Nuclear Astrophysics (II)

Sergio Cristallo

INAF- Osservatorio Astronomico d'Abruzzo INFN – Sezione di Perugia

INAF - Osservatorio Astronomico d'Abruzzo

Solar System Abundances

The slow neutron capture process

How s-process neutron captures work?

Branching points: if $\tau_0 \sim \tau_n \implies$ several paths are possible

Seeds for the s-process

Main seeds are ⁵⁶Fe nuclei... Why not the most abundant ¹H, ⁴He or ¹²C???

The reason lies in the nuclear structure of nuclei...and in the stars!!

<10 ⁻²¹ s	10 ⁻²¹ - 10 ⁻¹⁸ s
10 ⁻¹⁸ - 10 ⁻¹⁵ s	10 ⁻¹⁵ - 10 ⁻¹² :
1 - 1000 ps	1 - 1000 ns
1 - 1000 µs	1 - 1000 ms
1 - 60 s	1 - 60 m
1 - 24 h	1 - 365 d
1 - 1000 y	10 ³ - 10 ⁶ y
10 ⁶ - 10 ⁹ y	> 10 ⁹ y
Stable	
Unknown	

Seeds for the s-process

Where do s-process neutrons come from? Free neutrons are <u>NOT</u> abundant in the major phases of nuclear burnings.

Neutrons are liberated to some extent by secondary reactions during helium burning in <u>Asymptotic Giant Branch (AGB) stars</u>, as well as during <u>core-He and</u> shell-C burnings of massive stars.

In the s-process, neutron capture cross sections are well determined (on average, but stay tuned!), and one the biggest remaining challenge is the supply of free neutrons over a large enough period of time.

Major neutron sources of the s-process

¹³C(α ,n)¹⁶O ²²Ne(α ,n)²⁵Mg

The sources of the s-process

13C: main source for the Main component $^{12}C(\rho,\gamma)^{13}N(\beta^+)^{13}C$

²²Ne: main source for the Weak component ¹⁴N(α,γ)¹⁸F(β^+)¹⁸O(α,γ)²²Ne

Primary and secondary elements (or isotopes)

* Primary element: produced from H & He directly: ¹²C,¹⁶O...

* Secondary element: its production requires the presence of some metals: ¹⁴N, ²⁷Al...

The ¹³C is <u>primary</u> like The ²²Ne is (mostly) <u>secondary</u> like Iron seeds (⁵⁶Fe) are <u>secondary</u> like

> The key quantity is the neutron/seed ratio, for example: N(¹³C)/N(⁵⁶Fe)

SURFACE DISTRIBUTIONS

The three s-process peaks

1st peak \rightarrow <u>ls</u> elements (Sr,Y,Zr) [N=50]

2nd peak → <u>hs</u> elements (Ba,La,Ce,Nd,Sm) [N=82]

3rd peak → <u>lead</u> (²⁰⁸Pb) [N=126 & P=82]

A sluice system with opening bulkheads

AGBs: marvellous stellar cauldrons

- C (1.5-4.0 M_{SUN})
- N (4.0-7.0 M_{SUN})
- F (1.5-4.0 M_{SUN})
- Na (all)
- Mg&Al (5.0-7.0 M_{SUN})
- Half of the heavy elements is synthesized in AGBs

The s-process in AGB stars

$^{22}Ne(\alpha,n)^{25}Mg$ reaction

The s-process in AGB stars

How does the ¹³C pocket form?

✓ Opacity induced overshoot (Cristallo+ 2009)
 ✓ Convective Boundary Mixing + Gravity waves (Battino+ 2016)
 ✓ Magnetic fields (Trippella+ 2014)

How does the ¹³C pocket change?

Rotation mixing (Piersanti+ 2013)
 Magnetic fields (Trippella+ 2014)

The formation of the ¹³C pocket

¹⁴N strong neutron poison via
¹⁴N(n,p)¹⁴C reaction

Rotation induced instabilities during the AGB phase

NET EFFECT

It mixes ¹⁴N in ¹³C-rich layers (and viceversa), thus implying a decrease of the local neutron density and an increase of the iron seeds. As a consequence, the surface s-process distributions change.

21

...and outside AGBs?

Testing theoretical s-process models

1.Spectroscopic observations;

2.Pre-solar grains;

3.Solar distribution of s-only isotopes

s-process [hs/ls]

Ba & CH stars
Post-AGBs
Intrinsic C-rich
Intrinsic O-rich

[ls/Fe]=([Sr/Fe]+[Y/Fe]+[Zr/Fe])/3

 $[hs/Fe] = ([Ba/Fe] + [La/Fe] + [Nd/Fe] + [Sm/Fe])/4_{29}$

Allende (Mexico, 1969)

Meteorites

Murchison (Australia, 1969)

Isotopic ratios in pre-solar SiC grains

Figure 14. Four-isotope plots of $\delta^{(38}St/^{86}Sr)$ vs. $\delta^{(138}Ba/^{136}Ba)$ in (a, c, e) and $\delta^{(88}St/^{86}Sr)$ vs. $\delta^{(135}Ba/^{136}Ba)$ in (b, d, f). The mainstream SiC grain data from this study are compared to FRUITY rotating model predictions for 2 M_{\odot} AGB stars with metallicities at 0.72 Z_{\odot} , Z_{\odot} , and 1.45 Z_{\odot} by Piersanti et al. (2013).

$\delta(^{i}X/^{j}X) \equiv [(^{i}X/^{j}X) \text{measured}/(^{i}X/^{j}X)_{SUN} - 1] \times 1000^{28}$

The solar s-only distribution

The solar s-only distribution

The weak s-process in massive stars

The weak s-process and the evolution of massive stars

Core He-burning phase

 $3\alpha → ^{12}C$ $^{12}C(\alpha, \gamma)^{16}O$ $^{14}N(\alpha, \gamma)^{18}F(\beta^+)^{18}O(\alpha, \gamma)^{22}Ne$

 $\tau \approx 1 \text{ Myr}$

When $T^{3}x10^{8}$ K the ²²Ne(α ,n)²⁵Mg is efficiently activated

The resulting neutron density is low (~10⁶ n/cm³) Similar to the s-process

Core C-burning phase

 $^{12}C(^{12}C,\alpha)^{20}Ne$ $^{12}C(^{12}C,p)^{23}Na$ $^{12}C(^{12}C,n)^{23}Mg$

τ ≈ 1 Kyr

Some ²²Ne is left after He burning

All (α, n) channels are activated: ¹³C $(\alpha, n)^{16}$ O - ¹⁷O $(\alpha, n)^{20}$ Ne ¹⁸O $(\alpha, n)^{21}$ Ne - ²¹Ne $(\alpha, n)^{24}$ Mg ²²Ne $(\alpha, n)^{25}$ Mg - ²⁵Mg $(\alpha, n)^{28}$ Si ²⁶Mg $(\alpha, n)^{29}$ Si

The resulting neutron density is very high, BUT...

Shell C-burning phase

¹²C(¹²C,α)²⁰Ne
¹²C(¹²C,p)²³Na
¹²C(¹²C,p)²³Mg

Why not the ${}^{13}C(\alpha,n){}^{16}O$? Because at T~1 $_{\times}10^{9}$ K the ${}^{13}N(\gamma,p){}^{12}C^{*}$ works!!

All (α, n) channels are activated: ¹³C $(\alpha, n)^{16}$ O - ¹⁷O $(\alpha, n)^{20}$ Ne ¹⁸O $(\alpha, n)^{21}$ Ne - ²¹Ne $(\alpha, n)^{24}$ Mg ²²Ne $(\alpha, n)^{25}$ Mg - ²⁵Mg $(\alpha, n)^{28}$ Si ²⁶Mg $(\alpha, n)^{29}$ Si

The resulting neutron density is higher: 10¹¹-10¹² n/cm³ **Uncertainties of the weak s-process: cross sections**

¹²C(¹²C,x)x - ²²Ne(α,x)x - ¹²C(α,γ)¹⁶O

Orders of magnitude uncertainty: \checkmark \uparrow

Uncertainties of the weak s-process: cross sections

¹²C(¹²C,x)x - ²²Ne(α,x)x - ¹²C(α,γ)¹⁶O

Uncertainties of the weak s-process: cross sections

¹²C(¹²C,x)x - ²²Ne(α,x)x - ¹²C(α,γ)¹⁶O

Uncertainties of the weak s-process: stellar modelling

Convection - Rotation

Strong production of primary ¹⁴N at low metallicities

${}^{13}{\rm C}/{}^{14}{\rm N}\simeq~5.7\cdot10^{-3}$

In any case the dominant source is the ²²Ne(α,n)²⁵Mg

120 130

Courtesy of A. Chieffi

The effect of rotation: differences in the stellar ejecta

Nuclear Astrophysics

A case study: the n_TOF experiment

n_TOF collaboration

18 Countries50 Institutes124 Collaborators38 PhD

n_TOF - Italia

Neutron energies of interest

Experimental techniques: how to obtain neutron beams?

> Thermal Neutrons

- > Reactors \rightarrow very high flux
- > Accelerators+ moderators, neutron beams less intense

Mono-energetic neutron sources

- Based on (p,n) (d,n) etc.
- Low energy accelerators
- Neutron energy can be varied (up to 20 MeV)

Facilities for Time Of Flight: neutrons with large energetic spectrum

- Large energetic spectrum (meV MeV or meV GeV)
- > High energetic resolution
- More complicated accelerators (pulsed, high energy, high intensity)

n_TOF is a neutron spallation source based on PS at CERN with protons with 20 GeV/c hitting a lead target (~360 incoming neutrons per proton).

Experimental area at 185 m. 7×10^{12} protons per burst

n_TOF al CERN: Spallation source (proposed by C. Rubbia in 1997). LINE 1 (185 m) since 2000 LINE 2 (18 m) since 2014 10⁷ EAR2 Energy range : Neutron fluence (dN/dInE/7E12p) $25 \text{ meV} < E_n < 1 \text{ GeV}$ 10⁶ High neutron flux EAR2 10⁶ n/cm²/pulse 10⁵ EAR1 10⁵ n/cm²/pulse 20 m Good energy resolution 104 ΔE/E ~10⁻⁴ @ EAR1 EAR-2 EAR-1 (H_O) EAR-1 (H,O + 10B) 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} 10^{1} 10-3 EAR1 Neutron energy (eV) 20 GeV/c protons Spallation 185 m Target

Nuclear AstroPhysics at n_TOF

r-process

s-process

56

BBN

An example: the ¹⁴⁰Ce cross section

 $[X/Fe] = \log(N_X/N_{Fe})_{STAR} - \log(N_X/N_{Fe})_{SUN}$

Neutron capture on ¹⁴⁰Ce

Experimental (n,γ) set-up

Liquid scintillators: low neutron sensitivity measurements

TAKE HOME MESSAGES

- Nuclear Astrophysics is an essential ingredient to understand stellar evolution;
- Half of the heavy elements in the Universe are synthesized by the r-process
- Neutron stars mergers are the ideal site for the r-process. The questions is: are they sufficient to explain observations?
- Asymtptic Giant Stars and pre-explosive phases of massive stars evolution provide the other half;
- Experiments and theory must proceed together to provide a satisfactory picture of stellar nucleosynthesis.