

Measurement of ²³⁵U(n,f) cross section between 10 and 30 keV

Presented by: Simone Amaducci (INFN-LNS)

Motivations and physical interest

- Discrepancies (~8%) in the n_TOF neutron flux measure between detectors using fission and the ones using ${}^{6}Li(n,t)$ and ¹⁰B(n,α)
- Discrepancies in the $^{235}U(n,y)$ measure at DANCE (235U(n,f) used as reference)

- Increase the standard ²³⁵U(n,f) accuracy and extend its range (at present at thermal and between
- Collect data for fission reactors of new generation

Neutron standards

The new measurement

A new measurement of the ²³⁵U(n,f) cross section has been made during the autumn 2016 using a custom experimental apparatus.

- The standards $^{6}Li(n,t)$ and $^{10}B(n,\alpha)$ are used as references
- The measurement has been performed at the n_TOF facility
- Silicon detectors are used to measure the emitted products
- Silicons are placed in beam in order to maximize the geometrical efficiency, measuring products emitted forward and backward

CERN

n_TOF facility

- Neutrons produced through a spallation process
- Extremely high instantaneous flux
- High neutron energy resolution
- Wide neutron energy range (from thermal to GeV)

neutron Time Of Flight

Setup

 Stack of 6 silicon detectors 5x5 cm² single pad 200 µm in beam

Events selection – ⁶Li(n,t)⁴He

Events selection – ¹⁰B(n,α)⁷Li

Events selection – ²³⁵U(n,f)

10⁵

10²

10

10³

 10^{4}

10⁶

Neutron energy (eV)

 10^{7}

 10^{8}

 10^{-5}

 10^{-2}

 10^{-1}

1

Good ratio Signal / Background

 10^{4}

10

 10^{2}

Signals

Background

²³⁵U(n,f)

10

^{10⁵} 10⁶ 10⁷ 10⁸ Neutron energy (eV)

σ

std

Data analysis

$$\sigma_{fission} = \frac{C_{fission} \cdot fAbs_{fission} \cdot \varepsilon_{std}}{C_{std} \cdot fAbs_{std}} \cdot N \cdot \sigma_{std}$$

- C_{std} measured **count rates** after background subtraction
- fAbs coefficients representing the correction due to the **absorption** in dead layers, estimated with MC simulation
- E_{std} efficiency of the detector measuring the standard reference, estimated with MC simulation
- N normalization coefficient, includes all the terms not depending on neutron energy (between 7.8 and 11 eV)
 - standard cross section used as reference

Analysis Meeting July 2018 - CERN

13

Absorption correction - MC

The **neutron fraction** hitting each target has been evaluated using Monte Carlo simulations, taking in account all the dead layers.

Efficiency – MC

The combination of **detection** and **geometrical** efficiency has been calculated using MC for the reactions ${}^{6}Li(n,t)$ and ${}^{10}B(n,\alpha)$ from thermal to 160 keV. In this phase detectors has been calibrated and the experimental errors has been introduced.

Analysis Meeting July 2018 - CERN

²³⁵U(n,f)

Ratio forward / backward

16

Ratio ⁶Li(n,t) / ¹⁰B(n,α)

17

Cross section – ²³⁵U(n,f)

Combined data of ${}^{6}Li(n,t)$ and ${}^{10}B(n,\alpha)$ used as reference.

18

Deviation from ENDF

Differences between our data and ENDF in units of sigma (statistical only).

Conclusions

- An accurate measurement of the ²³⁵U(n,f) cross section has been performed at n_TOF using ⁶Li(n,t) and ¹⁰B(n,α) as reference.
- Preliminary data confirm an overestimation (around 5%) of the ²³⁵U(n,f) in ENDF between 10 and 30 keV.
- New good quality data has been collected in the keV region, that will help to refine the evaluation of the structures of the uranium fission cross section.

Thank you

⁶Li(n,t)

backward

Experimental cuts systematic (

The sensitivity to the experimental cut has been evaluated with small variation of the threshold.

⁶Li(n,t)

backward

Experimental cuts systematic (

This source of systematic uncertainty has been proved to be negligible.

Efficiency systematic

The dependence of the efficiency by the geometrical setup has been evaluated with small changes in the simulations:

1) Moving the beam center on the XY plane

Standard cross sections

