The effect of rotation and noncanonical mixing on CEMP stars surface distributions

Sergio Cristallo, Luciano Piersanti INAF - Osservatorio Astronomico di Teramo INFN - Sezione di Perugia

Summary

- An overview on the mechanisms at the origin of the ¹³C pocket (major neutron source in low-mass AGBs);
- Models vs. Observations at low metallicities;
- The effects induced by rotation at low metallicities;
- The occurrence of the i-process at low metallicities;
- Alternative solutions

F.R.U.I.T.Y. FUll-Network Repository of Updated Isotopic Tables & Yields

SC+ 2011,2015

fruity.oa-abruzzo.inaf.it

-2.85 ≤ [Fe/H] ≤ +0.15

$$1.3 \leq M/M_{sun} \leq 6.0$$

The s-process in AGB stars

The s-process in AGB stars

The ¹³C pocket in stellar evolutionary models

Opacity induced overshoot (SC+...)
 Convective Boundary Mixing + Gravity Waves (Battino+ 2017)

The ¹³C pockets in post-process calculations:

✓ n-zones profile (Gallino+...)
 ✓ Exponential hydrogen profile (Lugaro+...)
 ✓ Magnetic-induced mixing (Trippella+ 2014)

How does the ¹³C pocket change?

 Rotation-induced mixing (Herwig+ 2003; Siess+ 2004; Piersanti+ 2013)

Opacity induced overshoot: a ballistic approach

Let's assume that the deceleration is proportional to the square of the velocity, as it happens to a body moving in a sufficiently dense fluid:

$$\mathbf{v} = \mathbf{v}_{bce} \cdot \exp\left(-d/\boldsymbol{\beta} \mathbf{H}_{p}\right)$$

- V_{bce} is the convective velocity at the inner border of the convective envelope (*CE*)
- **d** is the distance from the *CE*
- H_p is the scale pressure height
- β = 0.1

Opacity induced overshoot

The formation of the ¹³C pocket

SC+2009

Opacity induced overshoot

The formation of the ¹³C pocket

The formation of the ¹³C pocket

Stellar model vs. post-process

The pocket mass extension scales as the inverse of the core mass

Comparison with observations

SC+2009

Convective Boundary Mixing + Gravity Waves

Battino+ 2016

Kelvin-Helmholtz (shear) instability

Casanova+ 2016

Depending on the velocity difference across the interface, K-H instability may induce mixing if:

N²/(dv/dr)²<0.25

Gravity waves

Denissenkov & Tout 2003

Comparison with observations

Battino+ 2016

In agreement with observations, but pockets are very small

Post-processes

FIG. 4.—Resulting mass fractions of ¹²C, ¹³C, and ¹⁴N as functions of the initial mass fraction of protons introduced below the H/He discontinuity during the simulations performed with the Monash nucleosynthesis code. The protons are introduced after the 10th TDU episode of the 3 M_{\odot} star of solar metallicity computed with the MSSSP code. Also plotted is the corresponding neutron exposure at the end of the interpulse period after all the ¹³C has burnt.

Lugaro+ 2003

Artificially introduced an exponentially decaying profile of protons in Monash models (Karakas+...)

Similar to SC+2009, but they do not feed the change of physics quantities along the AGB.

Post-processes

For CEMP stars analysis (i-process): Hempel+2016

See also Abate & Stancliffe 2016

Post-processes

FIG. 1.—The adopted distribution in the mass of hydrogen introduced in the ¹²C-rich intershell, and of the resulting ¹³C and ¹⁴N profiles at H-shell reignition, as discussed in the text.

Gallino+ 1998

Liu+ 2015

Strong points: versatility and speed

Torino Post-process

FIG. 1.-The adopted distribution in the mass of hydrogen introduced in the ¹²C-rich intershell, and of the resulting ¹³C and ¹⁴N profiles at H-shell reignition, as discussed in the text.

Gallino+ 1998

However,...

mainstream SiCs (this study) Zone-II models Three-zone models ● D7.5 → D6 - D4.5 - D3 - D2 - D1.5 - D1.5 - D7.5 - D6 - D1.5 -D7.5-X-D6-Three-zone d2.5 Three-zone Three-zone_p2 Three-zone_p8 400 δ (⁸⁸Sr/⁸⁶Sr) (‰) 200 -200 -400 Zone-II (e) + Zone-II p2 Zone-II p4 Zone- p16 400 200 (%) (⁸⁸Sr/⁸⁶Sr) (-200 -600 -400 -200 0 200 -600 -400 -200 0 200 -600 -400 -200 0 200 -600 -400 -200 0 $\delta (^{138}Ba/^{136}Ba)$ (%) $\delta (^{138}Ba/^{136}Ba)$ (%) δ (¹³⁸Ba/¹³⁶Ba) (‰) $\delta ({}^{138}Ba/{}^{136}Ba)$ (%)

Liu+ 2015

Magnetic induced mixing

Nucci & Busso 2014

$$v_r = \frac{dw(t)}{dt} r^{-(k+1)}$$

$$B_{\varphi} = \Phi(\xi) r^{k+1}, \quad [\xi = -(k+2)w(t) + r^{k+2}].$$

This morning: talk by D. Vescovi

$$v_{down}(r) = v(r_p) \frac{\rho(r_p)}{\rho(r_{h+1})} \left(\frac{r_h}{r_p}\right)^{k+2} \left(\frac{r_h}{r}\right)^{k+1}$$

The s-process at low metallicities

CEMP stars: nucleosynthesis features

CEMP: Carbon Enhanced Metal poor stars CEMP-s: CEMP stars enriched in s-process only CEMP-r: CEMP stars enriched in r-process only CEMP-s/r: CEMP stars enriched in both s- and r-processes

Problems at low metallicities: the effect of initial mass

The effects of rotation: I Lifting + cylindrical simmetry

 $\frac{dm}{dr} = 4\pi r^2 \rho$ $\frac{dL}{dm} = \varepsilon_{nuc} - \varepsilon_{\nu} + \varepsilon_g$ dL $\frac{dP}{dm} = -\frac{Gm_r}{4\pi r^4} \cdot \boldsymbol{f}_P$ $\frac{dlnT}{dlnP} = \min \left[\nabla_{ad}, \nabla_{rad} \cdot \frac{f_T}{f_P} \right]$

$$f_{P} = \frac{4\pi r_{\psi}^{4}}{m_{\psi} S_{\psi}} \langle g^{-1} \rangle^{-1}$$
$$f_{T} = \left(\frac{4\pi r_{\psi}^{2}}{S_{\psi}}\right)^{2} \left(\langle g \rangle \langle g^{-1} \rangle\right)^{-1}$$

The effects of rotation: II Transport of angular momentum & mixing

$$\frac{\partial \omega}{\partial t} = \frac{1}{i} \frac{\partial}{\partial m} \left[\left(4\pi r^2 \rho \right)^2 i D_J \left(\frac{\partial \omega}{\partial m} \right) \right]$$

 $\overline{D_J = D_c}_{onv} + f_{\omega}(D_{ES} + D_{GSF} + D_{SS} + D_{DS} + D_{SH})$

$$\frac{\partial X_k}{\partial t} = \frac{\partial}{\partial m} \left[\left(4\pi r^2 \rho \right)^2 i D_C \left(\frac{\partial X_k}{\partial m} \right) \right]$$

 $D_J = D_{conv} + f_{\omega}f_c(D_{ES} + D_{GSF} + D_{SS} + D_{DS} + D_{SH})$

The ES circulation velocity

$$v_{ES} = \frac{\nabla_{ad}}{\delta(\nabla_{ad} - \nabla_{rad})} \frac{\omega^2 r^3 L}{(Gm)^2} \left[\frac{2\varepsilon r^2}{L} - \frac{2r^2}{m} - \frac{3}{4\pi\rho r} \right]$$

$$v_{ES} \sim -\frac{\nabla_{ad}}{\delta(\nabla_{ad}-\nabla_{rad})} \frac{\omega^2 r^3 L}{(Gm)^2} \frac{3}{4\pi\rho r} = cost. \frac{j(r)^2}{\rho}$$

μ-gradient barrier

$$v_{\mu} = f_{\mu} rac{H_P}{ au_{ ext{th}}} rac{arphi
abla_{\mu}}{
abla -
abla_{ad}}$$

The ES circulation velocity

The AGB phase: the [Fe/H]=-1.7 case

The AGB phase: the [Fe/H]=-1.7 case

CENAG Meeting - Heidelberg, 26-30 November 2018

NET EFFECT:

It mixes ¹⁴N in ¹³C-rich layers (and viceversa), thus implying a decrease of the local neutron density and an increase of the iron seeds. As a consequence, the surface s-process distributions change.

The AGB phase: the [Fe/H]=-1.7 case

Without rotation ...

The Fe abundance is low The neutrons-to-seeds ratio is very high The s-process produces large amount a Pb

Rotation reduces neutrons-to-seeds ratio

The Pb production is reduced

The abundances of hs and ls increase!!!

The AGB phase: the [Fe/H]=-1.7 case

CENAG Meeting - Heidelberg, 26-30 November 2018

Problems at low metallicities: the effect of rotation

CENAG Meeting - Heidelberg, 26-30 November 2018

Uncertainties: efficiency of mixing

Piersanti+ 2013

Rotation-induced mixing: other studies

Overshoot

Overshoot+rotation

Herwig+ 2003

See also Langer+1999

CENAG Meeting - Heidelberg, 26-30 November 2018

Siess+ 2004

Asteroseismology constraints

Fig. 9. Mean period of core rotation as a function of the asteroseismic stellar radius, in log-log scale. Same symbols and color code as in Fig. 6. The dotted line indicates a rotation period varying as R^2 . The dashed (dot-dashed, triple-dot-dashed) line indicates the fit of RGB (clump, secondary clump) core rotation period. The rectangles in the right side indicate the typical error boxes, as a function of the rotation period.

Mosser+ 2012

Low metallicity low mass AGBs

Proton Ingestion Episode (PIE)

- Low time steps → Time dependent mixing
- Rapid structure reaction \rightarrow Coupling between phisical and chemical evolution
- Large neutron densities $(n_n > 10^{15} \text{ cm}^{-3}) \rightarrow 700$ isotopes & 1000 reactions

We limit proton ingestion up to the mesh where $\tau_{CNO} = 1/3 \Delta t$

Temporal step of the model (Δt) is limited to 1/2 τ_{mix}

Energy

a) Δt=0 b) Δt=1.6457 yrs c) Δt=1.6468 yrs d) Δt=2.1843 yrs

Light elements

Heavy elements

SC+ 2009b

M= 1.5 *M*_☉ [Fe/H]= -2.45

Nuclear Network of 700 isotopes coupled with the physics

The importance of nuclear cross sections

La 130 8,7 m	La 131 59 m	La 132 24,3 m 4,8 h	La 133 3,91 h	La 134 6,67 m	La 135 19,4 h	La 136 9,9 m	La 137 6 · 10 ⁴ a	La 138 0,0902	La 139 99,9098	La 140 40,272 h	La 141 3,93 h	La 142 92,5 m
β* γ357: 551; 544: 908	β ⁺ 1,4; 1,9 γ 108; 418; 365; 286; g	Hy 136 17 0.7 y 465, 1465, y 465, 567, 663, 285, 1970	κ: β* 1,2 γ279: 302: 290, 633; 618 9	β* 2.7 γ 605; (1555)	(875; 588) 9	ε β* 1,9 γ 819; (761; 1323)	no y g	1,05 - 1012 a - 5" 0.3 - 1436,760 - 57	or9,0	p 1.4; 2,2 γ 1596; 487; 816; 329 σ2,7	β 2,4 γ 1355	β 2,1; 4,5 γ 641; 2398; 2543
Ba 129 2,13 h 2,20 h	Ba 130 0,106	Ba 131	Ba 132 0,101	Ba 133 38,9 h 10,5 s	Ba 134 2,417	Ba 135 28,7 h 6,592	Ba 136 7,854	Ba 137 2,55 m 11,23	Ba 138 71,70	Ba 139 83,06 m	Ba 140 12,75 d	Ba 141 18,3 m
* 182, 1,214, 1459; 221, 202, 129	ir 1,0 + 5,5	ly 108. 1 696. 79 124. 87 216	0.4 + 4.6	12 + 358, 81, 9 (633) 353	ur0,16+1.8	h 268 8° w≤8	n 0.010 + 0.44	h 162 +5	w0,45	β 2,4 γ 166; (1421) σ 5	γ 537; 30; 163; 305 σ 1,6	β ⁼ 2,8; 3,0 γ 190; 304; 277; 344
Cs 128 3,8 m	Cs 129 32,06 h	Cs 130 3.46 m 29.21 m	Cs 131 9,69 d	Cs 132 6,47 d	Cs 133 100	Cs 134 2,50 b 2,06 a	Cs 135	Cs 136	Cs 137 30,17 a	Cs 138 2,90 m 32,2 m	Cs 139 9,3 m	Cs 140 63,7 s
β ⁺ 2.9 γ 443, 527	p* y 372; 411; 549; g	hy 80. 51. 5* 20 148. 5* 0.4 • 7.5%	πο β* πο γ g	β ⁺ 0,8 γ 668; 465; 630	or 2.5 + 26.5	1,505; e ⁺ π140	h 781: 8 640 # 8.9	0.7 h # 1.3	a=0.5),2 m;g a0.25	p* 3.0. 3.9. 1.436: y 1436. 460: 463: 192. 1010	β 4,2 γ 1283; 627; 1421	β 5.6; 6.2 γ 602; 909; 1201
Xe 127 70 s 36,4 d	Xe 128 1,91	Xe 129 8,89 d 25,4	Xe 130 4,1	Xe 131	Xe 132 26,9	Xe 133 2,191 5,25 d	Xe 134 10,4	Xe 135	Xe 136 8,9	Xe 137 3,83 m	Xe 138 14,1 m	Xe 139 39,7 s
h 125. 172 173 25.	v 0,48 + < 7,5	197 197 #*	ii 0,45 + 6	ly 164 e	ır0,05 + 0,40	h 233 #" #190	rr 0.003 + 0.2	1/527 0.0 γ (787) 608 g σ 2,65 to	ir0,26	β 4,1 γ 456; (849)	y 258; 434; 1768; 2016 g	β 5,0 γ 219; 297; 175
l 126 13,11 d	127 100	l 128 25.0 m	l 129 1,57 · 10 ⁷ a	I 130 9,0 m 12,36 h	131 8,02 d	1 132 63,6 m 2,30 h	133 9s 20,8 h	134 3.2 m 52,0 m	l 135 6,61 h	136 45 s 84 s	137 24,2 s	138 6,4 s
8 1.1 389, 666 7 - 10000	a 6.15	y 443; 527 r 22	e ⁻ : g g 20,7 + 10,3	6" 7 536 6"2.5 669, 739 7 536 018	284; g	1 668. 772. 773: 600; 955; 175. 522.	hy 913, y 530, 647, 671, 73 g	β ⁺ 2.5 γ 847, 894: 234 894	1678; 1458	β ⁺ β ⁺ 4/1; γ 1312; 5.4 381; γ 1313; 197 1021	β 5,0 γ 1218; 601 βn 0,37; 0,48	р 7 589; 875; 2262; 484 βn
Te 125 57,4 d 7,139	Te 126 18,95	Te 127	Te 128 31.69	Te 129 33,6 d 69,6 m	Te 130 33,80	Te 131 30 h 25,0 m	Te 132 76,3 h	Te 133	Te 134 41,8 m	Te 135 18,6 s	Te 136 17,5 s	Te 137 2,5 s
h (35)	a 0,12 + 0,8	8° 0.7 7 (34) 8° 0.7 # 3400 7 418	ар а 0,016 + 0,20	by (100) p= 1.5 - 300 - 900 - 400, - 400,	2,7 + 10** a a 0,03 + 0,20	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	8= 0,2 7220, 50 9	3.3 2.7 - 913 - 319 648 - 0 408 h 334 1333 - 9	y 767; 210; 276, 79, 586 9	β 6.0 γ 604; 267; 870; 1133	р 2.5, 4,9 у 2078; 334; 579; 2569; 3235 βn 0,43; g	ρ 0,3, 6,8 γ 243; 554; 469 βα

Normal s-process (main path)

Proton ingestion

$$n_n^{max} > 10^{14} \text{ cm}^{-3}$$

 $\sigma(^{135}I)_{30 \text{ Kev}} \sim 1/20 \sigma(^{138}Ba)_{30 \text{ Kev}}$

from Rauscher&Thielemann 2000

The importance of the network

Problems at low metallicities: the effect of PIEs

○ Ba stars
□ CH stars
▲ CEMP-s stars
▲ CEMP-sr stars

CENAG Meeting - Heidelberg, 26-30 November 2018

Problems at low metallicities: the effect of PIEs

○ Ba stars
□ CH stars
▲ CEMP-s stars
▲ CEMP-sr stars

SC+ 2016

PIEs:

transient phase or destructive episode?

Dardelet+ 2015 Hampel+ 2016

Observed [hs/ls] ratios can be matched with very high neutron densities $(n_n > 10^{15} \text{ cm}^{-3})$ lasting for about 0.1 yr.

Fluorine production at low metallicity

Abia+2015

It's not just a problem of relative values, but also of absolute ones!

HINTS from POST_PROCESSES

TOY MODEL

H-ingestion in rapidly accreting WDs (talk by F. Herwig)

Activation of the intermediate neutron-capture process (i process), as the dominant process for the production of heavy elements beyond Fe.

Denissenkonv+ 2018

Higher temperature at the base of the convective shell NO SPLITTING of the shell

ALTERNATIVE SOLUTIONS? H-ingestion in rapidly accreting WDs (RAWD)

Denissenkonv+ 2018

ALTERNATIVE SOLUTIONS? H-ingestion in rapidly accreting WDs (RAWD)

Denissenkonv+ 2018

PROBLEMS

 Statistics: how many triple systems in the halo? Binarity of CEMP s/r stars? (talk by Abate & Stancliffe)

Massive AGBs stars at low Z

Jones+ 2016 suggest that PIEs occurring in massive Agbs could lead to the obnserved [hs/ls] ratios. However, no s-process calculation has been performed yet (?)

Complex interaction between dredge-up and dredge-out events.

Next talk by C. Doherty

Jones+ 2016

Massive AGBs stars at low Z

Jones+ 2016 suggest that PIEs occurring in massive Agbs could lead to the obnserved [hs/ls] ratios. However, no s-process calculation has been performed yet (?)

Complex interaction between dredge-up and dredge-out events.

Next talk by C. Doherty

Jones+ 2016

Statistics

Very high temperature (see Goriely & Siess 2004)

PROBLEMS

Rotating massive stars at low Z

Limongi & Chieffi 2018

Take home message

- 1. Mechanism at the origin of the ¹³C pocket still not unequivocally identified;
- 2. Only post-processes are able to fit observed disributions;
- 3. Rotation cannot help improving the situation;
- 4. PIEs (i-process) could be a viable solution, but AGB stellar models are not yet able to reproduce observed distributions
- 5. Magnetic induced mixing: to be studied yet!
- 6. Alternative solutions (RAWD)? To be verified!