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• Is the mass scale beyond the LHC reach ?

• Is the mass scale within LHC’s reach, but final states are 
elusive to the direct search ?

Key question for the future developments of HEP: 
Why don’t we see the new physics we expected to 

be present around the TeV scale ?

These two scenarios are a priori equally likely, but they impact in 
different ways the future of HEP, and thus the assessment of the physics 
potential of possible future facilities

Readiness to address both scenarios is the best hedge for the field:
• precision
• sensitivity (to elusive signatures)
• extended energy/mass reach



Remark 

the discussion of the future in HEP must start from the 

understanding that there is no experiment/facility, proposed 

or conceivable, in the lab or in space, accelerator or non-

accelerator driven, which can guarantee discoveries 

beyond the SM, and answers to the big questions of the 

field
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(1) the guaranteed deliverables: 
• knowledge that will be acquired independently of possible 

discoveries (the value of “measurements”)

(2) the exploration potential: 
• target broad and well justified BSM scenarios .... but guarantee 

sensitivity to more exotic options
• exploit both direct (large Q2) and indirect (precision) probes

(3) the potential to provide conclusive yes/no answers to relevant, 
broad questions.
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The physics potential (the “case”) of a future facility for HEP should 
be weighed against criteria such as:
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• Guaranteed deliverables:
• study of Higgs and top quark properties, and exploration of EWSB 

phenomena, with the best possible precision and sensitivity

• Exploration potential:
• exploit both direct (large Q2) and indirect (precision) probes
• enhanced mass reach for direct exploration

• E.g. match the mass scales for new physics that could be exposed via 
indirect precision measurements in the EW and Higgs sector

• Provide firm Yes/No answers to questions like:
• is there a TeV-scale solution to the hierarchy problem? 
• is DM a thermal WIMP?
• could the cosmological EW phase transition have been 1st order?
• could baryogenesis have taken place during the EW phase 

transition?
• could neutrino masses have their origin at the TeV scale?
• …

What we want from a future collider



Higgs observables: decay BRs
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Tree-level couplings
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Higgs observables: production rates
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Sensitivity of various Higgs couplings 
to examples of 

beyond-the-SM phenomena 
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=> the goal should be (sub)percent precision!



Extracting couplings from measurements

Example

… little progress, except we now know
g2

HZZ

g2
Hbb

=
σA

σB

σ (pp/ee → ZH[ → ZZ*]) ∝ g2
HZZ ×
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ΓH

Z Z

H0q,	𝓵–

q,	𝓵+
Z

Z

1 measurement, 2 parameters!

(A)

B(H → ZZ*)

σ (pp/ee → ZH[ → bb̄]) ∝ g2
HZZ ×

g2
Hbb

ΓH
Z Z

H0q,	𝓵–

q,	𝓵+

b

b

(B)
1 new measurement, but 
1 more parameter… B(H → bb̄)
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Overall constraint: ∑
X

B(H → X) = 1

Z Z

H0q,	𝓵–

q,	𝓵+

X∑
X

σ( ) = σ(ZH) ∝ g2
HZZ

How can we hope to detect ALL possible decays of the Higgs boson?? 

If the goal is to test its properties, we cannot make assumptions, and must be 
open to possible unexpected decays, possibly invisible, like H→dark matter…

An 𝓵+𝓵– collider provides the solution ….

Therefore:
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p(H) = p(e–e+) – p(Z)

=> [ p(e–e+) – p(Z) ]2 peaks at m2(H) 

reconstruct Higgs events independently of 
the Higgs decay mode!

N(ZH) ∝	σ(ZH) ∝	gHZZ2

N(ZH[→ZZ]) ∝		
σ(ZH) x BR(H→ZZ) ∝		
gHZZ2 x gHZZ2 / Γ(H)

=> absolute measurement 
of width and couplings

mrecoil = √ [ p(e–e+) – p(Z) ]2





FCC-ee
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Higgs couplings: beyond the HL-LHC
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1. To significantly improve the expected HL-LHC results, future 
facilities must push Higgs couplings’ precision to the sub-% level

2. Event rates higher than what ee colliders can provide are needed 
to reach sub-% measurements of couplings such as Hγγ, Hμμ, 
HZγ, Ηtt

Remarks and key messages

• Updated HL-LHC projections bring the coupling sensitivity to 
the few-% level. They are obtained by extrapolating current 
analysis strategies, and are informed by current experience plus 
robust assumptions about the performance of the phase-2 
upgraded detectors in the high pile-up environment

• Projections will improve as new analyses, allowed by higher 
statistics, will be considered



• Huge Higgs production rates:
• access (very) rare decay modes
•push to %-level Higgs self-coupling measurement
•new opportunities to reduce syst uncertainties (TH & EXP) and push 

precision 

• Large dynamic range for H production (in pTH, m(H+X) , …):
•new opportunities for reduction of syst uncertainties (TH and EXP)
•different hierarchy of production processes
•develop indirect sensitivity to BSM effects at large Q2 , complementary 

to that emerging from precision studies (eg decay BRs) at Q~mH

• High energy reach
•direct probes of BSM extensions of Higgs sector

•SUSY Higgses
•Higgs decays of heavy resonances
•Higgs probes of the nature of EW phase transition
•…
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The unique contributions of a
 100 TeV pp collider to Higgs physics



SM Higgs: event rates in pp@100 TeV
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N100 = σ100 TeV × 30 ab–1

N14 = σ14 TeV × 3 ab–1

gg→H VBF WH ZH ttH HH

N100
24 x 
109

2.1 x 
109

4.6 x 
108

3.3 x 
108

9.6 x 
108

3.6 x 
107

N100/N14 180 170 100 110 530 390



• Hierarchy of production channels changes at large pT(H):
• σ(ttH) > σ(gg→H) above 800 GeV

• σ(VBF) > σ(gg→H) above 1800 GeV

H at large pT
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• At LHC, S/B in the H→γγ channel is O( few % )
• At FCC, for pT(H)>300 GeV, S/B~1
• Potentially accurate probe of the H pt spectrum 

up to large pt 

gg→H→γγ at large pT
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pT,min 
(GeV) δstat

100 0.2%
400 0.5%
600 1%
1600 10%



gg→H→ZZ*→4l at large pT
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pT,min (GeV) δstat

100 0.3%
300 1%

1000 10%

• S/B ~ 1 for inclusive production at LHC
• Practically bg-free at large pT at 100 TeV, 

maintaining large rates
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Importance of standalone precise “ratios-of-BRs" measurements:

• independent of αS, mb, mc, Γinv systematics

• sensitive to BSM effects that typically influence BRs in different 
ways. Eg

BR(H→γγ)/BR(H→ZZ*)

loop-level tree-level

BR(H→μμ)/BR(H→ZZ*)
gauge coupling2nd gen’n Yukawa

BR(H→γγ)/BR(H→Zγ)
different EW charges in the loops of the two procs

BR(H→inv)/BR(H→γγ)
loop-level chargedtree-level neutral



HL-LHC FCC-ee FCC-hh
δΓH / ΓH (%) SM 1.3 tbd
δgHZZ / gHZZ (%) 1.5 0.17 tbd
δgHWW / gHWW (%) 1.7 0.43 tbd
δgHbb / gHbb (%) 3.7 0.61 tbd
δgHcc / gHcc (%) ~70 1.21 tbd
δgHgg / gHgg (%) 2.5 (gg->H) 1.01 tbd
δgHττ / gHττ (%) 1.9 0.74 tbd
δgHμμ / gHμμ (%) 4.3 9.0 0.65 (*)
δgHγγ / gHγγ (%) 1.8 3.9 0.4 (*)
δgHtt / gHtt (%) 3.4 ~10 (indirect) 0.95 (**)
δgHZγ / gHZγ (%) 9.8 – 0.9 (*)
δgHHH / gHHH (%) 50 ~44 (indirect) 6.5

BRexo (95%CL) BRinv < 2.5% < 1% BRinv < 0.025%
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Higgs couplings after FCC-ee / hh

* From BR ratios wrt B(H→4lept) @ FCC-ee

** From pp→ttH / pp→ttZ, using B(H→bb) and ttZ EW coupling @ FCC-ee
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… these we must 
assume, or measure 
independently

… these would come into play if we eventually need to decode the 
origin of a deviation, as possible alternative sources of new physics

this we want 
to probe …

Extracting Higgs self-coupling from gg→HH at FCC-hh
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Direct measurement of ttH coupling: from Rt = σ(ttH)/σ(ttZ)

t

t
H +

t

t

H

t

t

Z +
t

t

Z

t

tZ

+

Rt =

FCC-hh can measure Rt with ΔRt/Rt ~ 2%

these we want….
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Higgs self-coupling, gg→HH
From the detector performance studies: Pheno-level 

studies:

bbγγ bbZZ[→4l] bbWW[→2jlν] 4b+j 2b2τ+j

δκλ (%) 6.5 14 40 30 8



Example of precision targets: 
constraints on models with 1st order phase transition

Combined constraints from precision Higgs 
measurements at FCC-ee and FCC-hh
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Parameter space scan for a singlet model extension 
of the Standard Model. The points indicate a first 
order phase transition. 

Direct detection of extra Higgs states at 
FCC-hh

(h2 ~ S,   h1 ~ H)
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• We often talk about “precise” Higgs measurements. What we 
actually aim at is “sensitive” tests of the Higgs properties, 
where sensitive refers to the ability to reveal BSM behaviours. 

• Sensitivity may not require extreme precision

• Going after “sensitivity”, rather than just precision, opens 
itself new opportunities … 
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Precision vs sensitivity
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L = LSM +
1
⇤2

X

k

Ok + · · ·

O = | hf |L|ii |2 = OSM

⇥
1 + O(µ2

/⇤2) + · · ·
⇤

For H decays, or inclusive production, μ~O(v,mH)

�O ⇠
⇣

v

⇤

⌘2
⇠ 6%

✓
TeV
⇤

◆2

⇒ precision probes large Λ
e.g. δO=1% ⇒ Λ ~ 2.5 TeV

For H production off-shell or with large momentum transfer Q, μ~O(Q)

�O ⇠
✓

Q

⇤

◆2 ⇒ kinematic reach probes large 

Λ even if precision is “low”

e.g. δO=10% at Q=1.5 TeV ⇒ Λ~5 TeV

Complementarity between precise measurements at ee 
collider and large-Q studies at 100 TeV

High-Q2 observables : precision vs dynamic reach



Examples
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δBR(H→gg)
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c2V cV 
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Example: high mass VV → HH

where
cV = gHVV /gSM

HVV

c2V = gHHVV /gSM
HHVV

⇒ (c2V − c2
V)SM

= 0{



WLWL scattering

large mWW

q

q

H0	+	Z0	

W±

W±
W±

W±

κW =
gHWW

gSM
HWW
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Example: high mass DY
Constraints on Higher-dim op’s

           W / 4mW2   <   1 / (100 TeV)2

Farina et al,
arXiv:1609.08157

http://arxiv.org/abs/arXiv:1609.08157


Direct discovery reach: 
the power of 100 TeV
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7

@14 TeV

@100 TeV
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s-channel resonances

FCC-hh reach ~ 6 x HL-LHC reach



Early phenomenology studies
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SUSY reach at 100 TeV

New detector performance studies



WIMP DM theoretical constraints
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For particles held in equilibrium by pair creation 
and annihilation processes, (χ χ ↔ SM) 

For a particle annihilating through processes 
which do not involve any larger mass scales:

Mwimp ≲ 2 TeV ( g
0.3 )

2
Ωwimp h2 ≲ 0.12
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DM reach at 100 TeV

Early phenomenology studies



Disappearing charged track analyses
(at ~full pileup)
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Higgsino

K. Terashi, R. Sawada, M. Saito, and S. Asai, Search for WIMPs with disappearing track 
signatures at the FCC-hh, (Oct, 2018) . https://cds.cern.ch/record/2642474.

=> coverage beyond the upper limit of the thermal 
WIMP mass range for both higgsinos and winos !!

New detector performance studies

Mwimp ≲ 2 TeV ( g
0.3 )

2



3 ab–1

30 ab–1
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N. Craig, J. Hajer, Y.-Y. Li, T. Liu, H. Zhang, 

arXiv:1605.08744

J. Hajer, Y.-Y. Li, T. Liu, and J. F. H. Shiu, 

arXiv:1504.07617

tbH+ →tbτν
tbH+ →tbtb

bbH0/A0 →bbττ
bbH0/A0 →bbtt
t(t)H0/A0 →t(t)tt

LHC 3 ab–1

LHC 0.3 ab–1

MSSM Higgs @ 100 TeV

20 TeV20 TeV



Final remarks

• The study of the SM will not be complete until we clarify the 
nature of the Higgs mechanism and exhaust the exploration of 
phenomena at the TeV scale: many aspects are still obscure, many 
questions are still open.

• The combination of a versatile high-luminosity e+e– circular 
collider, with a follow-up pp collider in the 100 TeV range, appears 
like the ideal facility for the post-LHC era 

• complementary and synergetic precision studies of EW, Higgs and top 
properties

• energy reach to allow direct discoveries at the mass scales possibly 
revealed by the precision measurements

• flavor factory at the Z pole, heavy ions and ep collisions: extremely 
diversified program => broad community engagement
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