

Ion-beam sputtering deposition of DLC thin films

Antonio Valentini, Piet Verwilligen

INFN sez. Bari

Bari December 17th 2018

Ion-beam sputtering Setup

- Room Temperature (23°C)
- Vacuum 10⁻⁵ mbar
- Pre-treatment with O• / Ar• radicals
- Ion Beam Source ($\sim 1200 \, \text{eV}$)
- Assistant Source ($\sim 100\,\text{eV})$
- Graphite Target: Ø10 cm
- Substrate: $6 \times 6 \, \text{cm}^2$
- Quartz balance \rightarrow Film thickness
- Deposition speed \sim 100 nm / hour

FIGURE 1 Schematic representation of the dual ion-beam sputtering deposition system used: (1) sputtering ion-beam sources, (2) plasma bridge neutralizers, (3) assistance ion-beam source, (4) targets, (5) quartz microbalance, (6) shutter, (7) substrate holder, (8) turbomolecular pump, (9) flow control unit, (10) argon supply

Ion-beam sputtering Setup

- Room Temperature (23°C)
- Vacuum 10⁻⁵ mbar
- Pre-treatment with O• / Ar• radicals
- Ion Beam Source ($\sim 1200\,\text{eV})$
- Assistant Source ($\sim 100 \, \text{eV}$)
- Graphite Target: Ø10 cm
- Substrate: $6 \times 6 \text{ cm}^2$
- $\bullet \ \ \mathsf{Quartz} \ \ \mathsf{balance} \rightarrow \mathsf{Film} \ \mathsf{thickness}$
- $\bullet~$ Deposition speed $\sim 100\,\text{nm}$ / hour

2 / 14

DLC Deposition Parameters

Number	1	2	3		
Sample	1819	1820	1821		
	0•	0•	Ar●		
	10 cc/min	10 cc/min	10 cc/min		
Des Trestment	900 s	300 s	300 s		
Fie-freatment	0.5 A	0.7 A	2.6 A		
	100 eV	100 eV	100 eV		
Main Ion Boom	Ar	Ar	Xe		
	2.5 cc/min	2.5 cc/min	2.5 cc/min		
Main Ion Beam	1200 eV	1200 eV	1200 eV		
	80 mA	60 mA	60 mA		
	Ar	Ar	Ar	N•	
	7 cc/min	7 cc/min	5 cc/min	2 cc/min	
Aux Ion Beam	60 eV	100 eV	50 eV		
	0.5 A	1.17 A	0.22 A		
	all time	first 5 nm	all time		
Doning			N•		
Doping	-	-	2 cc/min		
Thickness	100 nm	100 nm	100 nm		
	3600 s	2700 s	4500 s		
	60 min	45 min	75 min		

The Samples

1819 - 1820 - 1821

Ion-beam sputtering deposition of DLC thin films

http://www.trekinc.com/pdf/1005_Resistivity_Resistance.pdf

lon-beam sputtering deposition of DLC thin films

5 / 14

- Sample size: $6 \times 6 \text{ cm}^2$
- Cu-bars: $6 \times 0.5 \times 0.5 \text{ cm}^3$
- D = 6 cm; L = 5 cm
- Sample on soft tissue (mouse pad) to increase contact under pressure
- Orientations: Horizontal & Vertical
- Insulation Tester: Megger MIT 410
- Multimeter: Agilent 34401A

			Megger (H)			Megger (V)		Agilent (H)		Agilent (V)		
N°	Sample	U	I _S	R _S	PS	IS	R _S	PS	RS	PS	RS	ρ_S
		[V]	[µA]	[MΩ]	$[M\Omega/\Box]$	[µA]	[MΩ]	$[M\Omega/\Box]$	[MΩ]	$[M\Omega/\Box]$	[MΩ]	[MΩ/□]
1	1819	58 V	0.18	315	378	0.17	333	404	75.3(*)	452	82.0(*)	492
2	1820	58 V	0.66	88	106	0.60	95	114	104	125	104	125
3	1821	58 V	2.87	20	24	2.53	23	27	22.25	26.7	27.5	33.0

Resistivity Uniformity Measurements

1821 Uniformity: $\sigma/\mu = 5.0\%$

Ion-beam sputtering deposition of DLC thin films

x (cm)

Surface Resistivity Time Evolution

- Measured Surface Resistivity in different days
- Measured in Horizontal position, Vertical position and made average of Uniformity Measurement
- Stable for Sample 1819, 1821, upgoing for 1820
- High values obtained for Uniformity Measurement not reproduced with single Measurements for 1820
- Surface Resistivity going up for 1820, I might have damaged 1820 on 19/12

Surface Resistivity Time Evolution

Ion-beam sputtering deposition of DLC thin films

10 / 14

Observations

- Resistivity Measurement depends on pressure extracted on Cu bars, which influences contact Cu bar – Substrate
- Good agreement between *Overall* measurement and *Small* measurements for samples 1819 & 1821, factor 2 difference for sample 1820
- Uncertainty of 5% on Surface Resistivity, dominated by uncert on position / lengths (assuming 0.5 mm uncertainty on L, D)
- Promising Uniformity of 3–5 %
- Derivation of formulae on slide 5 indicate that error is larger for concentric electrode setup?

Future work

- Want to make new Mask to allow $10 \times 10 \text{ cm}^2$ samples (see fig next slide)
- Want to estimate error made by using only Multimeter w.r.t. Multimeter + Cu bars to estimate surface resistivity
- Need a mechanical tool to exercise uniform pressure on bars + keep the distance fixed at high precision
- Deposit / Sputter conductive Strips on substrate before sputtering DLC to allow for good electrical contact. Need to make Mask.

Deposition of $1\,\mu m$ Cu on top of DLC

Substrate Holder

