

Review of underground physics

Oliviero Cremonesi

27 May - 4 June 2019 - Otranto (LE), Italy

Lecture n. 2

Outline

Motivations

- Rare event physics
- Underground laboratories

Underground physics - Otranto School 28/05/2019

Astro-particle:

_

. . .

- Neutrino physics Rare Nuclear decays Dark matter

No mention to:

- Under-water Under-ice

Other:

- Nuclear reactions
- Gravitational waves
- Fundamental physics
- Technology
- Biology _

. . .

2

Dark Matter Searches

Brief history

- 1922: J.C. Kapteyn coined the name 'dark matter', in studies of the stellar motion in our galaxy (he found that no dark matter is needed in the solar neighbourhood)
- 1932: J. Oort suggested that there would be more dark than visible matter in the vicinity of the Sun (later the result turned out to be wrong)
- 1933: F. Zwicky found 'dunkle Materie' in the Coma cluster (the redshift of galaxies was much larger than the escape velocity due to luminous matter alone)
- 1970s: V.C. Rubin & W. Ford: flat optical rotation curves of spiral galaxies, 1978: Bosma, radio

Astronomical evidence

Cosmic Microwave Background

Underground physics - Otranto School 28/05/2019

A consistent picture: ~32% matter ~68% dark energy

- Ordinary Matter
- Dark Matter
- Dark Energy

Astronomical evidence

Cosmic Microwave Background

Underground physics - Otranto School 28/05/2019

A consistent pi ~32% matte ~68% dark

Open questions

- The dark matter puzzle remains fundamental: dark matter leads to the formation of structure and galaxies in our universe
- We have a standard model of CDM, from 'precision cosmology' (CMB, LSS): however, measurement ≠ understanding
- For ~85% of matter in the universe is of unknown nature

Underground physics - Otranto School 28/05/2019

Particle dark matter?

- What do we know about dark matter?
 - Dark (neutral: no electric or color charge)
 - Massive (to explain gravitational effects)
 - Stable or with a lifetime of the order of the age of the Universe itself (still around today).

- matter)
- the requests:
 - neutrino, Super-heavy dark matter and many others
- In one word: **WIMP's** (Weakly Interacting Massive Particles)

• In the **Standard Model (SM)** of particle physics only neutrinos could work (hot dark

• However, models **beyond SM** predict a number of NEW particles. Many of them satisfy

- Neutralino in Supersymmetry, gravitino, Axion, LKP in extra dimensions, Sterile

WIMP's

- Well motivated theoretical approach (BSM models)
- In the primordial Universe particles are in thermal equilibrium: creation vs. annihilation $\chi \overline{\mathbf{X}} \leftrightarrow \ell^+ \ell^-, \ \mathbf{q} \overline{\mathbf{q}}, \ W^- W^+, \ Z \overline{\mathbf{Z}}$
- The annihilation rate decreases with the Universe expansion • Each process breaks the equilibrium at different ages and freeze out
- WIMP models predict correct relic densities for an annihilation rate on the weak scale

Underground physics - Otranto School 28/05/2019

Parameter space

- Masses & interaction cross sections span an enormous range
- Most dark matter experiments optimised to search for WIMPs
- However also searches for axions, ALPs,
- SuperWIMPs, etc

log10(mDM / GeV)

Underground physics - Otranto School 28/05/2019

log10(mDM / GeV)

Underground physics - Otranto School 28/05/2019

log10(mDM / GeV)

WIMP detection strategy

accelerators +XX few 8 da Production 5

Direct detection

$q \leq 10 \mathrm{s}\,\mathrm{MeV}$ $\mathbf{x}\mathbf{N} \rightarrow \mathbf{x}\mathbf{N}$

Dark Matter - Standard Model mediators

Indirect detection

X

X

→qą,vv,.

S

SM states

Astrophysics: the dark matter halo

 Our galaxy is embedded in a dark matter halo which extends well beyond (200 kpc) the milky way extension

Underground physics - Otranto School 28/0!

Astrophysics

Local density (at R₀ ~ 8 kpc)

- local measures use the vertical kinematics of stars near the Sun as 'tracers' (smaller error bars, but stronger assumptions about the halo shape)
- global measures extrapolate the density from the rotation curve (larger errors, but fewer assumptions)

 $\rho(R_0) = 0.2 - 0.56 \,\mathrm{GeV \, cm^{-3}} =$ $= 0.005 - 0.015 \,\mathrm{M_{\odot} \, pc^{-3}}$

 \rightarrow WIMP flux on Earth: ~10⁵ cm⁻²s⁻¹ $(m_W = 100 \text{ GeV}, \rho = 0.3 \text{ GeV}/\text{cm}^3)$

High-resolution cosmological simulation: density map of the dark matter halo $\rho = [0.1]$, 0.3, 1.0, 3.0] GeV cm-3

The standard halo model

Isotropic, isothermal sphere with a Maxwellian velocity distribution

$$f(v) = N \cdot exp(\frac{-3|v|^2}{2\sigma^2})$$

usually truncated: f(v) = 0 for $|v_i| > v_{esc}$

- Local density $\rho_0 = 0.3 \text{ GeV/cm}^3 = 0.008 \text{ M}_{\odot}/\text{pc}^3 = 5 \cdot 10^{-23} \text{ g/cm}^3$ determined via mass modelling of the Milky Way
- About 1 WIMP in a coffee cup (assuming $m_W \sim 100 \text{ GeV/c}^2$)
- Circular velocity $v_c = 220$ km/s with radial dispersion velocity $\sigma_r = v_c/\sqrt{2}$. • Escape velocity $v_{esc} = 544$ km/s determined from the speed of high velocity stars (RAVE)

WIMP velocities

- The velocity distribution of the WIMPs is an essential ingredient
- From cosmological simulations of galaxy formation: departures from the simplest case of a Maxwell-Boltzmann distribution
- In direct detection experiments, mostly a simple MB distribution, truncated at v_{esc}, is used in the sensitivity calculation

WIMP direct detection

Observable effect:

• nuclear recoil

but

- small energies
- very weak signature

WIMP direct detection

 $\frac{dR}{dE_R} = N_N \frac{\rho_0}{m_W} \int_{\sqrt{(m_N E_{th})/(2\mu^2)}}^{v_{max}} dv f(v) v \frac{d\sigma}{dE_R}$ $\simeq N_N \frac{\rho_0}{m_W} \sigma \langle v \rangle$

Detector	n
Particle/nuclear physics	r
Astrophysics	ρ

- Spin-independent interactions: coupling to nuclear mass
- Spin-dependent interactions: coupling to nuclear spin

Underground physics - Otranto School 28/05/2019

Scattering cross section

In general, interactions leading to WIMP-nucleus scattering are parameterized as:

$$\sigma_{SI} \sim \frac{\mu^2}{m_W^2} [Zf_p + (A_{W})]$$

- nuclei with large A favourable (but nuclear form factor corrections)

$$\sigma_{SD} \sim \mu^2 \frac{J_N + 1}{JN} [a_p \langle S_p \rangle + a_n \langle S_n \rangle]^2$$

nuclei with non-zero angular momentum (corrections due to spin structure functions)

Underground physics - Otranto School 28/05/2019

scalar interactions (coupling to WIMP mass, from scalar, vector, tensor part of L)

f_p, **f**_n: scalar 4-fermion $(A - Z)f_n$ ² couplings to p and n

• spin-spin interactions (coupling to the nuclear spin J_N , from axial-vector part of L)

a_p, **a**_n: effective couplings top and n; $\langle S_p \rangle$, $\langle S_n \rangle$: expectation values of the p and n spins within the nucleus

Particle physics

• Typical cross section examples:

→ $\sigma_0 \sim 10^{-39} \text{ cm}^2$

$\Rightarrow \sigma_0 \sim 10^{-47} \cdot 10^{-44} \text{ cm}^2$

Underground physics - Otranto School 28/05/2019

Nuclear form factors

- with all the nucleus components. A detailed description of the process is mandatory.
- This is generally treated in terms of a correction factor or form factor.
- With the Helm parametrization for the nuclear density the form factor is

$$F^{2}(Q) = \left[\frac{3j_{1}(qR_{1})}{qR_{1}}\right]^{2}e^{-(qs)^{2}}$$

 $j_1 = 1^{st}$ Bessel function s = nuclear skin thickness ~ 1 fm $R_1 \propto 1.14 \ A^{1/3} \sim 7 \ A^{1/3} \ GeV^{-1}$

- While coherence favors large nuclei, form factor is important for large nuclei (Xe, W, etc.)
- For these targets, a low energy threshold is essential to minimize Form factor suppression of rate

• Nucleons are bounded to a nucleus. Under proper conditions the WIMP scattering is coherent

Interaction rates

Interaction rates

Dark matter signatures: annual modulation

- The earth follows the Sun in the direction of Cygnus the earth revolutionary motion causes
 - annual event rate modulation: June December asymmetry ~ 2-10%

$$\frac{dR}{dE}(E,t) \sim S_0(E) + S_m(E) \cdot cos(-4)$$

Underground physics - Otranto School 28/05/2019

- sidereal directional modulation: asymmetry ~20-100% in forwardbackward event rate

the relative speed (and the rate) of DM particles is larger in summer

Dark matter signatures: directionality

Average WIMP direction is opposite to the motion of the sun towards Cygnus

$$\frac{dR}{dEd\cos\gamma} \propto \exp\left[\frac{-\left[\left(v_E + v_{\odot}\right)\cos\gamma - v_{min}\right]^2}{v_C^2}\right]$$

- **y** : NR direction relative to the mean direction of solar motion
- v_E and v_{\odot} : the Earth and Sun motions
- $v_c = \sqrt{3/2} \bar{v} \bar{0}$: halo circular velocity

0.0

WIMP flux in the case of an isothermal spherical halo

- WIMP-induced recoil distribution
- A typical simulated measurement:
 - 100 WIMP recoils and
 - 100 background events (low angular resolution)

Experiments

Requirements for a dark matter detector

- Large detector mass
- Low energy threshold ~ sub-keV to few keV's
- Very low background and/or background discrimination
- Long term stability

Possible signatures of dark matter

- Spectral shape of the recoil spectrum
- Annual modulated rate
- Directional dependance

ew keV's und discrimination

event

How to deal with background?

External y's from natural radioactivity:

- Suppression via self-shielding of the target
- Material screening and selection
- Rejection of multiple scatters & discrimination

Neutrinos: from the Sun, atmospheric and from supernovae.

- Elastic neutrino-electron scattering
- Coherent neutrino-nucleus scattering

- WIMPs and neutrons scatter off the atomic nuclei
- Phototns and electrons scatter off atomi electrons

External neutrons: muon-induced, (a, n) and from fission reactions

- go underground!
- shield: passive (polyethylene) or active (water/scintillator vetoes)
- material selection for low U and Th contaminations

Sparse Energy Deposition

Possible strategies?

- Reduction
- Identification (selection)

Background reduction

Underground physics - Otranto School 28/05/2019

Deep underground laboratory

Heavy radiation shields

Select low-activity materials

LSC

- WIPP in USA (DMTPC)
- LSBB in France (SIMPLE) \bullet
- Kamioka in Japan (XMASS, NEWAGE)
- Soudan in USA (SuperCDMS,GoGeNT)
- Y2L in Corea (KIMS)
- Boulby in UK (DRIFT, ZEPLIN)

- LNGS in Italy (XENON, DAMA, Cresst, DarkSide)
- LSM in France (Edelweiss, MIMAC)
- SURF in USA (LUX)
- SNOLAB in Canada (DEAP/CLEAN, PICASSO, COUPP)

Detectors

- and of the related electronics
- signal discrimination: description of nuclear and electronic recoil regions

discrimination depends on the experimental technique:

- cryogenic germanium detector (left): ionization or light yield (no surface events included)
- liquid xenon detector (middle): charge to light ratio
- liquid argon detector (right): charge to light ratio and signal shape

• stability: monitoring of detector parameters (amplification of signals, slow control parameters, ...)

• energy scale: detector signals are photoelectrons, charges or heat \rightarrow need to convert to keV_{nr}

Underground physics - Otranto School 28/05/2019

Neutrino background

 Neutrinos (solar, atmospheric and supernovae) are the ultimate (unavoidable) background

400

Energy [keV]

500

600

700

100

0

200

300

Sensitivity plots

data analysis: compare expected signal with energy spectra of selected events

Positive signal

• Region in ax versus mx

Zero signal

- Exclusion of a parameter region
- Low WIMP masses: detector threshold matters
- Minimum of the curve: depends on target nuclei
- High WIMP masses: exposure matters E = m·t

Global view

 A probably outdated but very instructive plot

(*) DSNB = Diffuse Supernova Neutrino Background = weak glow of MeV neutrinos and antineutrinos from distant core-collapse

Underground physics - Otranto School 28/05/201
Detection techniques

Cryogenic bolometers

Cryogenic bolometers with charge readout

Germanium detectors

CHARGE

Directional detectors

Underground physics - Otranto School 28/05/2019

J. Phys. G43 (2016) 1, 013001 & arXiv:1509.08767

Direct detection experiments

Low Threshold: SIMPLE PICASSO, COUPP, PICO

Ge, Si: SuperCDMS **Ge:** EDELWEISS

Low threshold: PICO, CoGeNT, CDEX, DAMIC **CF₄:** DRIFT, DMTPC, MIMAC, Newage

LXe: XENON, LUX/LZ, PandaX LAr: ArDM, DSide

CHARGE

Underground physics - Otranto School 28/05/2019

CaWO4: CRESST **Nal:** Cosinus

- Liquid argon
- Liquid xenon
- Directional detectors
- Low-threshold
- Bubble chambers
- Cryogenic bolometers
- Scintillating crystals

Nal: DAMA/LIBRA, DM-Ice, Cosine, SABRE, Anais, Pico-LON CsI: KIMS

LXe: XMASS LAr: DEAP

LIGHT

International competition

Very competitive field with rapid progress:

 detector sensitivity improved by ~5 orders of magnitude in the last 20 years

Experiments summary

Liquid Noble targets:

- Largest and most sensitive over the widest WIMP range
- 5 GeV-1 TeV WIMP masses probed
- Darkside, DARWIN, DEAP3600, LUX, LZ, Panda-X, XENON1 T, XENONnT 1

Cryogenic crystal targets:

- Oldest technology, with new innovations
- 1-10 GeV WIMP masses probed
- CRESST, EDELWEISS, SuperCDMS, COQ

Alternate targets with unique properties:

- Nal crystals, bubble chambers
- ANAIS, COSINE, DAMA/LIBRA, SABRE, PICO

SUSY Predictions

Underground physics - Otranto School 28/05/2019

• Supersymmetric theories (and experimental measurements) limit the available parameter space

Annual modulation: DAMA/LIBRA

DAMA/LIBRA has observed with high statistical significance an annual modulation in the low energy spectrum of its Nal detectors

- Period = 1 year, phase = June 2 \pm 7 days; 9.3 σ signal
- Results in tension with many WIMP searches
- Several experiments to directly probe the modulation signal with similar detectors (Nal, Csl): ANAIS, DM-Ice, KIMS, SABRE

Status & perspectives:

- Cosine 100 kg running since September 2016
- ANAIS 112 kg started operation in August 2017 and will get 3\sigma significance in 5 yr
- SABRE 5 kg proof of principle starting
- SABRE 50 kg South (Australia) scheduled to start this year (2019)
- DAMA/LIBRA III (1 ton) R&D underway

Annual modulation: DAMA/LIBRA

DAMA/LIBRA has observed with high statistical significance an annual modulation in the low energy spectrum of its Nal detectors

- Period = 1 year, phase = June 2 \pm 7 days; 9.3 σ signal
- Results in tension with many WIMP searches
- Several experiments to directly probe the modulation signal with similar detectors (Nal, Csl): ANAIS, DM-Ice, KIMS, SABRE

Status & perspectives:

- Cosine 100 kg running since September 2016
- ANAIS 112 kg started operation in August 2017 and will get 3\sigma significance in 5 yr
- SABRE 5 kg proof of principle starting
- SABRE 50 kg South (Australia) scheduled to start this year (2019)
- DAMA/LIBRA III (1 ton) R&D underway

Expected Backgrounds for a 2 kg Crystal in SABRE

DAMA/LIBRA

- 250 kg of high-purity Nal
- Modulation signal observed with impressive statistical significance
- No correlation with possible background sources identified so far

Underground physics - Otranto School 28/05/2019

- independent proton targets (F)
- acoustic signals

Low temperature detectors (LTD)

- Detect a temperature increase after a particle deposits energy in an absorber
- Absorber masses from ~100 g to 1.4 kg; TES/NTD read out small T changes

Underground physics - Otranto School 28/05/2019

O4 EDELWEISS-III (Ge)

SuperCDMS: Ge, Si

Cryogenic bolometers

SuperCDMS/EDELWEISS 2 techniques

- HV (CDMSlite) Luke phonons: low threshold, no discrimination
- iZIP/FID ionization and phonon signals with interleaved sensors discriminate against electronic recoils and surface events

CRESST

 CaWO4 crystals for phonons and scintillation

DAMIC

• Si CCD

Low temperature detectors

• Probe the low mass region of the WIMP's

Underground physics - Otranto School 28/05/2019

Noble liquids

- Large masses and homegeneous targets (LNe, LAr & LXe)
- Two detector concepts: single & double phase
- 30 position reconstruction ---+ fiducialization
- Transparent to their own scintillation light

Underground physics - Otranto School 28/05/2019

- High light and charge yield
- Xenon and argon are very common in dark matter detectors

ionisation

Single-phase noble liquid detectors

Underground physics - Otranto School 28/05/2019

- High light yield using 4π photosensor coverage
- Position resolution in the cm range
- Pulse shape discrimination (PSD) from scintillation (LAr)
 - Instrumented LAr or LXe volume
 - Scintillation light in VUV region

XMASS (LXe) at Kamioka, 832 kg

DEAP-3600 (LAr) at SNOLAB, 3.6 t

Dual-phase noble liquid detector

Underground physics - Otranto School 28/05/2019

- Scintillation signal (S1)
 - Charges drift to the liquid-gas surface
- Proportional signal (S2)
 - Electron/nuclear recoil discrimination

LXe: XENON100

LXe: LUX

LAr: DarkSide

Xenon

XENON100 at LNGS, LUX at SURF, PandaX at CJPL

Argon

DarkSide-50 at LNGS, ArDM at Canfranc Target masses between ~ 50 kg - 1 ton

Future noble liquid detectors

Sensitive and scalable:

- Under construction: XENON1T/nT (3.3 t/ 7t LXe) at LNGS
- Proposed LXe: LUX-ZEPLIN 7t (approved), XMASS 5t LXe
- Proposed LAr: DarkSide 20 t LAr, DEAP 50 t LAr
- Design & R&D studies: DARWIN 30-50 t LXe; ARGO 300 t LAr

DARWIN: 50 t LXe

LZ: 7t LXe

Underground physics - Otranto School 28/05/2019

XMASS: 5t LXe

DarkSide: 20 t LAr

XENON1T: 3.3 t - LXe

Heavy WIMP's status

Heavy WIMP's perspectives

Underground physics - Otranto School 28/05/2019

Double beta decay

ββ decay

Rare nuclear decay between isobar nuclei with $|\Delta Q|=2$ Even-even nuclei: **ONLY** direct $0^+ \rightarrow 0^+$ transition

Different modes:

- $(A,Z) \rightarrow (A,Z+2) + 2e + 2\overline{\nu} (2\nu\beta\beta)$
 - Standard 2nd order weak nuclear transition
 - Long lifetime (10^{18-24} yr)
- $(A,Z) \rightarrow (A,Z+2) + 2e^{-}(0v\beta\beta)$
 - Lepton number violation (LNV): physics beyond the SM

Only possible if neutrinos are Majorana fermions

 \rightarrow LNV (Δ L=2)

- \rightarrow absolute neutrino mass scale
- → Majorana phases

SM extensions

• $(A,Z) \rightarrow (A,Z+2) + n\chi$ (exotic modes)

Ve Ve

0vββ decay width

Under non trivial approximations it is possible to separate atomic, nuclear and particle contributions and factoring the transition width as

$\Gamma^{0\nu} = G_x(Q, Z) |M_x(A, Z)|^2 |\eta_x|^2$

 $G_x(Q,Z) = phase space factor \rightarrow precisely calculable$ $M_x(A,Z) =$ nuclear matrix element \rightarrow problematic $\eta_x = \text{particle physics parameter} \rightarrow \text{model dependent}$

- massive Majorana neutrinos
- GUT's
- SUSY

- ...

Underground physics - Otranto School 28/05/2019

Lepton number violation (LNV) and

Underground physics - Otranto School 28/05/2019

$A_{\beta\beta} \sim LNV$ parameters

neutrino mass scale

- lightest neutrino mass (\mathbf{m}_1) can be taken as free parameter

however, the lightest neutrino mass is not really an "observable"

• v oscillations constrain neutrino mixings and mass splittings but not the absolute mass scale.

neutrino mass scale

• three realistc observables to probe v masses

β decay:

- $m_i^2 \neq 0$ can affect spectrum endpoint. - sensiove to the "effective electron neutrino mass":

 $m_{\beta} = \sqrt{c}$

$0v\beta\beta$ decay:

- can occur if $m_i^2 \neq 0$ and $v = \overline{v}$ (Majorana, not Dirac) - sensiove to the "effecove Majorana mass" (and phases):

 $m_{\beta\beta} = |c_{13}^2 c_1^2|$

Cosmology:

- m2 i \neq 0 can affect large scale structures in (standard) cosmology - constrained by CMB + other data
- SensiOve to:

 $\Sigma = m$

$$c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2$$

$${}^{2}_{12}m_{1} + c^{2}_{13}s^{2}_{12}m_{2}e^{i\phi_{2}} + s^{2}_{13}m^{2}_{3}e^{i\phi_{3}}|$$

$$n_1 + m_2 + m_3$$

neutrinoless double beta decay basics

- Weak interactions (CC) are chiral (= not mirror-symmetric) \rightarrow V-A
- v are created LEFT with left-handed (LH) chirality

• for **massless v** chirality is a constant of motion

- 2 independent d.o.f.: massless (Weyl) spinor
- helicity = chirality
- massive v can develop a "wrong" handedness at O(m/E) (the Dirac equation mixes RH and LH states for $mv \neq 0$):

DIRAC picture

- the 4 d.o.f. are independent
- massive 4-spinor
- $v \neq \overline{v}$ as for electrically charged fermions
- can define a "lepton number"

Underground physics - Otranto School 28/05/2019

lepton number vs handedness

- let's define v (\overline{v}) as the neutral lepton emitted in β^+ (β) decay
- based on the fact that the following reactions have been experimentally observed $\nu_e + n \rightarrow p + e$
- while the following reactions have never been experimentally observed

 $\nu_e + p \rightarrow n + e^+$ $\bar{\nu}_e + n \rightarrow p + e$

neutrinos are Dirac fermions a (conserved) lepton number selects possible reactions ($\Delta L=0$ the first 2 reactions, $\Delta L=2$ the latter)

• however a consistent picture is possible also in the Majorana case ($\Delta L=2$)

 $m=0 \rightarrow v(\overline{v})$ is always associated with the negative (positive) charged lepton

$(A,Z) \rightarrow (A,Z-1) + e^+ + \nu$ $(A, Z) \rightarrow (A, Z+1) + e + \overline{\nu}$

 $\bar{\nu}_{\rho} + p \rightarrow n + e^+$

 $m > 0 \implies v \equiv LH \quad \overline{v} \equiv RH$

 pure v state (β+ decay) can develop a RH component at O(m/E) $\rightarrow \Delta L \neq 0$ possible @ O(m/E) (very small!!!)

0vββ decay (NDBD)

- A RH anOneutrino is emitted at vertex "A" together with an electron • If it is massive, at O(m/E) it develops a LH component (not possible if Weyl)
- If $v = \overline{v}$, this component is a LH neutrino (not possible if Dirac)
- The LH (Majorana) neutrino is absorbed at "B" where a 2nd electron is emitted

• v's are mixed. We must sum over the mixed stated to get the decay probability

• only 2 out of 3 Majorana phases are independent

$$U_{ek}^2 m_k e^{i\varphi_k} | \equiv m_{\beta\beta}^2$$

Schechter-Valle theorem ("black box")

A non-zero $0v\beta\beta$ amplitude implies a non vanishing Majorana neutrino mass

Basic assumptions:

- massive electron and u and d quarks
- standard left-handed interactions

corresponds to an unobservably small neutrino Majorana mass: $m_{bb} \sim 10^{-25} eV$

[Duerr M., Lindner M. & Merle A. J. High Energ. Phys. (2011) 2011:9; arXiv:11105.0901]

[Schechter and Valle, 1982]

Taking into account present 0vBB upper limits the conclusion is that the Feynman graph below

Majorana vs Dirac in oscillations

 The mixing matrix for Majorana v's is $U \to U \cdot U_M$

with the usual 2 independent Majorana phases

• In the Hamiltonian for neutrino oscillations (both vacuum and matter) the mixing matrix always appears in the form

$$U \frac{M^2}{2E} U^{\dagger}$$
 $M^2 = \text{diag}(m_1^2, m_2^2, m_3^2)$

• The replacement $U \rightarrow U \cdot U_M$ is therefore ineffective

$$U\frac{M^2}{2E}U^{\dagger} \rightarrow UU_M\frac{M^2}{2E}U_M^{\dagger}U^{\dagger} = U\frac{M^2}{2E}U^{\dagger}$$

and oscillations can't distinguish Dirac/Majorana neutrinos

$$U_M = \text{diag}(1, e^{i\varphi_2}, e^{i\varphi_3})$$

ββ0v standard interpretation: light

potential mechanisms give negligible or no contribution

$$\eta_x = \langle m_{ee} \rangle = \sum_k U$$
$$= c_{12}^2 c_{12}^2$$

- The transition amplitude is proportional to coherent sum of neutrino masses
- Majorana phases play a crucial role: possible cancellations

• Neutrinoless Double Beta Decay is mediated by light massive Majorana neutrinos and all other

Underground physics - Otranto School 28/05/2019

Distinguishing 0vßß mechanisms

A single measurement of total rate cannot pin down underlying $0\nu\beta\beta$ mechanisms.

- Half life ratios of different isotopes
 Deppisch, Päs 06, Gehman, Elliot 07, Fogli, Lisi, Rotunno 09
- Electron angular correlations

Ali, Borisov, Zhuridov 07

Decay to excited states and other rare decays

Faessler et.al. 94

• LNV processes at the LHC Allanach,CHK,Päs 09

Extract m_{ee} from data: a hard job

F. Böhm and P. Vogel, loc. cit. J. Kotila and F. Iachello, Phys. Rev. C 85, 034316 (2012)

Extract m_{ee} from data: a hard job

gA quenching

Allowed "beta" decays

Recent analysis of pn-QRPA, ISM and IBM based calculations of single β and $2\nu\beta\beta$ decays shows evidence for an evident dependence of the g_A quenching on A (J.Suhonen, Neutrino 2018):

Mass range	76-82	100-116	122-136
g a	0.7-0.9	0.5	0.5-0.7

Underground physics - Otranto School 28/05/2019

Forbidden "beta" decays

- Possible extrapolation to $0\nu\beta\beta$ (large momentum transfer)
- Crucial role of high forbiddance non unique transitions ⁹⁴Nb, ⁹⁸Tc, ⁹⁹Tc, ¹¹³Cd, ¹¹⁵In, ¹³⁸Cs

Caveat: 0vββ decay is a high-momentum transfer process $(q \sim 100 \text{ MeV}) \rightarrow \text{less quenching}$

Experimental signature

(A,Z) → (A,Z+2)++ + 2 e-

- A new (ionised) isotope
- Two electrons

Minimal information:

• two e⁻ energy sum spectrum (total deposited energy)

0vββ exhibits a peak at Q over 2vββ tail (and background contributions)

Additional signatures:

- Daughter nuclear species
- Single electron energy spectrum
- Angular correlation between the two electrons
 → Track and event topology
 → Time Of Flight

Two experimental approaches:

- homogeneous (source = detector) → calorimeters
- inhomogeneous (source ≠ detector) → trackers

... and mixed solutions

Underground physics - Otranto School 28/05/2019

Experimental approaches

Two main approaches:

- homogeneous (calorimetric or active source)
- inhomogeneous (external-source or passive source)

Calorimeters

Solid-state devices, bolometers, scintillators, gas detectors

- + Very large M possible (~10kg \rightarrow tons)
- + High efficiency ($\epsilon \sim 1$)
- + Very high energy resolution ($\Delta E \sim 0.15\%$ with Ge-diodes, bolometers)
- + Event topology (in gas/liquid Xe detectors or pixellization)
- + Good background levels
- Constraints on detector material (except for bolometers)
- No or partial particle id

External-source detectors

Scintillators, gas TPC, gas DC, magnetic field and TOF

- + Event topology allowing "clean bkg" (except $2\nu\beta\beta$)
- + Several ββ candidates can be studied with same detector
- Difficult to get large source M
- Difficult to get high efficiency
- Difficult to get good resolution

Underground physics - Otranto School 28/05/2019

Experimental sensitivity

$$\tau_{1/2}^{0\nu} = ln2 \frac{\epsilon N_{nuclei} t_{meas}}{N_{\beta\beta}}$$

Lifetime corresponding to the minimum detectable number of events over background at a given confidence level

 $N_{\beta\beta} \leq \sqrt{bkg \cdot \Delta E \cdot M \cdot t_{meas}}$

 $N_B = bkg \cdot \Delta E \cdot T \cdot M$ number of background events expected along the experiment lifetime

$$\begin{split} & \mathsf{N}_{\mathsf{B}} >> 1 \\ & S_{1/2}^{0\nu} \propto \epsilon \frac{i.a.}{A} \sqrt{\frac{M \cdot t_{meas}}{bkg \cdot \Delta E}} \\ & \mathsf{N}_{\mathsf{B}} \leq \mathsf{O}(1) \rightarrow \text{"zero background"} \\ & S_{1/2}^{0\nu} \propto \epsilon \frac{i.a.}{A} \frac{M \cdot t_{meas}}{M \cdot t_{meas}} \end{split}$$

Underground physics - Otranto School 28/05/2019

N _{nuclei}	number of active nuclei in the experime
t _{meas}	measuring time [y]
Μ	detector mass [kg]
3	detector efficiency
i.a.	isotopic abundance
Α	atomic number
ΔE	energy resolution [keV]
bkg	background [c/keV/y/kg]
-	

Energy resolution

Signal and background (red and grey stacked histograms, respectively) in the region of interest around Q_{BB} for 3 Monte Carlo experiments with the same signal strength (50 counts) and background rate (1 count keV $^{-1}$), but different energy resolutions: top: 1% FWHM, centre: 3.5% FWHM, bottom: 10% FWHM. The signal is distributed normally around Q!!, while the background is assumed flat.

Choice of the isotope

Transition	Т0	Abundance	first 2+
	(keV)	(%)	(keV)
46Ca→46Ti	985	0.0035	889
48Ca→48Tit	4272	0.187	984
70Zn→70Ge	1001	0.62	-
76Ge→76Se	2045	7.8	559
80Se→80Kr	136	49.8	-
82Se→82Kr	3005	9.2	776
86Kr→86Sr	1249	17.3	1077
94Zr→94Mo	1148	17.4	871
96Zr→96Mo	3350	2.8	778
98Mr → 98Ru	111	24.1	-
100Mo→100Ru	3033	9.6	540
104Ru→104pd	1301	18.7	556
110Pd→110Cd	2014	11.8	658
114Cd→114Sn	540	28.7	-
116Cd→116Sn	2808	7.5	1294
122Sn→122Te	358	4.56	-
124Sn→124Te	2278	5.64	603
128Te→128Xe	869	31.7	443
130Te→130Xe	2533	34.5	536

Transition
134Xe→134Ba
136Xe→136Ba
142Ce→142Nd
146Nd→146Sm
148Nd→148Sm
150Nd→150Sm
154Sm→154Gd
160Gd→16oDy
170Er→110Yb
176Yb→176Hf
186W→186Os
192Os→192Pt
198Pt→198Hg
204Hg→204Pb
232Th→232U
232U→232Pu

Underground physics - Otranto School 28/05/2019

Т0	Abundance	first 2+
(keV)	(%)	(keV)
843	10.4.	605
2481	8.9	819
1414	11.1	_
61	17.2	_
1928	5.7	550
3367	5.6	334
1250	22.6	123
1731	21.8	87
655	14.9	84
1077	12.6	88
489	28.6	137
408	41.0	317
1043	7.2	412
414	6.9	_
850	100	48
1146	99.275	44

Nucleus choice: golden isotope?

Surprising inverse correlation observed between phase space and the square of the nuclear matrix element

If this holds: conclusions about T sensitivity translate directly (within a non negligible uncertainty range) on mee sensitivity

uncertainty on g_A

> geometric mean of the squared matrix element range limits & the phasespace factor evaluated at g_A=1

DBD experiments summary

Experiment	Isotope	m _{fid} (ßß) [kg]	Technique	Laboratory	Status
CANDLES	48Ca	305	CaF2 crystals - liq. scintillator	Kamioka	Construction
CARVEL	48Ca		48CaWO4 crystal scint.		R&D
GERDAI	76Ge	14	Ge diodes in LAr	LNGS	Complete
GERDA II	76Ge	31	Point contact Ge in LAr	LNGS	Operating
Majorana D	76Ge	26	Point contact Ge	SURF	Operating
LEGEND-200	76Ge	172	Point contact Ge in LAr	LNGS	R&D
NEMO3	100Mo/82Se	6.9/0.9	Foils with tracking	LSM	Complete
SuperNEMO D	82Se	6.3	Foils with tracking	LSM	Construction
SuperNEMO	82Se	126	Foils with tracking		R&D
CUPID-0	82Se	5	ZnSe scint. bolometer	LNGS	Operating
AMoRE	100Mo	50	CaMoO4 scint. bolometer	Y2L	R&D
MOON	100Mo	200	Mo sheets		R&D
COBRA	116Cd	10/183	CdZnTe detectors	LNGS	R&D
CUORICINO	130Te	10	TeO2 Bolometer	LNGS	Complete
CUORE-0	130Te	11	TeO2 Bolometer	LNGS	Complete
CUORE	130Te	206	TeO2 Bolometer	LNGS	Operating
SNO+	130Te	55	0.1% natNd suspended in Scint	SNOlab	Commissioning
KamLAND-ZEN	136Xe	380	2.7% in liquid scint.	Kamioka	Operating
NEXT-100	136Xe	90	High pressure Xe TPC	LSC	Construction
EXO-200	136Xe	60	Xe liquid TPC	WIPP	Operating
nEXO	136Xe	450/3330	Xe liquid TPC	SNOlab	R&D
PandaX-III	136Xe	200	High pressure Xe TPC	CJPL-II	R&D
DCBA	150Nd		Nd foils & tracking chambers		R&D

Boulby

LSC

- WIPP in USA (EXO-200)
- LSM in France (CUPID-Mo)
- Kamioka in Japan (XMASS,KamLAND-Zen)
- Y2L in Corea (Amore)
- LSC in Spain (NEXT, SuperNEMO-D)

Present

EXO-200

Underground physics - Otranto School 28/05/2019

MAJORANA DEM.

GERDA-II

KamLAND-ZEN

An exciting moment

- approach or enter the IH band of neutrino masses
- Current experiments are characterised by sensitivities O(10²⁶ yr) on the half lifetime • Depending on the evolution of the discussion on NME's and g_A quenching they will
- Most of them are developments of previous experiments (or demonstrators)

Status

Underground physics - Otranto School 28/05/2019

no gA quenching assumed

Latest results (March 2018)

Experiment	Isotope	Limit T _{1/2} (yr)	Median Sensitivity	BI (10 ⁻³ c/(keV kg yr)	FWHM (keV)	Exposure (kg·yr)	m _{ßβ} (meV)	
GERDA-(I+II)	⁷⁶ Ge	8.00E+25	5.80E+25	1.0+0.6-0.4	3.65	23.5+23.2	120-260	Agostini M et al, PRL 120 132503 (20
MJD	⁷⁶ Ge	1.90E+25	2.10E+25	1 .6+ ^{1.2} -1.0	2.5	9.5	240-520	Aalseth C E et al, PRL 120 132502 (20
CUORE	¹³⁰ Te	1.30E+25	7.00E+24	14±2*	7.7	24	110-520	Alduino C et al, PRL 120 132501 (201
CUPID-0	⁸² Se	2.40E+24	2.30E+24	3.6 ^{+1.9} -1.4	23	1.83	376-770	Azzolini O et al, PRL 120, 232502 (20
EXO-200	¹³⁶ Xe	1.80E+25	3.70E+25	1.5±0.3*	71	177	147-398	Albert J B et al, PRL 120 072701 (201
KamLAND- ZEN	¹³⁶ Xe	1.11E+26		0.54±0.09	270	504	61-165	Gando A et al, PRL 117 082503 (2016

Latest update (Neutrino 2018)

Experiment	Isotope	Limit T _{1/2} (yr)	Median Sensitivity	Bl (10 ⁻³ c/(keV kg yr)	FWHM (keV)	Exposure (kg·yr)	m _{ßβ} (meV)	
GERDA-(I+II)	⁷⁶ Ge	9.00E+25	8.0E+25	0.56	3.6/3.0	82.4	120-260	AJ Zsigmond - Neutrino 2018
MJD	⁷⁶ Ge	2.70E+25	4.8E+25	4.7±0.8	2.5	21.3	200-433	VE Giuseppe - Neutrino 2018
CUORE	¹³⁰ Te	1.30E+25	7.00E+24	14±2*	7.7	24	110-520	Alduino C et al, PRL 120 132501 (201
CUPID-0	⁸² Se	2.40E+24	2.30E+24	3.6 ^{+1.9} -1.4	23	1.83	376-770	Gando A et al, PRL 117 082503 (2016
EXO-200	¹³⁶ Xe	1.80E+25	3.70E+25	1.5±0.3*	71	177	147-398	Azzolini O et al, PRL (2018)
KamLAND- ZEN	¹³⁶ Xe	1.11E+26		0.54±0.09	270	504	61-165	Albert J B et al, PRL 120 072701 (201

Underground physics - Otranto School 28/05/2019

Status

Underground physics - Otranto School 28/05/2019

no gA quenching assumed

CUORE, MJD, GERDA-II, KamLAND-Zen

 10^{-1}

m_{lightest} [eV]

Gazing into a crystal ball

- successful results
- Plans for developments aiming at sensitivities O(10²⁷⁻²⁸ yr), i.e. at least one order of
- Next generation experiments will be able to sound the IH region of neutrino masses

• R&D's to improve sensitivity (performance or scale) have already produced a number of

magnitude better than present have been already developed and projects proposed

Future

SNO+

SuperNEMO

KamLAND-ZEN

Underground physics - Otranto School 28/05/201

Status

Future Sensitivities

Underground physics - Otranto School 28/05/2019

no gA quenching assumed

EXO-200

- Liquid Xe TPC (80.6% ¹³⁶Xe): 75 kg 136Xe in FV
 - Phase I completed: 122 kg·yr (σ /E: 1.6%)
 - Phase II: from Jan 2016 (σ/Ε: 1.3%)
- Background index: (0.11±0.01) / (kg·yr·FWHM)
- Sensitivity: 3.8 · 10²⁵
- $T_{1/2} = 1.8 \cdot 10^{25} yr$
- mee: 147-398 meV

nEXO

Discovery sensitivity (3 σ , 50%) after 10 yr: T_{1/2} = 5.5 If ¹³⁶Ba-tagging can be implemented: $T_{1/2} = 1.6 \cdot 10^{2}$

Underground physics - Otranto School 28/05/2019

Background in the central 2000 kg by component

.5m .4m	TPC Vessel - Charge Module Cables - FR Support Spacers - Field Rings - SiPM Cables - LXe (¹³⁷ Xe, ββ2ν) - LXe outside TPC (²²² Rn) - SiPM Support - SiPM Support - SiPM Electronics - HFE - FR Support Legs - Charge Module Glue - Charge Module Glue - Charge Module Chip - Outer Cryostat - SiPM Glue - Inner Cryostat - SiPM Glue - SiPM Cables - Charge Module Support - Inner Cryostat Liner - SiPM Module Backing - Cathode Ring - Charge Module Backing -	10 ⁻⁶	10 ⁻⁵	10-4	
5 · 10²7 yr)² ⁸ yr	$\begin{bmatrix} 10^{-3} \\ 0.0 \end{bmatrix} \begin{bmatrix} 10^{-4} \\ 0.0 \end{bmatrix} \begin{bmatrix} 0.0 $	5 1.0	cts/(FWHM·kg·y	rear)	4.(kg]

10 kg prototype with natXe

NEXT 100

- Working @ LNC
- FWHM < 1% FWHM in the ROI (< 25 keV)
- •Enriched Xe run: start in 2018

Underground physics - Otranto School 28/05/2019

- Commissioning in 2019
- 5 y sensitivity:
 - $T_{1/2} > 9.8 \cdot 10^{25} \text{ y}$
 - $m_{ee} < 46 170 \text{ meV}$

High pressure (10-15 bar) enriched Xe TPC

- Based at LNC
- Primary scintillation for energy: PMT
- Ionisation for tracking: SiPMs
- Very clear topological signature

NEXT 2.0

- Better tracking: He-Xe mixture
- Ton scale
- PM \to Si-PM
- Ba tagging

PandaX-III

Particle And Astrophysical Xenon Experiment III

Based @ Jin-Ping underground Laboratory II (CJPL-II)

Phase I:

- high pressure gas TPC
- 200 kg of 90% enriched ¹³⁶Xe
- Microbulk Micromegas for charge readout
 - FWHM: 3%
 - Background index: 1.10-4 c/keV/kg/y in the ROI

Ton-scale:

- Four more modules with upgraded charge readout and better low-background material screening.
 - FWHM: 1%
 - Background index: 1.10⁻⁵ c/keV/kg/y in the ROI -

KamLAND-Zen

- Sensitivity:
- Unconstraint fit:
- Phase I + II:

Phase-2: 2013/12/11 - 2015/10/27: 534.5 days (504 kg-yr)

Underground physics - Otranto School 28/05/2019

KamLAND2-Zen with 1000 kg + proposed

LEGEND

First Stage:

- (up to) 200 kg ⁷⁶Ge in upgrade of existing infrastructure at LNGS
- BG goal 0.6 cts/(FWHM t yr)
- Data start ~2021
- Will use
 - existing MAJORANA & GERDA detectors (65 kg),
 - plus new detectors (135 kg)

- 1000 kg 76Ge (staged)
- BG goal: 0.1 cts/(FWHM t yr)
- Location: TBD

SNO setup and acrylic vessel filled with 780 tons of liquid scintillator

Phase I:

- 1.3 tons of natural Te
 - 0.5% mass loading
- FWHM: 190 keV
- 5 y sensitivity:
 - $T_{1/2} > 1.9 \cdot 10^{26} \text{ y}$
 - $m_{ee} < 35 140 \text{ meV}$
- Water fill: complete (Feb 2017) +
- LS fill: July 2018 +
- Te loading: spring 2019 +

THEIA: new concept

- 50 kton water-based liquid scintillator
- High coverage and fast photon detectors
- Deep underground
- 8-m radius balloon with high-LY LS
- 7-m fiducial, 3% natTe,
- Dominant background: ⁸B solar n's
- Sensitivity 10 years:
 - $T_{1/2} > 1.1 \cdot 10^{28} \text{ y}$
 - $m_{ee} < 5-18 \text{ meV}$

Underground physics - Otranto School 28/05/2019

Phase II (ongoing R&D)

- Increase:
 - Te concentration, light yield, transparency ight detectors
- Sensitivity:
 - $T_{1/2} > 1 \cdot 10^{27} \text{ y}$
 - $m_{ee} < 15-60 \text{ meV}$

CUORE

- Exposure: 86.3 kg(TeO₂)·yr
- - m_{ee} < 110–520meV

Phys. Rev. Lett. 120, 132501 (2018)

- 988 TeO₂ crystals arranged in 19 towers

- Background index: (1.4 ± 0.2) · 10⁻² cnts/(keV·kg·yr)

Multiplicity 1 -- Inner Layer

CUPID (CUORE Upgrade with Particle

- Concept: α background rejection with particle ID
 - Add light read out (scintillation/Cherenkov)
 - Combine energy resolution of bolometers with background discrimination of a dual channel detector
- Light emitting bolometers
- CUORE cryostat
- Nearly zero background goal: ~ 0.1 cnts/(ROI·yr)
- Worldwide effort focused on demonstrating readiness to construct a tonne-scale bolometric experiment
 - Concept proved in a number of:
 - small scale detectors
 - larger scale demonstrators

(ILSM) **CUPID-Mo** Jke-TES Neganov-L

- Li₂MoO₄ scintillating bolometers identified as a promising baseline
- Enriched TeO₂ is a mature viable alternative

AMoRE

Concept :scintillating bolometers based on Ca¹⁰⁰MoO₄ (Ca depleted from ⁴⁸Ca)

- AMORE-I @ Y2L with CaMoO4 (also ZMO, LMO, ...)
- AMORE-II @ new larger lab (ARF) with X¹⁰⁰MoO₄ (X=Li, Na, ⁴⁰Ca, ...)
- 5 y sensitivities:
 - AMORE-I: $T_{1/2} > 10^{25}$ yr, $m_{ee} < 120-200$ meV
 - AMORE-II: $T_{1/2} > 10^{26}$ yr, $m_{ee} < 17-30$ meV

AMoRE-I 5-6 kg 2018

AMoRE-Pilot ~1.8 kg 2016-2017

Underground physics - Otranto School 28/05/2019

SuperNEMO

- Unique of the inhomogeneous approach experiments
- Built on the succesfull NEMO-3 experiment
- Based @ LSM
- Main advantage: full topological reconstruction:
 - crucial in case of discovery
 - easier access to other physics channels
- Total isotope mass: ~100kg of ⁸²Se (20 modules)
- Sensitivity: ~10²⁶ yr
- SuperNEMO demonstrator expected start in 2018:
 - 7 kg of ⁸²Se.
 - 2.5 y sensitivity: 6 · 10²⁴ y
- Plans to move to ¹⁵⁰Nd

Discovery potential

Discovery potential estimates for various proposals, assuming

- Type I see-saw
- free value of g_A
- Bayesian analysis with flatly distributed priors

The sensitivity hill

Biassoni et al., arXiv:1310.3870 8

Fixed budget

- On a large scale, factors like cost and time can become important.
- Enrichment is a common request. Let's assume it accounts for half of the cost.
- Let's also assume $g_A=1.25$ and request a background level such to maintain each isotope in the ZB condition.
- What is the reach of a $100M \in experiment?$

		Bkg	FWHM	Miso	T ^{1/2} 0v (ZB)	<m<sub>ββ></m<sub>	a.i.	Cost(iso)	Prod.	Cost(nat)
		[c/keV/kg/y]	[keV]	[ton]	[yr]	[meV]	[%]	[€/g]	[ton/y]	€/g
LEGEND	76Ge	8.4E-05	3	0.71	6.99E+27	19	7.8	70	165	1.2
CUPID ZnSe	82Se	1.56E-05	10	0.71	6.32E+27	12	9.2	70	2275	0.8
CUPID ZnMO4	100Mo	1.94E-05	9	0.5	3.63E+27	15	7.6	100	266000	0.02
CUPID CdWO4	116Cd	3.19E-05	6	0.33	2.09E+27	26	9.6	150	22200	0.06
CUPID TeO2	130Te	8.35E-06	5	3.85	2.34E+28	6	34.2	13	150	0.03
SNO++	130Te	1.93E-07	270	3.85	5.37E+27	12	34.2	13	150	0.03
nEXO+	136Xe	5.52E-07	58	6.25	2.09E+28	7	8.9	8	50	1.2
Kam-Zen	136Xe	1.28E-07	250	6.25	1.25E+28	9	8.9	8	50	1.2
BEXT	136Xe	2.13E-06	15	6.25	1.25E+28	9	8.9	8	50	1.2

Fixed <m_{ββ}> sensitivity

- Let's revers our argument and design an experiment with a sensitivity $\langle m_{\beta\beta} \rangle = 10$ meV (g_A=1.25 and a background level such to maintain each isotope in the ZB condition)
- What is its scale and cost?

		Bkg	FWHM	M _{iso}	T ^{1/2} 0v (ZB)	Cost(iso)	a.i.	Cost(iso)	Prod.	Cost(nat)
		[c/keV/kg/y]	[keV]	[ton]	[yr]	[M€]	[%]	[€/g]	[ton/y]	€/g
LEGEND	76Ge	2.29E-05	3	2.62	2.57E+28	184	7.8	70	165	1.2
CUPID ZnSe	82Se	9.68E-06	10	1.03	9.16E+27	72	9.2	70	2275	0.8
CUPID ZnMO4	100Mo	7.73E-06	9	1.13	8.19E+27	113	7.6	100	266000	0.02
CUPID CdWO4	116Cd	4.27E-06	6	2.24	1.4E+28	336	9.6	150	22200	0.06
CUPID TeO2	130Te	2.27E-05	5	1.27	7.72E+27	17	34.2	13	150	0.03
SNO++	130Te	1.21E-07	270	5.53	7.72E+27	72	34.2	13	150	0.03
nEXO+	136Xe	9.36E-07	58	3.32	1.11E+28	27	8.9	8	50	1.2
Kam-Zen	136Xe	1.3E-07	250	5.53	1.11E+28	44	8.9	8	50	1.2
BEXT	136Xe	2.17E-06	15	5.53	1.11E+28	44	8.9	8	50	1.2

