paradigms say?

What do the dominant quantum gravity paradigms say?

LQG: working to recover the familiar world of (\sim) Minkowski space, multi-particle perturbations, and their scattering
(some recent progress; success remains to be seen)

String theory:

Hints(?) at a solution:
addresses nonrenormaliziblity extendedness/nonlocality microstate counting, etc.

Idea: "holography:"

$$
\text { D-dim. grav } \equiv(D-1) \text { non-grav unitary thy }
$$

(AdS/CFT)

String theory:

Hints(?) at a solution:
addresses nonrenormaliziblity extendedness/nonlocalíty microstate counting, etc.

Idea: "holography:"
D-dim. grav $\equiv(D-1)$ non-grav unitary thy

(AdS/CFT)

Examine more closely, see what actually says...

General problem: investigate UHE scattering (D-dimensions)
(Provisional) summary of some of what we know. (One question: when/how strings relevant?)
(More detail: SBG; SBG, Gross, Maharana; SBG \& Srednickí; SBG \& Porto)

Parameters:

$$
\begin{aligned}
& E=\text { energy }, \gg M_{D} \\
& \mathrm{~b}=\text { impact parameter ... decrease }
\end{aligned}
$$

Regimes:

1) Born $b \rightarrow \infty$
$E \gg M_{p}$

$$
T_{\text {tree }}=-8 \pi G_{D} s^{2} / t
$$

Regimes:

1) Born $b \rightarrow \infty$

$E \gg M_{p}$

$$
T_{\text {tree }}=-8 \pi G_{D} s^{2} / t
$$

Where do strings modify? Naively, might guess $b \sim l_{s t}^{2} E$ (longstrings) but - tiny corrections (will see momentarily)

Instead, leading corrections:

ladders (+ crossed)

$$
s=E^{2} ; t=-q^{2}
$$

For $-\mathrm{t} \ll \mathrm{s}$, can write sum over loops in terms of tree amplítude:

$$
\begin{gathered}
i T_{\text {eik }}(s, t)=2 s \int d^{D-2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}}\left(e^{i \chi\left(x_{\perp}, s\right)}-1\right) \\
q_{\perp}=\text { perpindicular to CM momentum } \\
x_{\perp} \sim \text { impact parameter } b \\
\chi\left(x_{\perp}, s\right)=\frac{1}{2 s} \int \frac{d^{D-2} q_{\perp}}{(2 \pi)^{D-2}} e^{-i \mathbf{q}_{\perp} \cdot x_{\perp}} T_{\text {tree }}\left(s,-q_{\perp}^{2}\right) \\
=(\text { const. }) \frac{G_{D} s}{x_{\perp}^{D-4}}
\end{gathered}
$$

... "eikonal phase"
(here T is full tree amp.)

$$
i T_{\mathrm{eik}}(s, t)=2 s \int d^{D-2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}}\left(e^{i \chi\left(x_{\perp}, s\right)}-1\right)
$$

$$
q_{\perp}=\text { perpindícular to } \mathrm{CM} \text { momentum }
$$

$$
x_{\perp} \sim \text { impact parameter } b
$$

$$
\chi\left(x_{\perp}, s\right)=\frac{1}{2 s} \int \frac{d^{D-2} q_{\perp}}{(2 \pi)^{D-2}} e^{-i \mathbf{q}_{\perp} \cdot x_{\perp}} T_{\text {tree }}\left(s,-q_{\perp}^{2}\right)
$$

$$
=(\text { constr. }) \frac{G_{D} s}{x_{\perp}^{D-4}}
$$

... "eikonal phase"
(here T is full tree amp.)

Eikonal \leftrightarrow classical approximation

(See, e.g., Amatí, Ciafaloní, and Veneziano)

Consider the classical metric of a high energy source: Schwarzschild, boosted with $E / m=\gamma \gg 1$ Aichelburg-Sexl solution:

$$
d s^{2}=-d x^{+} d x^{-}+d x_{\perp}^{2}+\Phi\left(x_{\perp}\right) \delta\left(x^{-}\right) d x^{-2}
$$

$$
\Phi=-8 G_{D} E \log \left(x_{\perp}\right), D=4 ;
$$

$$
\Phi=(\text { const. }) \frac{G_{D} E}{x_{\perp}^{D-4}}, D>4
$$

E.g. compare classical scattering angle to

 eikonal saddlepointThis indicates a second regime:
2) Eikonal ~classical

$$
i T_{\mathrm{eik}}(s, t)=2 s \int d^{D-2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}}\left(e^{i \chi\left(x_{\perp}, s\right)}-1\right)
$$

This indicates a second regime:
2) Eikonal ~classical

$$
i T_{\mathrm{eik}}(s, t)=2 s \int d^{D-2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}}\left(e^{i \chi\left(x_{\perp}, s\right)}-1\right)
$$

Born/eikonal transítion:

$$
\chi \sim 1 \leftrightarrow b=x_{\perp} \sim\left(G_{D} E^{2}\right)^{\frac{1}{D-4}} \leftrightarrow q_{\perp} \sim 1 / b
$$

This indicates a second regime:
2) Eikonal ~classical

$$
i T_{\mathrm{eik}}(s, t)=2 s \int d^{D-2} x_{\perp} e^{-i q_{\perp} \cdot x_{\perp}}\left(e^{i \chi\left(x_{\perp}, s\right)}-1\right)
$$

Born/eikonal transítion:

$$
\chi \sim 1 \leftrightarrow b=x_{\perp} \sim\left(G_{D} E^{2}\right)^{\frac{1}{D-4}} \leftrightarrow q_{\perp} \sim 1 / b
$$

Where do important corrections to the eikonal

picture enter?

First, consider the classical problem; intuítively, form a black hole Indeed:

First, consider the classical problem; intuitively, form a black hole
Indeed:

Classically, can show a closed trapped surface forms:
$b \lesssim R(E)$
(SBG \& Eardley 2002, extending Penrose)

But: what important corrections?

- stringy
- quantum (e.g. other loops)

First, let's systematically look at string corrections

Begin w/tree-level amplítude: high E

$$
T_{t r e e}^{s t r i n g}(s, t) \propto g_{s}^{2} \frac{\Gamma(-t / 8)}{\Gamma(1+t / 8)} s^{2+t / 4} e^{2-t / 4}
$$

VS.

$$
T^{\text {grav }}(s+1) s^{2} \quad \text { (D noncmpct dims) }
$$

Begin w/tree-level amplitude: high E

$$
T_{\text {tree }}^{s t r i n g}(s, t) \propto g_{s}^{2} \frac{\Gamma(-t / 8)}{\Gamma(1+t / 8)} s^{2+t / 4} e^{2-t / 4}
$$

vs.

$$
T_{t r e e}^{g r a v}(s, t) \propto G_{D} \frac{s^{2}}{t} \quad \text { (D noncmpct dims) }
$$

- Agree for
$-t \ll 1$
- Here see no evidence for long string effects:

$$
b \sim E \leftrightarrow t \sim E^{-2(D-5)}
$$

- But significant modifications for

$$
t \sim-1
$$

- However, as noted, diagrams

compete for $t=-q^{2} \gtrsim-\frac{1}{b^{2}}$

$$
(\ll 1)
$$

Suppose, for example, decrease b/increase $-\mathbf{t}$:

At $t \sim-1: \quad N \sim\left(G_{D} E^{2}\right)^{\frac{1}{D-3}}$
\Rightarrow Large loop order dominates.

At $t \sim-1: \quad N \sim\left(G_{D} E^{2}\right)^{\frac{1}{D-3}}$
\Rightarrow Large loop order dominates.
At given loop order, N, expect:

$$
\begin{aligned}
& \text { 1) } k_{j} \approx q /(N+1) \\
& \text { 2) } E^{-\alpha^{\prime} q^{2} /(N+1)}
\end{aligned}
$$

Thus at large N, string corrections small

But - another effect: can excite strings through accumulated effect of grav exchange- "diffractive excítation" (ACV)

Indeed, unexcíted (elastic) amplítude, near Schwarzschild impact parameter:

$$
\mathcal{A}_{e l} \sim \exp \left\{-E^{(D-4) /(D-3)}\right\}
$$

$$
1\}
$$

So:

??

So:

??

No black hole??

So:

??

No black hole??
 Info carried away?
 (Veneziano, 2004)

But there is a contrary intuition: string only "spreads out" "after" collision??

String spreading is a notoriously fuzzy concept, and requires some care

Depends on process in question, and its "resolving power"

Find:
SBG, Gross, Maharana, arXiv:0705.1816

Indeed, origin of effect is "tidal string excítation"

$$
(\Delta X)^{2} \sim|\ln \epsilon|+\left[\frac{G_{D} E^{2}}{b^{D-2}} \tau\right]^{2}|\ln \tau|
$$

$$
\epsilon \ll \tau
$$

For small tau: inside trapped surface:

Trapped surface

Trapped surface

Black hole
\therefore No apparent role for string

extendedness

SBG, hep-th/0604072
SBG, Gross, Maharana, arXiv:0705.1816
"different time scales"

Summarize story in a proposed "phase diagram:"

Summarize story in a proposed "phase díagram:"

Summarize story in a proposed "phase diagram:"

Strong gravity region: an important mystery.

Important aspect? :

The problem appears intrinsically nonperturbative

$1+\mathcal{O}\left[\left(\frac{R_{S}(E)}{b}\right)^{2(D-3)}\right]$

(series not even asymptotic)

(unitarity a more critical issue than renormalizability?)

String perturbative finiteness, extendedness not clearly relevant

String perturbative finíteness, extendedness not clearly relevant

What about state counting; duality/holography?

- Microstate counting: not far from BPS, ~ solitonic (not Schwarzschild)
- Holographic duals: nonperturbative do they answer our questions?

Holographic duals: AdS/CFT; \sim matrix theory

- do they address the "paradox"?

Holographic duals: AdS/CFT; \sim matrix theory

- do they address the "paradox"? need to compare inside and outside observers; no formulation of local observables

Holographic duals: AdS/CFT; \sim matrix theory

- do they address the "paradox"? need to compare inside and outside observers; no formulation of local observables
- nonetheless, can investigate whether, e.g., they reproduce a unitary S-matrix with the correct features
- for clear interpretation, want to reproduce S-matrix in flat space limít, that is, on scales $r \ll R$ (then, can take $R \rightarrow \infty$)
- for clear interpretation, want to reproduce S-matrix in flat space limit, that is, on scales $r \ll R$ (then, can take $R \rightarrow \infty$)

An important open problem!

Polchinski, hep-th/9903048
Susskind, hep-th/9901079
SBG, hep-th/9907129
Gary, SBG, and Penedones, arXiv:0903.4437
Gary, SBG, arXiv:0904.3544
Heemskerk, Penedones, Polchinski, Sully, arXiv:0907.0151

An issue:
control sources at boundary

An íssue:
control sources at boundary
can they be "focussed" sufficiently to resolve structure at scales $r \ll R$?

An issue:
control sources at boundary
can they be "focussed" sufficiently to resolve structure at scales $r \ll R$?

Or, might the boundary theory only summarize some version of the bulk theory theory averaged over scales $<R$?
(thus, holography only in "coarse-grained" sense?)

Let's understand more carefully:

- AdS/CFT: $\quad \phi(x) \leftrightarrow \mathcal{O}(b)$
(b=boundary point; $x=$ bulk point)
- consider boundary sources $f_{i}(b)$
- produce bulk wavepacket as
$\int d b f_{i}(b) \mathcal{O}(b)$
- scattering amplitude: $\mathcal{A}=\int \prod_{i=1}^{4}\left[d b_{i} f_{i}\left(b_{i}\right)\right]\left\langle\mathcal{O}\left(b_{1}\right) \cdots \mathcal{O}\left(b_{4}\right)\right\rangle$

Can we choose $f_{i}(b)$ so that we produce the flat space S-matrix, at scales $r \ll R$?

A test (SBG, 1999)

$$
\begin{aligned}
& \text { For } \quad \begin{aligned}
E & \gg 1 / R \quad q \gg 1 / R \\
\qquad & q \ll 1 /\left(G_{D} E^{2}\right)^{1 /(D-4)},<1 / l_{s t}
\end{aligned}
\end{aligned}
$$

Should be able to reproduce Born amplitudes:

$$
\begin{aligned}
& S=1+i(2 \pi)^{D} \delta\left(\sum_{i} p_{i}\right) T \quad T \propto \frac{G_{D} s^{2}}{t} \\
& \text { i.e. } \mathcal{A} \approx \int d p_{i} \psi_{i}\left(p_{i}\right) S\left(p_{i}\right) \\
& \text { for a basis of "healthy" wavepackets } \psi_{i}\left(p_{i}\right)
\end{aligned}
$$

(Since we don't know how to compute correlators in the boundary gauge theory, a warm-up test: if we use a bulk theory to define the boundary correlators, can we recover the S-matrix of that bulk theory?)
(Since we don't know how to compute correlators in the boundary gauge theory, a warm-up test: if we use a bulk theory to define the boundary correlators, can we recover the S-matrix of that bulk theory?)

Immediate problem:

$$
f(b) \leftrightarrow \psi_{N N}
$$

$$
\sim \quad \int d x \psi_{N N} \psi_{N N} G_{B u l k}
$$

this integral dominated near the boundary

lack offocus

So, use normalizable solutions?

So, use normalizable solutions?

problem:

infinite \#
collisions

Only obvious way to proceed: compromise

 compact sources -- "boundary compact wavefunctions"
(Gary, SBG, and Penedones, arXiv:0903.4437)

Indeed, consider:

$$
f_{i}(b) \sim L\left(b-b_{i}\right) e^{i \omega_{i} t}
$$

cpet support

Indeed, consider:

There is a limit:
(־Polchinski, Susskind)

$$
\begin{gathered}
\eta \rightarrow \infty \\
R=\eta^{2} \hat{R} \\
\omega=\text { fixed } \\
\Delta t=\eta \widehat{\Delta t} \\
\Delta \theta=\widehat{\Delta \theta} / \eta
\end{gathered}
$$

$f_{i}(b) \sim L\left(b-b_{i}\right) e^{i \omega_{i} t}$
$\xlongequal{\nearrow}$
giving plane waves in flat space
cpet support

Recall the target:

$$
S=1+i(2 \pi)^{D} \delta\left(\sum p_{i}\right) T
$$

$$
T \propto \frac{G_{D} s^{2}}{t}
$$

If isolate "by hand"
$\left\langle\mathcal{O}\left(b_{1}\right) \cdots \mathcal{O}\left(b_{4}\right)\right\rangle_{\text {scatt }}$
can show
$\mathcal{A}_{\text {scatt }}=\int \prod_{i=1}^{4}\left[d b_{i} f_{i}\left(b_{i}\right)\right]\left\langle\mathcal{O}\left(b_{1}\right) \cdots \mathcal{O}\left(b_{4}\right)\right\rangle_{\text {scatt }}$

$$
i(2 \pi)^{D} \delta\left(\sum_{i} p_{i}\right) T
$$

if the correlator has a certain

 singularity structure(\sim delta function)
$\left\langle\mathcal{O}\left(b_{1}\right) \cdots \mathcal{O}\left(b_{4}\right)\right\rangle \propto \frac{\mathcal{A}(z, \bar{z})}{b_{13}^{\Delta_{1}} b_{24}^{\Delta_{2}}}$
cross ratios: $\quad z \bar{z}=\frac{b_{13} b_{24}}{b_{12} b_{34}} \quad(1-z)(1-\bar{z})=\frac{b_{14} b_{23}}{b_{12} b_{34}}$
singularity: $z=\bar{z}$

$\left\langle\mathcal{O}\left(b_{1}\right) \cdots \mathcal{O}\left(b_{4}\right)\right\rangle \propto \frac{\mathcal{A}(z, \bar{z})}{b_{13}^{\Delta_{1}} b_{24}^{\Delta_{2}}}$
cross ratios: $\quad z \bar{z}=\frac{b_{13} b_{24}}{b_{12} b_{34}} \quad(1-z)(1-\bar{z})=\frac{b_{14} b_{23}}{b_{12} b_{34}}$
singularity: $z=\bar{z}$

Can extract (quíte explicit, and nontriv.) T from coeff of singularity in

$$
\mathcal{A}_{\text {scatt }}=\int \prod_{i=1}^{4}\left[d b_{i} f_{i}\left(b_{i}\right)\right]\left\langle\mathcal{O}\left(b_{1}\right) \cdots \mathcal{O}\left(b_{4}\right)\right\rangle_{\text {scatt }}
$$

- this is very suggestive.
- but: how do we know that the true CFT correlators have such a singularity?
- this is a necessary condition for the correct flat-space kinematics (delta funtion)
- this is very suggestive.
- but: how do we know that the true CFT correlators have such a singularity?
- this is a necessary condition for the correct flat-space kinematics (delta funtion)

Heemskerk, Penedones, Polchinskí, Sully:
Conjecture/prelim. arguments: any CFT that has a large- N expansion, and in which all single-trace operators of spin greater than two have parametrically large dimensions, exhibits such behavior

- it's certainly important to investigate whether this is true.
- if it is, declare victory?
- it's certainly important to investigate whether this is true.
- if it is, declare victory?
- not so fast!
- it's certainly important to investigate whether this is true.
- if it is, declare victory?
- not so fast!

Gary, SBG, arXív:0904.3544:

- plane-wave limít is rather singular
- ordinarily control by using well-defined ("regular") wavepackets
- for finite but large R, can we reproduce these from boundary-compact wavepackets?

Not necessarily!
boundary compact \Rightarrow low-energy tails become power law tails, in posítion space; don't vanish in $R=$ infinity limit
thus, one doesn't have an argument that well-localized (regular) wavepackets can be produced from welldefined (boundary compact) boundary data

Example of possible effect:

AdS, top down view

$$
\mathcal{A} \sim \frac{1}{\theta^{2}}
$$

Rutherford

experiment

Example of possible effect:
Ads, top down view $\mathcal{A} \sim \frac{1}{\theta^{2}}$

- Part of the issue: separating

$$
\langle\mathcal{O} \cdots \mathcal{O}\rangle_{\text {scatt }} \text { from }\langle\mathcal{O} \cdots \mathcal{O}\rangle_{\text {direct }}
$$

- possible indication: need to excite N^{2} matrix degrees of freedom? (Some indications all along)
- but why should these produce local amplítudes on scales <<R??

To summarize the AdS/CFT discussion:
We have found some nontrivial tests for whether the CFT produces local dynamics on scales $\ll R$

1. Presence of certain singularities $\quad \mathcal{A} \sim \frac{T}{(z-\bar{z})^{2 \beta}} h(s, t, u)$ with $T \sim T_{b u l k}$ is this structure present in the CFT?
2. Complete space of "good" bulk wavepackets; absence of tail effects, so can properly resolve S-matrix

To summarize the AdS/CFT discussion:
We have found some nontrivial tests for whether the CFT produces local dynamics on scales $\ll R$

1. Presence of certain singularities $\quad \mathcal{A} \sim \frac{T}{(z-\bar{z})^{2 \beta}} h(s, t, u)$ with $T \sim T_{\text {bulk }}$ is this structure present in the CFT?
2. Complete space of "good" bulk wavepackets; absence of tail effects, so can properly resolve S-matrix These are nontrivial; it is a very interesting question how (and whether) the CFT can produce finegrained bulk dynamics

To summarize the broader string discussion:

- perturbative string theory (and its "finiteness") doesn't obviously address our set of questions
- there is so far no substantial indication of a role for extendedness of strings (or branes ...)
- it is very non-trivial to show that non-perturbative duals sharply capture complete bulk dynamics (do they?)

Whether strings (or LQG) ultimately answer these questions, can we see outlines of the answers?

Whether strings (or LQG) ultimately answer these questions, can we see outlines of the answers?

- We see strong indications for new effects at

$$
\text { scales } \sim R_{S}(E)
$$

- Nonperturbative gravity (distinct from, e.g. string extendedness?)
- Good indications: breakdown of locality, as conventionally formulated

Reasons to question locality, at $\sim R_{S}(E)$:

Reasons to question locality, at $\sim R_{S}(E)$:

1) information paradox

if keep Lorentz invariance and QM :

On scale :

$$
R_{S} \propto\left(G_{D} M\right)^{1 /(D-3)}
$$

$$
\ggg l_{p}
$$

2) growth of size in scattering

$$
\theta_{c} \sim\left[\frac{R_{S}(E)}{b}\right]^{D-3}
$$

indicates gravitational growth of object (though not nonperturbative regime)
(connection to "nonpolynomiality" - momentarily)

3) lack of local observables

approximately local observables fail in same regime

Want to better understand physics - a basic set of questions:

1) Where does local QFT fail?

Correspondence boundary
2) What is the mechanism?
3) What physical/mathematical framework replaces QFT, and how might locality emerge from it in familiar contexts?

Some previous proposals for a correspondence boundary for gravity:
planckian curvature:

$$
\mathcal{R}<M_{P}^{2}
$$

$\begin{gathered}\text { string uncertainty principle: } \\ \text { (Veneziano/Gross) }\end{gathered} \quad \Delta X \geq \frac{1}{\Delta p}+\alpha^{\prime} \Delta p$
modified dispersion:

$$
p<M_{p}
$$

holographic (information) $S \leq A / 4 G_{N}$ $\} 1$ particle multiparticle bounds:

Compare CM/QM

dynamical descript.

validity

CM:

$$
x(t), p(t)
$$

$\Delta x \Delta p>1$

Compare CM/QM

dynamical descript.

validity

CM:

$$
x(t), p(t)
$$

$\Delta x \Delta p>1$
QFT

$$
\phi_{x, p} \phi_{y, q}|0\rangle
$$

+GR:
(mín uncertainty wavepackets)

Compare CM/QM

dynamical descript.
CM:

$$
x(t), p(t)
$$

$$
\phi_{x, p} \phi_{y, q}|0\rangle \quad \quad|x-y|^{D-3}>G|p+q|
$$

(min uncertainty wavepackets)
Note: not single particle (e.g. spacetime uncertainty)

Compare CM/QM

dynamical descript.
 validity

CM:

$$
x(t), p(t)
$$

$\Delta x \Delta p>1$
QFT +GR:

$$
\begin{gathered}
\phi_{x, p} \phi_{y, q}|0\rangle \\
\text { (mín uncertainty wavepackets) }
\end{gathered}
$$

$$
|x-y|^{D-3}>G|p+q|
$$

Note: not single particle (e.g. spacetime uncertainty)

"locality bound"

(generalizations: N -particle; dS)

SBG \& Lippert; hep-th/0605196;

Correspondingly, mechanism: "delocalization w.r.t. semiclassical geometry, intrinsic to unitary dynamics of nonperturbative gravity"
~"nonlocalíty principle"
contrast with: extended strings (or branes)
(correspondingly, clear distinction between "string uncertainty principle" and the locality bound)

How else to proceed?

How else to proceed?

- How do we probe/quantify locality? can ít be absent as a fundamental property, yet emerge in an approximate sense?

How else to proceed?

- How do we probe/quantify locality? can it be absent as a fundamental property, yet emerge in an approximate sense?
- local observables
- polynomial behavior of HE scattering

Indeed, independently interesting problem:

The gravitational S-matrix

- conjecture: well defined in "the" theory of gravity
- what are its general properties, consistent with unitary quantum evolution + basic features of gravity?
- can its study provide information about the principles of the underlying theory?
(remember the Veneziano amplítude ...)
localíty \longleftrightarrow polynomiality?

SBG and Srednicki, arXiv:0771.5012 SBG and Porto, arXiv:0908.0004

Some basic features:

- different characteristic behavior in different regimes
$2 \rightarrow 2$ scattering: PW expansion:

$$
T(s, t)=(\text { const }) E^{4-D} \sum_{l=0}^{\infty}(l+\nu) C_{l}^{\nu}(\cos \theta)\left[e^{2 i \delta_{l}(s)-2 \beta_{l}(s)}-1\right]
$$

$$
\nu=\frac{D-3}{2}
$$

$2 \rightarrow 2$ scattering: $\quad P W$ expansion:

$$
T(s, t)=(\text { const }) E^{4-D} \sum_{l=0}^{\infty}(l+\nu) C_{l}^{\nu}(\cos \theta)\left[e^{2 i \delta_{l}(s)-2 \beta_{l}(s)}-1\right]
$$

Born, eikonal regions: "weak gravity" regime; can infer features of δ_{l}, β_{l} from preceding considerations

$$
\begin{aligned}
\text { E.g.: } & \delta_{l}^{e i k} \sim \frac{E^{D-2}}{l^{D-4}} \\
& \beta_{l}^{b r} \sim \frac{E^{3 D-6}}{l^{3 D-10}} \quad \cdots \text { soft gravitons }
\end{aligned}
$$

+ other "model dependent" effects (string excítation, etc.)

Strong gravity/black hole region: $l \lesssim E R_{S}(E)=L$

1. Black hole Ansatz:

$$
\beta_{l} \approx \frac{S(E, l)}{4}
$$

(Bekensteín-Hawking entropy approx. thermal description)
2. Black holes ~ resonances

$$
\frac{\Gamma}{M} \sim \frac{1}{R M} \sim \frac{1}{S}
$$

$$
N_{\text {accessible }}(M, M+1 / R) \sim S(M)
$$

\Rightarrow information about $\delta_{l} \quad(\lesssim \pi S(E))$ (\sim Levinson's hm, but multichannel)

Features:

- significant indications, amplitudes not polynomial:

$$
T(s, t) \sim e^{s^{\alpha} t^{\beta}}
$$

plausibly associated w/ lack of usual locality?
related: viol. of Froissart, eg $\sigma_{B H} \sim\left[R_{S}(E)\right]^{D-2}$
... growth of range of gravity $w /$ energy

- interesting constraints from crossing crossing more nontrivial than in massive thy; provides constraints on nonpoly behavior ~bdd. in physical region, e.g. $t<0, s c p l x$ (not "too" nonlocal)

This is "outside" (asymptotic) viewpoint. To discuss "inside" (cosmology, black hole) need ~ local observables

Indeed, locality - QFT:

$$
[\mathcal{O}(x), \mathcal{O}(y)]=0,(x-y)^{2}>0
$$

Diff invariance $\Rightarrow \quad$ None in gravity!

For example, to properly formulate the information paradox, need to discuss inside, approximately local description:

Possible resolution: Relational approach:

"proto-local observables"

 see: SBG, Marolf, Hartle; Gary \& SBG: 2d, concreteBasic idea:

$$
\begin{gathered}
\mathcal{O}=\int d^{4} x \sqrt{-g} B(x) O(x) \\
\langle B(x)\rangle=b(x)
\end{gathered}
$$

for appropriate background: $\quad\langle 0\rangle \approx O\left(x_{0}\right)$

localization relative to background

But: - localization only approximate

- must include background/observer

Can we find a flaw in nice slice argument, and see where Hawking went wrong?

Some thoughts: hep-th/0606146

Sharp computation of $S_{H R}$

requires fine-grained, local $|\psi\rangle_{N S}$
Two potential obstacles:

1) observing background \Rightarrow large mods. to $|\psi\rangle_{N S}$
2) backreaction of fluctuations \Rightarrow
large mods. to $|\psi\rangle_{N S}$
Both by $\tau_{\text {Page }} \sim R_{S} S_{B H}$
(literal CM/OM analogy may be another out...)

- Apparent signals of pert. thy. breakdown; proposed resolution of information paradox - Non-pert. completion would be required to describe information "escape"/ restore unítarity but, a clue ...
- Interestingly, there are parallel arguments in dS,

suggesting LQFT incomplete after $\tau \sim R_{d S} S_{d S}$
(Likely related argument: Arkani-Hamed ... Villadoro: arXiv:0704.1814)

In general, expect this set of considerations to be important in cosmology
Work w/ Marolf on dS, etc. arXiv:0705.1178, and WIP $\times 2$

- More general limitations on local QFT for volumes > $R_{d S}^{4} e^{S_{d S}}$
- Investigation of proto-local observables in ds deal w/ constraints, linearization stability
- Measurement for protolocal observables

To sum up, should be probing limits of local quantum field theory description, likely on scales $>l_{P}$, in certain círcumstances
"unitarity restored at price of locality"

To sum up, should be probing limits of local quantum field theory description, likely on scales $>l_{P}$, in certaín círcumstances
"unítarity restored at price of locality"

How to make more concrete progress?
(\sim How to invent QM w/out experiment?)

To sum up, should be probing limíts of local quantum field theory description, likely on scales $\gg l_{P}$, in certaín círcumstances

"unitarity restored at price of locality"

How to make more concrete progress?
(\sim How to invent QM w/out experiment?)

- investigate properties of S-matrix
- approximately local observables, and limitations
- Another ingredient: what is a general enough quantummechanical framework to incorporate these ideas? More general than Hartle's "generalized QM"

How can we have a theory w/ features of gravity,

1) Consistent (causal)
2) Quantum mechanical
3) Nonlocal
4) Nearly-local
\}essential tension
(ie. behaves locally in usual lowenergy circumstances)
... a highly non-trivial set of conditions to satisfy!
This, plus relevant gedanken experiments: guides to such a "Non-Local (but Nearly-Local) Mechanics"?
