

Joint 9th IDPASC SCHOOL and XXXI INTERNATIONAL SEMINAR of NUCLEAR and SUBNUCLEAR PHYSICS "Francesco Romano" 28/5 - 3/6 2019

HEP Theory (part 2)

Michelangelo L. Mangano Theory Department, CERN, Geneva Key question for the future developments of HEP: Why don't we see the new physics we expected to be present around the TeV scale ?

- Is the mass scale beyond the LHC reach ?
- Is the mass scale within LHC's reach, but final states are elusive to the direct search ?

These two scenarios are a priori equally likely, but they impact in different ways the future of HEP, and thus the assessment of the physics potential of possible future facilities

Readiness to address both scenarios is the best hedge for the field:

- precision
- sensitivity (to elusive signatures)
- extended energy/mass reach

<u>Remark</u>

the discussion of the **future** in HEP must start from the understanding that there is no experiment/facility, proposed or conceivable, in the lab or in space, accelerator or nonaccelerator driven, which can **guarantee discoveries** beyond the SM, and **answers** to the big questions of the field The physics potential (the "case") of a future facility for HEP should be weighed against criteria such as:

(1) the guaranteed deliverables:

 knowledge that will be acquired independently of possible discoveries (the value of "measurements")

(2) the **exploration potential:**

- target broad and well justified BSM scenarios but guarantee sensitivity to more exotic options
- exploit both direct (large Q^2) and indirect (precision) probes
- (3) the potential to provide conclusive **yes/no answers** to relevant, broad questions.

What we want from a future collider

- <u>Guaranteed deliverables</u>:
 - study of Higgs and top quark properties, and exploration of EWSB phenomena, with the best possible precision and sensitivity
- Exploration potential:
 - exploit both direct (large Q²) and indirect (precision) probes
 - enhanced mass reach for direct exploration
 - E.g. match the mass scales for new physics that could be exposed via indirect precision measurements in the EW and Higgs sector
- <u>Provide firm Yes/No answers</u> to questions like:
 - is there a TeV-scale solution to the hierarchy problem?
 - is DM a thermal WIMP?
 - could the cosmological EW phase transition have been 1st order?
 - could baryogenesis have taken place during the EW phase transition?
 - could neutrino masses have their origin at the TeV scale?

• ..

Higgs observables: decay BRs

Tree-level couplings

Loop-level couplings

$$H^{0} X X_{SM} = t,b,c X_{BSM} = T, stop, ...?$$

$$H^{0} \xrightarrow{X^{\pm}} X^{\pm} \xrightarrow{X^{\pm}} X_{SM} = t, W^{\pm} X_{BSM} = T, stop, chargino, ...?$$

Higgs observables: production rates

Hadronic collisions

Sensitivity of various Higgs couplings to examples of beyond-the-SM phenomena

arXiv:1310.8361

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$2 \mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

=> the goal should be (sub)percent precision!

Extracting couplings from measurements

Example

$$\sigma \left(pp/ee \to ZH[\to ZZ^*] \right) \propto g_{HZZ}^2 \times \frac{g_{HZZ}^2}{\Gamma_H}$$
1 measurement 2 parameters!

$$\sigma \left(pp/ee \to ZH[\to b\bar{b}] \right) \propto g_{HZZ}^2 \times \frac{g_{Hbb}^2}{\Gamma_H}$$

new measurement, but
 more parameter...

 $B(H \rightarrow b\bar{b})$

 $B(H \rightarrow ZZ^*)$

... little progress, except we now know

 g_{HZZ}^2 σ_A σ_R

Overall constraint: $\sum_{V} B(H \to X) = 1$

Therefore:

How can we hope to detect ALL possible decays of the Higgs boson??

If the goal is to test its properties, we cannot make assumptions, and must be open to possible unexpected decays, possibly invisible, like $H \rightarrow dark$ matter...

An $\ell^+\ell^-$ collider provides the solution

 $p(H) = p(e^-e^+) - p(Z)$

=> [p(e⁻e⁺) – p(Z)]² peaks at m²(H)

reconstruct Higgs events independently of the Higgs decay mode!

 $N(ZH) \propto \sigma(ZH) \propto g_{HZZ}^2$

N(ZH[→ZZ]) ∝ σ (ZH) x BR(H→ZZ) ∝ G_{HZZ}^2 × G_{HZZ}^2 / Γ(H)

=> absolute measurement of width and couplings

 $m_{recoil} = \sqrt{[p(e^-e^+) - p(Z)]^2}$

FCC-ee

	FCC-ee 240 GeV	FCC- ee 350 GeV
Total Integrated Luminosity (ab-1)	5	1.5
# Higgs bosons from e⁺e⁻→HZ	1,000,000	200,000
# Higgs bosons form fusion process	25,000	40,000

Higgs couplings: beyond the HL-LHC

Collider	HL-LHC	HL-LHC update	ILC ₂₅₀	CLIC ₃₈₀	LEP3 ₂₄₀	$CEPC_{250}$		FCC-ee ₂₄₀	+365
Lumi (ab^{-1})	3	3	2	0.5	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	25	15	7	6	7	3	+4	
$\delta\Gamma_{ m H}/\Gamma_{ m H}$ (%)	SM	50	3.6	6.3	3.6	2.6	2.7	1.3	1.1
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	3.5	1.5	0.3	0.40	0.32	0.25	0.20	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	3.5	1.7	1.7	0.8	1.7	1.2	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	8.2	3.7	1.7	1.3	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	SM	2.3	4.1	2.3	1.8	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}~(\%)$	3.9	2.5	2.2	2.1	2.1	1.4	1.6	1.01	0.90
$\delta g_{ m HTT}/g_{ m HTT}$ (%)	6.5	1.9	1.9	2.7	1.9	1.4	1.4	0.74	0.67
$\delta g_{ m H}$ $\mu \mu / g_{ m H}$ $\mu \mu (\%)$	5.0	4.3	14.1	n.a.	12	6.2	10.1	9.0	3.8
$\delta g_{ m H}\gamma\gamma/g_{ m H}\gamma\gamma$ (%)	3.6	1.8	6.4	n.a.	6.1	4.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}~(\%)$	4.2	3.4	_	_	_	_	_	_	3.1
BR _{EXO} (%)	SM	SM	< 1.7	< 3.0	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0

Table 1: Relative statistical uncertainty on the Higgs boson couplings and total decay width, as expected from the FCC-ee data, and compared to those from HL-LHC and other e^+e^- colliders exploring the 240-to-380 GeV centre-of-mass energy range. All numbers indicate 68% CL intervals, except for the last line which gives the 95% CL sensitivity on the "exotic" branching fraction, accounting for final states that cannot be tagged as SM decays. The FCC-ee accuracies are subdivided in three categories: the first sub-column give the results of the model-independent fit expected with 5 ab^{-1} at 240 GeV, the second sub-column in bold – directly comparable to the other collider fits – includes the additional 1.5 ab^{-1} at $\sqrt{s} = 365$ GeV, and the last sub-column shows the result of the combined fit with HL-LHC. The fit to the HL-LHC projections alone (first column) requires two additional assumptions to be made: here, the branching ratios into $c\bar{c}$ and into exotic particles are set to their SM values.

* M. Cepeda, S. Gori, P. J. Ilten, M. Kado, and F. Riva, (conveners), et al, *Higgs Physics at the HL-LHC and HE-LHC*, CERN-LPCC-2018-04, <u>https://cds.cern.ch/record/2650162</u>.

Remarks and key messages

- Updated HL-LHC projections bring the coupling sensitivity to the few-% level. They are obtained by extrapolating current analysis strategies, and are informed by current experience plus robust assumptions about the performance of the phase-2 upgraded detectors in the high pile-up environment
 - Projections will improve as new analyses, allowed by higher statistics, will be considered

- I. To significantly improve the expected HL-LHC results, future facilities must push Higgs couplings' precision to the sub-% level
- 2. Event rates higher than what ee colliders can provide are needed to reach sub-% measurements of couplings such as HYY, Hµµ, HZY, Htt

The unique contributions of a 100 TeV pp collider to Higgs physics

- <u>Huge Higgs production rates:</u>
 - access (very) rare decay modes
 - push to %-level Higgs self-coupling measurement
 - new opportunities to reduce syst uncertainties (TH & EXP) and push precision
- Large dynamic range for H production (in pTH, m(H+X), ...):
 - new opportunities for reduction of syst uncertainties (TH and EXP)
 - different hierarchy of production processes
 - \bullet develop indirect sensitivity to BSM effects at large Q^2 , complementary to that emerging from precision studies (eg decay BRs) at Q~m_H
- <u>High energy reach</u>
 - direct probes of BSM extensions of Higgs sector
 - SUSY Higgses
 - Higgs decays of heavy resonances
 - Higgs probes of the nature of EW phase transition

^{• . . .}

SM Higgs: event rates in pp@100 TeV

	gg→H	VBF	WH	ZH	ttH	HH
N100	24 x 10 ⁹	2.1 x 10 ⁹	4.6 x 10 ⁸	3.3 x 10 ⁸	9.6 x 10 ⁸	3.6 x 10 ⁷
N100/N14	180	170	100	110	530	390

 $N_{100} = \sigma_{100 \text{ TeV}} \times 30 \text{ ab}^{-1}$ $N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$

H at large рт

Hierarchy of production channels changes at large p_T(H):

- $\sigma(ttH) > \sigma(gg \rightarrow H)$ above 800 GeV
- $\sigma(VBF) > \sigma(gg \rightarrow H)$ above 1800 GeV

$gg \rightarrow H \rightarrow \gamma \gamma$ at large p_T

	р _{т,min} (GeV)	δ _{stat}
At LHC, S/B in the $H \rightarrow \gamma \gamma$ channel is O(few %)	100	0.2%
At FCC, for $p_T(H) > 300$ GeV, S/B~I	400	0.5%
Potentially accurate probe of the H pt spectrum	600	1%
up to large pt	1600	10%

$gg \rightarrow H \rightarrow ZZ^* \rightarrow 4I$ at large p_T

- S/B ~ I for inclusive production at LHC
- Practically bg-free at large pT at 100 TeV, maintaining large rates

р _{т,min} (GeV)	δ _{stat}
100	0.3%
300	1%
1000	10%

Table 4.4: Target precision for the parameters relative to the measurement of various Higgs decays, ratios thereof, and of the Higgs self-coupling λ . Notice that lagrangian couplings have a precision that is typically half that of what is shown here, since all rates and branching ratios depend quadratically on the couplings.

Observable	Parameter	Precision (stat)	Precision (stat+syst+lumi)
$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \to \gamma \gamma)$	$\delta \mu / \mu$	0.1%	1.45%
$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \rightarrow \mu\mu)$	$\delta \mu / \mu$	0.28%	1.22%
$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \rightarrow 4\mu)$	$\delta \mu / \mu$	0.18%	1.85%
$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \rightarrow \gamma \mu \mu)$	$\delta \mu / \mu$	0.55%	1.61%
$\mu = \sigma(HH) \times B(H \rightarrow \gamma \gamma) B(H \rightarrow b\bar{b})$	$\delta\lambda/\lambda$	5%	7.0%
$R = B(H \rightarrow \mu\mu)/B(H \rightarrow 4\mu)$	$\delta R/R$	0.33%	1.3%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu)$	$\delta R/R$	0.17%	0.8%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2\mu)$	$\delta R/R$	0.29%	1.38%
$R = B(H \rightarrow \mu\mu\gamma)/B(H \rightarrow \mu\mu)$	$\delta R/R$	0.58%	1.82%
$R = \sigma(t\bar{t}H) \times B(H \rightarrow b\bar{b}) / \sigma(t\bar{t}Z) \times B(Z \rightarrow b\bar{b})$	$\delta R/R$	1.05%	1.9%
$B(H \rightarrow invisible)$	B@95%CL	1×10^{-4}	2.5×10^{-4}

Importance of standalone precise "ratios-of-BRs" measurements:

- independent of α_s , m_b , m_c , Γ_{inv} systematics
- sensitive to BSM effects that typically influence BRs in different ways. Eg

```
BR(H \rightarrow \gamma \gamma) / BR(H \rightarrow ZZ^*)
```

loop-level tree-level

BR(H \rightarrow µµ)/**BR(H** \rightarrow **ZZ*)**

2nd gen'n Yukawa

gauge coupling

$BR(H \rightarrow \gamma \gamma) / BR(H \rightarrow Z \gamma)$

different EW charges in the loops of the two procs

BR(H \rightarrow inv)/**BR(H** \rightarrow $\gamma\gamma$)

tree-level neutral

loop-level charged

Higgs couplings after FCC-ee / hh

	HL-LHC	FCC-ee	FCC-hh
δГн / Гн (%)	SM	1.3	tbd
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17	tbd
δднww / днww (%)	1.7	0.43	tbd
δд _{ньь} / д _{ньь} (%)	3.7	0.61	tbd
δg _{Hcc} / g _{Hcc} (%)	~70	1.21	tbd
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01	tbd
δg _{Ηττ} / g _{Ηττ} (%)	1.9	0.74	tbd
δg _{Hµµ} / g _{Hµµ} (%)	4.3	9.0	0.65 (*)
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9	0.4 (*)
δg _{Htt} / g _{Htt} (%)	3.4	~10 (indirect)	0.95 (**)
δg _{HZγ} / g _{HZγ} (%)	9.8	—	0.9 (*)
δдннн / дннн (%)	50	~44 (indirect)	6.5
BR _{exo} (95%CL)	$BR_{inv} < 2.5\%$	< 1%	BR _{inv} < 0.025%

* From BR ratios wrt B(H→4lept) @ FCC-ee

** From pp \rightarrow ttH / pp \rightarrow ttZ, using B(H \rightarrow bb) and ttZ EW coupling @ FCC-ee

Extracting Higgs self-coupling from gg→HH at FCC-hh

... these would come into play if we eventually need to decode the origin of a deviation, as possible alternative sources of new physics

Direct measurement of ttH coupling: from $R_t = \sigma(ttH)/\sigma(ttZ)$

FCC-hh can measure R_t with $\Delta R_t/R_t \sim 2\%$

Higgs self-coupling, gg→HH

Figure 10.4: Expected precision on the Higgs self-coupling modifier κ_{λ} with no systematic uncertainties (only statistical), 1% signal uncertainty, 1% signal uncertainty together with 1% uncertainty on the Higgs backgrounds (left) and assuming respectively $\times 1$, $\times 2$, $\times 0.5$ background yields (right).)

Example of precision targets: constraints on models with Ist order phase transition

$$\begin{split} V(H,S) &= -\mu^2 \left(H^{\dagger} H \right) + \lambda \left(H^{\dagger} H \right)^2 + \frac{a_1}{2} \left(H^{\dagger} H \right) S \\ &+ \frac{a_2}{2} \left(H^{\dagger} H \right) S^2 + \frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4. \end{split}$$

Combined constraints from precision Higgs measurements at FCC-ee and FCC-hh Direct detection of extra Higgs states at FCC-hh

Precision vs sensitivity

- We often talk about "**precise**" Higgs measurements. What we actually aim at is "**sensitive**" tests of the Higgs properties, where *sensitive* refers to the ability to reveal BSM behaviours.
- **Sensitivity** may not require extreme precision
 - Going after "sensitivity", rather than just precision, opens itself new opportunities ...

High-Q² observables : precision vs dynamic reach

$$L = L_{SM} + \frac{1}{\Lambda^2} \sum_k \mathcal{O}_k + \cdots$$

$$O = \left| \left\langle f | L | i \right\rangle \right|^2 = O_{SM} \left[1 + O(\mu^2 / \Lambda^2) + \cdots \right]$$

For H decays, or inclusive production, $\mu \sim O(v, m_H)$

$$\delta O \sim \left(\frac{v}{\Lambda}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{\Lambda}\right)^2 \Rightarrow \text{precision probes large } \Lambda$$

e.g. $\delta O = 1\% \Rightarrow \Lambda \sim 2.5 \text{ TeV}$

For H production off-shell or with large momentum transfer Q, $\mu \sim O(Q)$

$$\delta O \sim \left(\frac{Q}{\Lambda}\right)^2$$
 \Rightarrow kinematic reach probes large Λ even if precision is "low"

e.g. $\delta O = 10\%$ at Q = 1.5 TeV $\Rightarrow \Lambda \sim 5$ TeV

<u>Complementarity between precise measurements at ee</u> <u>collider and large-Q studies at 100 TeV</u>

Example: high mass $VV \rightarrow HH$

Table 4.5: Constraints on the HWW coupling modifier κ_W at 68% CL, obtained for various cuts on the di-lepton pair invariant mass in the $W_L W_L \rightarrow HH$ process.

$m_{l^+l^+}$ cut	> 50 GeV	> 200 GeV	$> 500 { m ~GeV}$	> 1000 GeV	$\kappa - \frac{g_{HWW}}{g_{HWW}}$
$\kappa_W \in$	[0.98,1.05]	[0.99,1.04]	[0.99,1.03]	[0.98,1.02]	$\kappa_W - \frac{1}{g_{HWW}^{SM}}$

Example: high mass DY

Farina et al, arXiv:1609.08157

Direct discovery reach: the power of 100 TeV

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

$\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0} t \tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{1}^{0} \text{ or } t \tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0} \text{ or } t \tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0} \tau \tau \tilde{G}$ $/ \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_{1}^{0}$ h	S $0 e, \mu$ mono-jet $0 e, \mu$ $3 e, \mu$ $ee, \mu\mu$ $0 e, \mu$ $3 e, \mu$ $0 -1 e, \mu$ $3 e, \mu$ $0 -1 e, \mu$ $1 \tau + 1 e, \mu, \tau$ $0 e, \mu$ $0 e, \mu$	2-6 jets 1-3 jets 2-6 jets 4 jets 2 jets 7-11 jets 4 jets 3 b 4 jets 3 b 4 jets Multiple Multiple 6 b 0-2 jets/1-2 Multiple 2 z	E_{T}^{miss} E_{T}^{miss} E_{T}^{miss} E_{T}^{miss} E_{T}^{miss} E_{T}^{miss} E_{T}^{miss} E_{T}^{miss}	<i>L</i> dt [fb ⁻ 36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1		Mass r	o.43	0.9 0.71 Forbidden 0.98	1.55 0.95-1.6 1.2 1.25	2.0 1.85 1.8 2.25	$\begin{split} m(\tilde{\chi}_{1}^{0}) < 100 \text{ GeV} \\ m(\tilde{q}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) - 200 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) = 900 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) = 900 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) - 800 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) - m(\tilde{\chi}_{1}^{0}) = 50 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) - m(\tilde{\chi}_{1}^{0}) = 200 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) - 200 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV} \end{split}$	V3 = 13 16V Reference 1712.02332 1711.03301 1712.02332 1712.02332 1712.02332 1712.02332 1716.03731 1805.11381 1706.03731 ATLAS-CONF-2018-041 1706.03731
$\begin{split} \tilde{\chi}_{1}^{0} \\ $	0 e,μ mono-jet 0 e,μ 3 e,μ ee,μμ 0 e,μ 3 e,μ 0-1 e,μ 3 e,μ 0-2 e,μ 1 τ + 1 e,μ,τ 0 e,μ 0 e,μ	2-6 jets 1-3 jets 2-6 jets 4 jets 2 jets 7-11 jets 4 jets 3 b 4 jets Multiple Multiple 6 b 0-2 jets/1-2 Multiple 2 jets/1 b	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1	$ \vec{q} $ [2x, 8x Degen.] $ \vec{q} $ [1x, 8x Degen.] $ \vec{g} $ $ \vec{b} $	Forbidden F	0.43 Forbidden	0.9 0.71 Forbidden 0.98	1.55 0.95-1.6 1.2 1.25	2.0 1.85 1.8 2.25	$\begin{split} m(\tilde{\chi}_{1}^{0}) <& 100 \text{ GeV} \\ m(\tilde{q}) \cdot m(\tilde{\chi}_{1}^{0}) =& 5 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) -& 5 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) =& 50 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) =& 900 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) =& 800 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) =& 50 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) =& 50 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) =& 200 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) =& 200 \text{ GeV} \\ m(\tilde{\chi}_{1}^{0}) =& 300 \text{ GeV} \\ \end{split}$	1712.02332 1711.03301 1712.02332 1712.02332 1706.03731 1805.11381 1708.02794 1706.03731 ATLAS-CONF-2018-041 1706.03731
$\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}/t\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{2}^{0} \rightarrow bh\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0}$ $mpered LSP$ $\nu, \tilde{\tau}_{1} \rightarrow \tau \tilde{G}$ $/ \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{\chi}_{1}^{0}$ h	$0 e, \mu$ $3 e, \mu$ $ee, \mu\mu$ $0 e, \mu$ $0.1 e, \mu$ $3 e, \mu$ $0.2 e, \mu$ $0.2 e, \mu$ $1 \tau + 1 e, \mu, \tau$ $0 e, \mu$ $0 e, \mu$	2-6 jets 4 jets 2 jets 7-11 jets 4 jets 3 <i>b</i> 4 jets Multiple Multiple Multiple 6 <i>b</i> 0-2 jets/1-2 Multiple 2 jets/1 <i>b</i> 2 <i>c</i>	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} $b \ E_T^{miss}$	36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1	ğ j b b j Forbida	Forbidden F F	Forbidden	0.98	0.95-1.6 1.2 1.25	2.0 1.85 1.8 2.25	$\begin{split} m(\bar{g}) - m(\bar{\chi}_{1}^{0}) &= 200 \text{ GeV} \\ m(\bar{\chi}_{1}^{0}) &= 200 \text{ GeV} \\ m(\bar{\chi}_{1}^{0}) &= 900 \text{ GeV} \\ m(\bar{\chi}_{1}^{0}) &= 500 \text{ GeV} \\ m(\bar{g}) - m(\bar{\chi}_{1}^{0}) &= 50 \text{ GeV} \\ m(\bar{g}) - m(\bar{\chi}_{1}^{0}) &= 200 \text{ GeV} \\ m(\bar{g}) - m(\bar{\chi}_{1}^{0}) &= 200 \text{ GeV} \\ m(\bar{g}) - m(\bar{\chi}_{1}^{0}) &= 300 \text{ GeV} \\ \end{split}$	1712.02332 1712.02332 1706.03731 1805.11381 1708.02794 1706.03731 ATLAS-CONF-2018-041 1706.03731
$\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}/t\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{2}^{0} \rightarrow bh\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0}$ $mpered LSP$ $\nu, \tilde{\tau}_{1} \rightarrow \tau \tilde{G}$ $/ \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{\chi}_{1}^{0}$ h	$3 e, \mu \\ ee, \mu\mu \\ 0 e, \mu \\ 3 e, \mu \\ 0.1 e, \mu \\ 3 e, \mu \\ 0 e, \mu \\ 0.2 e, \mu \\ 0 e, \mu$	4 jets 2 jets 7-11 jets 4 jets 3 <i>b</i> 4 jets Multiple Multiple 6 <i>b</i> 0-2 jets/1-2 Multiple 2 z c	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} $b \ E_T^{\text{miss}}$	36.1 36.1 36.1 79.8 36.1 36.1 36.1 36.1 139 36.1	s š š š š š š š š š š š š š	Forbidden F F	Forbidden	0.98 0.58-0.82	1.2	1.85 1.8 2.25	$\begin{split} m(\tilde{x}_{1}) = & \text{sub GeV} \\ m(\tilde{x}_{1}^{0}) < & \text{800 GeV} \\ m(\tilde{x}_{1}^{0}) = & \text{50 GeV} \\ m(\tilde{x}_{1}^{0}) = & \text{50 GeV} \\ m(\tilde{x}_{1}^{0}) = & \text{200 GeV} \\ m(\tilde{x}_{1}^{0}) = & \text{200 GeV} \\ m(\tilde{x}_{1}^{0}) = & \text{200 GeV} \\ m(\tilde{x}_{1}^{0}) = & \text{300 GeV} \\ \end{split}$	1706.03731 1805.11381 1708.02794 1706.03731 ATLAS-CONF-2018-041 1706.03731
\tilde{x}_{1}^{0} $\tilde{x}_{1}^{0}/t\tilde{x}_{1}^{\pm}$ $\tilde{x}_{2}^{0} \rightarrow bh\tilde{x}_{1}^{0}$ $\tilde{x}_{1}^{0} \text{ or } \tilde{x}_{1}^{0}$ $\tilde{x}_{1} \rightarrow \tau \tilde{G}$ $/ \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{x}_{1}^{0}$ h	$0 e, \mu$ $0 e, \mu$ $0 - 1 e, \mu$ $3 e, \mu$ $0 - 2 e, \mu$ $1 \tau + 1 e, \mu, \tau$ $0 e, \mu$ $0 e, \mu$	7-11 jets 4 jets 3 <i>b</i> 4 jets Multiple Multiple 6 <i>b</i> 0-2 jets/1-2 Multiple 2 jets/1 <i>b</i> 2 <i>c</i>	E_T E_T^{miss} E_T^{miss} E_T^{miss} $b \ E_T^{\text{miss}}$	36.1 36.1 79.8 36.1 36.1 36.1 36.1 139 36.1	\tilde{s} \tilde{g} \tilde{g} \tilde{g} \tilde{g} \tilde{b}_1 \tilde{b}_1 \tilde{b}_1 \tilde{b}_1 \tilde{b}_1 \tilde{b}_1 \tilde{b}_1	Forbidden F F	Forbidden	0.98	1.25	2.25	$m(g)-m(\tilde{x}_1) = 30 \text{ GeV}$ $m(\tilde{x}_1^0) < 400 \text{ GeV}$ $m(\tilde{x}_1^0) = 200 \text{ GeV}$ $m(\tilde{x}_1^0) = 200 \text{ GeV}$ $m(\tilde{x}_1^0) = 300 \text{ GeV}$ $m(\tilde{y}_1^0) = 300 \text{ GeV}$	1708.02794 1706.03731 ATLAS-CONF-2018-041 1706.03731
$b_{1}^{0}/t\tilde{\chi}_{1}^{\pm}$ $b_{2}^{0} \rightarrow bh\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0}$ $mpered LSP$ $\nu, \tilde{\tau}_{1} \rightarrow \tau \tilde{G}$ $/ \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{\chi}_{1}^{0}$ h	$3 e, \mu$ $0.1 e, \mu$ $3 e, \mu$ $0 e, \mu$ $0.2 e, \mu$ $0 e, \mu$ $0 e, \mu$ $0 e, \mu$	4 jets 3 b 4 jets Multiple Multiple 6 b 0-2 jets/1-2 Multiple 2 jets/1 b 2 c	E_T^{miss} E_T^{miss} $b \ E_T^{\text{miss}}$	30.1 79.8 36.1 36.1 36.1 36.1 139 36.1	\vec{s} \vec{s} \vec{b}_1 \vec{b}_1 \vec{b}_1 \vec{b}_1 \vec{b}_1 Forbida	Forbidden F F	Forbidden	0.98	1.25	2.25	$m(g) - m(\tilde{x}_1) = 200 \text{ GeV}$ $m(\tilde{x}_1^0) = 200 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{x}_1^0) = 300 \text{ GeV}$ $m(\tilde{y}^0) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 1706.03731
$b_{1}^{0}/t\tilde{\chi}_{1}^{\pm}$ $b_{2}^{0} \rightarrow bh\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0} \rightarrow t\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1} \rightarrow \tau \tilde{G}$ h h	$0 e, \mu$ $0-2 e, \mu = 0$ $1 \tau + 1 e, \mu, \tau$ $0 e, \mu$ $0 e, \mu$	Multiple Multiple 6 b 0-2 jets/1-2 Multiple 2 jets/1 b 2 c	E_T^{miss} $b \ E_T^{\text{miss}}$	36.1 36.1 36.1 139 36.1	\vec{b}_1 \vec{b}_1 \vec{b}_1 \vec{b}_1 \vec{b}_1 Forbida	Forbidden F F	Forbidden Forbidden	0.9	1.23		$m(g)-m(\ell_1)=300 \text{ GeV}$	1706.03731
$p_{2}^{0} \rightarrow bh \tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0} \text{ or } i \tilde{\chi}_{1}^{0}$ mpered LSP $\nu, \tilde{\tau}_{1} \rightarrow \tau \tilde{G}$ $/ \tilde{c}\tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_{1}^{0}$ h	0 e,μ 0-2 e,μ 0 1 τ + 1 e,μ,τ 0 e,μ 0 e,μ	Multiple 6 b 0-2 jets/1-2 Multiple 2 jets/1 b 2 c	E_T^{miss} $b \ E_T^{\text{miss}}$	36.1 139 36.1	\tilde{b}_1 \tilde{b}_1 Forbida	F	Forbidden			$\mathbf{m}(\tilde{\mathbf{x}}_{i}^{0})$	$(a_1) = 300 \text{ GeV}, BR(b\tilde{\chi}^0) = RR(t\tilde{\chi}^{\pm}) = 0.5$	1708.09266, 1711.03301 1708.09266
$\begin{split} & \stackrel{00}{_{2}} \rightarrow bh \tilde{\chi}_{1}^{0} \\ & \tilde{\chi}_{1}^{0} \text{ or } i \tilde{\chi}_{1}^{0} \\ & \text{mpered LSP} \\ & \nu, \tilde{\tau}_{1} \rightarrow \tau \tilde{G} \\ & / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_{1}^{0} \\ & h \\ & h \\ \hline & t \end{split}$	$0 \ e, \mu$ $0-2 \ e, \mu \ (0, -2)$ $1 \ \tau + 1 \ e, \mu, \tau$ $0 \ e, \mu$ $0 \ e, \mu$	6 <i>b</i> 0-2 jets/1-2 Multiple - 2 jets/1 <i>b</i> 2 <i>c</i>	E_T^{miss} $b \ E_T^{\text{miss}}$	139 36.1	\tilde{b}_1 Forbida		orbiddorr	0.7		$m(\tilde{\chi}_1^0)=200$	$\operatorname{GeV}, \operatorname{m}(\tilde{\chi}_{1}^{\pm})=300 \operatorname{GeV}, \operatorname{BR}(t\tilde{\chi}_{1}^{\pm})=1$	1706.03731
$\begin{split} \tilde{\chi}_{1}^{0} \text{ or } \tilde{\chi}_{1}^{0} \\ \text{mpered LSP} \\ \nu, \tilde{\tau}_{1} \rightarrow \tau \tilde{G} \\ / \tilde{c}\tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_{1}^{0} \\ h \\ h \\ \hline \end{split}$	$0-2 \ e, \mu = 0$ $1 \ \tau + 1 \ e, \mu, \tau$ $0 \ e, \mu$ $0 \ e, \mu$	0-2 jets/1-2 Multiple 2 jets/1 <i>b</i> 2 <i>c</i>	$b E_T^{miss}$	36.1	b_1	en	0.23-0.48	1	0.23-1.35	Δm(Δ	$\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \text{ m}(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV} $ m $(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \text{ m}(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	SUSY-2018-31 SUSY-2018-31
$ \begin{array}{c} \mu, \tilde{\tau}_{1} \rightarrow \tau \tilde{G} \\ / \tilde{c}\tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_{1}^{0} \\ h \end{array} $	1 τ + 1 e,μ,τ 0 e,μ 0 e,μ	2 jets/1 <i>b</i> 2 <i>c</i>		36.1	\tilde{t}_1			0.48-0.84	0	$m(\tilde{\chi}^0) = 150$	$m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711, 11520
\tilde{c} , $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ h	0 e,μ 0 e,μ	2 <i>c</i>	E_T^{miss}	36.1	\tilde{t}_1			0.40-0.04	1.16	$m(x_1) = 150$	$m(\tilde{\tau}_1)=800 \text{ GeV}, \tilde{\tau}_1 \approx t_L$	1803.10178
h	0 <i>e</i> , <i>µ</i>		$E_T^{\rm miss}$	36.1	č Z		0.46	0.85			$m(\tilde{\chi}_1^0)=0 \text{ GeV}$	1805.01649
h		mono-jet	$E_T^{\rm miss}$	36.1	\tilde{t}_1		0.43				$m(t_1, \hat{c}) - m(\tilde{\chi}_1) = 50 \text{ GeV}$ $m(\tilde{t}_1, \tilde{c}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	1711.03301
	1-2 <i>e</i> ,μ	4 <i>b</i>	$E_T^{\rm miss}$	36.1	ĩ ₂			0.32-0.88	_	m(i	${ ilde{\chi}_{1}^{0}}{=}0$ GeV, m $({ ilde{t}_{1}}){-}m({ ilde{\chi}_{1}^{0}}){=}180$ GeV	1706.03986
	2-3 e, μ ee, μμ	≥ 1	E_T^{miss} E_T^{miss}	36.1 36.1	$ \begin{array}{c} \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} \end{array} 0.17 \end{array} $			0.6			$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\chi}_1^\pm)-m(\tilde{\chi}_1^0)=10~GeV$	1403.5294, 1806.02293 1712.08119
V	2 <i>e</i> , <i>µ</i>		$E_T^{\rm miss}$	139	$\tilde{\chi}_1^{\pm}$		0.42				$m(\tilde{\chi}_1^0)=0$	ATLAS-CONF-2019-008
~	0-1 e,μ	2 b	E_T^{miss}	36.1	$ \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^{0} $ $ \tilde{z}^{\pm} $			0.68			$m(\tilde{\chi}_1^0) = 0$	1812.09432
$ \vec{\tilde{v}} \\ \rightarrow \tilde{\tau}_1 v(\tau \tilde{v}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau}_1 \tau(v \tilde{v}) $	2 e,μ 2 τ		E_T^{miss} E_T^{miss}	139 36.1	$\begin{array}{c} \chi_1^- \\ \tilde{\chi}_1^\pm / \tilde{\chi}_2^0 \\ \tilde{\chi}_2^\pm / \tilde{\chi}_2^0 \end{array} \qquad \qquad$	2		0.76		m	$m(\ell, \tilde{\nu}) = 0.5(m(\chi_1^+) + m(\chi_1^0))$ $n(\tilde{\chi}_1^0) = 0, \ m(\tilde{\tau}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_1^+) + m(\tilde{\chi}_1^0))$ $n(\tilde{\chi}_1^0) = 0.5(m(\tilde{\chi}_1^+) + m(\tilde{\chi}_1^0))$	ATLAS-CONF-2019-008 1708.07875 1709.07875
$\ell { ilde \chi}_1^0$	2 e,µ 2 e µ	0 jets	E_T^{miss} E^{miss}	139 36 1	$\tilde{\ell}$ $\tilde{\ell}$ $\tilde{\ell}$ 0.18	2		0.7		$m(x_1) - m(x_1) = n$	$m(\tilde{\chi}_{1}^{0}) = 0$ $m(\tilde{\chi}_{1}^{0}) = 0$ $m(\tilde{\chi}_{1}^{0}) = 5$ $m(\tilde{\chi}_{1}^{0}) = 5$	ATLAS-CONF-2019-008
/ZĜ	0 e,μ 4 e,μ	$\geq 3 b$ 0 jets	E_T^{miss} E_T^{miss}	36.1 36.1	й 0.13-0. Й	23 0.3		0.29-0.88			$\begin{array}{c} BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 1\\ BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = 1 \end{array}$	1806.04030 1804.03602
prod., long-lived ${ ilde \chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	36.1	$ \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm} $ 0.15		0.46				Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
adron \tilde{v}^0		Multiple Multiple		36.1	\tilde{g}	1				2.0	$-(\tilde{v}^0)$ 100 C-V	1902.01636,1808.04095
+ $X \tilde{y} \rightarrow eu/et/ut$		manipro		2.2		.1			-	1.0	d' =0.11 due un me =0.07	1607.08070
$WW/Z\ell\ell\ell\ell\nu\nu$	4 <i>e</i> ,μ	0 jets	$E_T^{\rm miss}$	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 = [\lambda_{i33} \neq 0, \lambda_{12k}]$	≠ 0]		0.82	1.33	1.5	$m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$	1804.03602
$\tilde{\chi}^0_1 \rightarrow qqq$	4	-5 large-R je	ets .	36.1	$\tilde{g} = [m(\tilde{\chi}_1^0) = 200 \text{ GeV}, 11$	00 GeV]			1.3	1.9	Large $\lambda_{112}^{\prime\prime}$	1804.03568
the		Multinle		30.1 36.1	$\tilde{g} = [\lambda_{112}^{-2e-4}, 2e-3]$ $\tilde{g} = [\lambda_{112}^{-2e-4}, 1e-2]$		0.5	1.0	15	2.0	$m(\chi_1)=200$ GeV, bino-like	AI LAS-CONF-2018-003
$\rightarrow IDS$		2 jets + 2 <i>l</i>	2	36.7	$\tilde{t}_1 [qq, bs]$		0.42 (0.61	5		$m(x_1)=200$ GeV, bind-like	1710.07171
	2 e, µ	2 <i>b</i>		36.1	\tilde{t}_1	2 - 10 - 1' - 2	20.01	10	0.4-1.45		DD(7) 100000	1710.05544
$- \varepsilon$ $/2$ $- p$ $a = - 0$	f the available mass own. Many of the lin , c.f. refs. for the as	$\begin{array}{cccc} & & & & & & & \\ & & & & & & \\ & & & & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{aligned} & f_{1}(r\bar{v}), \chi_{2} \rightarrow \tilde{r}_{1}\tau(r\bar{v}) & 2\tau & E_{T}^{-1} & 30.1 \\ & \chi_{1}^{1}/\chi_{2}^{2} & 0.22 \\ \tilde{v}_{1}^{0} & 2e, \mu & \geq 1 & E_{T}^{miss} & 36.1 \\ & \tilde{\ell} & 0.18 \\ \hline \tilde{\ell} & 0.13 \\ \hline $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_{1}^{*}(\tau r), \chi_{2} \rightarrow f_{1}^{*}(\tau r), \chi_{2} \rightarrow f_{2}^{*}(\tau r), \chi_{2}^{*}(\tau r), \chi_{2$	$\begin{aligned} ret_{1}(rr), r_{2}, ret_{1}(rv) & 2 r & E_{T} & 36.1 \\ ret_{1}^{0}, 2 e, \mu & 0 \text{ jets } E_{T}^{\text{miss}} & 139 \\ 2 e, \mu & 2 1 & E_{T}^{\text{miss}} & 36.1 \\ 2 e, \mu & 2 1 & E_{T}^{\text{miss}} & 36.1 \\ 4 e, \mu & 0 \text{ jets } E_{T}^{\text{miss}} & 36.1 \\ 4 e, \mu & 0 \text{ jets } E_{T}^{\text{miss}} & 36.1 \\ 4 e, \mu & 0 \text{ jets } E_{T}^{\text{miss}} & 36.1 \\ 4 e, \mu & 0 \text{ jets } E_{T}^{\text{miss}} & 36.1 \\ 4 e, \mu & 0 \text{ jets } E_{T}^{\text{miss}} & 36.1 \\ 4 e, \mu & 0 \text{ jets } E_{T}^{\text{miss}} & 36.1 \\ 4 e, \mu & 0 \text{ jets } E_{T}^{\text{miss}} & 36.1 \\ 4 e, \mu & 0 \text{ jets } E_{T}^{\text{miss}} & 36.1 \\ 8 e^{-1} & 0.3 \\ \hline red, \log_{1} \log q_{1}(r) & Multiple & 36.1 \\ R-hadron, \tilde{g} \rightarrow qq \tilde{g}^{0} & Multiple & 36.1 \\ R-hadron, \tilde{g} \rightarrow qq \tilde{g}^{0} & Multiple & 36.1 \\ \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{[r(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]} \\ \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{[r(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]} \\ \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} \\ \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} \\ \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} \\ \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} \\ \frac{\tilde{g}}{1} \\ \frac{\tilde{g}}{1} & \frac{\tilde{g}}{1} \\ \frac{\tilde{g}}{1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

s-channel resonances

FCC-hh reach ~ 6 x HL-LHC reach

SUSY reach at 100 TeV

Early phenomenology studies

WIMP DM theoretical constraints

For particles held in equilibrium by pair creation and annihilation processes, ($\chi \ \chi \leftrightarrow SM$)

 $\Omega_{\rm DM} h^2 \sim rac{10^9 {\rm GeV}^{-1}}{M_{\rm pl}} rac{1}{\langle \sigma v
angle}$

For a particle annihilating through processes which do not involve any larger mass scales:

 $\langle \sigma v \rangle \sim g_{\rm eff}^4 / M_{\rm DM}^2$

DM reach at 100 TeV

Early phenomenology studies

K. Terashi, R. Sawada, M. Saito, and S. Asai, *Search for WIMPs with disappearing track signatures at the FCC-hh*, (Oct, 2018) . https://cds.cern.ch/record/2642474.

Disappearing charged track analyses (at ~full pileup)

=> coverage beyond the upper limit of the thermal WIMP mass range for both higgsinos and winos !!

MSSM Higgs @ 100 TeV

N. Craig, J. Hajer, Y.-Y. Li, T. Liu, H. Zhang, J. arXiv: 1605.08744 ar

J. Hajer, Y.-Y. Li, T. Liu, and J. F. H. Shiu, arXiv: 1504.07617

Final remarks

- The study of the SM will not be complete until we clarify the nature of the Higgs mechanism and exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.
- The combination of a versatile high-luminosity e⁺e⁻ circular collider, with a follow-up pp collider in the 100 TeV range, appears like the ideal facility for the post-LHC era
 - complementary and synergetic precision studies of EW, Higgs and top properties
 - energy reach to allow direct discoveries at the mass scales possibly revealed by the precision measurements
 - flavor factory at the Z pole, heavy ions and ep collisions: extremely diversified program => broad community engagement