²³⁵U(n,f) cross section between 10 and 30 keV

Presented by: Simone Amaducci (n_TOF collaboration – INFN LNS)

n_TOF facility

- Neutrons produced through a spallation process
- Extremely high instantaneous flux
- High neutron energy resolution
- Wide neutron energy range (from thermal to GeV)

neutron Time Of Flight

n_TOF facility

n_TOF facility

Motivations

- Discrepances (6-8%) in the n_TOF flux measure between detectors using fission and the ones using ⁶Li(n,t) and ¹⁰B(n,α)
- Discrepances in the ²³⁵U(n,γ) measure at DANCE (fission used as reference)

Interest

- Improve the standard ²³⁵U(n,f) and extend its range (at present 150 keV – 200 MeV)
- Fission reactors of new generation
- Update libraries

Experimental setup

- Stack of 6 silicon detectors 5x5 cm² single pad 200 µm in beam
- We measured product emitted forward and backward

Events selection – ⁶Li(n,t)⁴He

It's based on signals amplitude using a function which depends on neutron kinetic energy. Tritons are selected in ⁶Li(n,t)⁴He reaction.

Events selection – ¹⁰B(n,α)⁷Li

Alpha particles are selected in ${}^{10}B(n,\alpha)^{7}Li$ reaction.

Events selection – ²³⁵U(n,f)

For ²³⁵U(n,f) the fission fragments are selected, in this case the discrimination is very effective.

Detectors Stability

Silicons demonstrated a great resistence to damage due to incident neutron flux and fission fragments during the measurement.

No significant differences has been observed comparing first and last 10 runs.

Absorption correction - MC

Detector efficiency - MC

The combination of **geometrical** and **detection** efficiency is estimated using Monte Carlo simulations. A preliminary calibration for the energy deposited and application of the experimental resolution is needed.

Detector efficiency - MC

To evaluate efficiency for the first 4 detectors their reaction products are generated in corresponding targets volumes according to a Gaussian neutron beam profile ($\sigma = 0.7$ cm) and their momentum angular distribution.

INFN

Thank you for your attention

n_TOF flux

INFŃ

Backup – Standard cross sections

15th Rußbach school on Nuclear Astrophysic March 2018

=Ń

Backup – Al(n,all) cross section

15th Rußbach school on Nuclear Astrophysic March 2018

=Ń

