

A timing layer in CMS for the High-Luminosity LHC

1

Tommaso Tabarelli-de-Fatis Università and INFN di Milano Bicocca (Italia)

A minimal list of HL-LHC physics goals

Higgs boson measurements

- Couplings measurements to <10% level
 - H→ZZ→4I, H→γγ
- Rare (or new) Higgs boson production and decay modes
 - VBF+H \rightarrow tt and H \rightarrow µµ, H \rightarrow Zγ
 - (VBF) + H \rightarrow invisible
- Higgs self-coupling (HH production)
 - Stat. uncertainty on signal yield ~50%

Direct search for new particles

- **SUSY**: explore difficult parameter regions and "weak production" modes
- Exotica: push the limits, probe small prod. rates

Probe standard model also with rare flavour processes

High Luminosity – LHC (Phase-2)

HL-LHC: Upgrade of LHC and injectors to increase beam intensity

- $L_{inst} > 5 \times 10^{34} \text{ cm}^{-1} \text{ s}^{-1}$, up to 140-200 pileup
- Ultimate integrated luminosity target of 3000 fb⁻¹ (10x LHC) baseline

• **Experiments:** ATLAS and CMS upgrades for HL-LHC conditions

- Radiation hardness
- Mitigate physics impact of high pileup (more than 5x LHC)

Luminosity leveled to "what the experiments can stand"

- Adjust the beam transverse size at the interaction point (β* function)
- $L_{inst} = 5.3 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \rightarrow 140 \text{ pileup}$
- $L_{inst} = 7.6 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \rightarrow 200 \text{ pileup} \rightarrow L_{int} = 4000 \text{ fb}^{-1}$

Bold aspects of CMS Upgrade for HL-LHC

CMS Phase-2 originally targeted 5.3×10³⁴ cm⁻² s⁻¹ (140 PU)

- Level-1 trigger accept rate 750 kHz
- Events recorded at 7.5 kHz

Extended acceptance of the muon system

- High granularity endcap calorimeters
 - 3D image of showers
 - Tracking information in "L1 track trigger"
 All silicon tracker with 4x granularity and extended acceptance (lnl<4)

Real life event with HL-LHC-like pileup from special run in 2016 with individual high intensity bunches

One such collision every 25 ns at HL-LHC

8

Reference: CMS Upgrade Scope document: [CERN-LHCC-2015-19, LHCC-G-165]

Mitigation of pileup with precision timing

If beam-spot "*sliced*" in successive O(30) ps time exposures, *effective pileup* reduced by a factor 4-5:
~15% merged vertices reduced to 1%
Phase-I track purity of vertices recovered Vertices at Vertices a

Luminous region
 t_{RMS} ~ 180 ps
 Z_{RMS} ~ 4.6 cm

VBF H→TT in 200 pp collisions

INFN 4D particle-flow with timing information

CMS event reconstruction relies on accurate track assignment

Timing detector tailored to provide maximum benefit to particle flow

A dedicated layer for precision timing of tracks

CMS

INFN

Calorimeter upgrades

Precision timing on high energy photons in ECAL Barrel All photons and high energy hadrons in HGCal Endcap

> LYSO/SiPM BTL (Barrel Timing Layer)

Si ETL (Endcap Timing Layer)

New MIP Timing Detector (MTD) just outside the tracker

- MIP timing with **30 ps precision**
- Acceptance: $|\eta| < 3.0$ and $p_T > 0.7$ GeV in the barrel, ~p > 0.7 GeV in the endcap

Track-vertex association with track timing

- Timing significantly reduces the "effective" vertex line density
 - 200 PU equivalent to current LHC PU
- Provide robustness against adjustment of luminosity scenarios
- Recover performance in several observables

rack-PV association pileup fraction

Particle isolation: ROC curves

Isolation efficiency up by 7 ÷ 10% per lepton (*)

- Acceptance gain in searches and precision measurements
- [Gain amplified in multi-particle final states]

(*) at constant background rejection power]

b tagging with timing

- Efficiency up 4-6% at constant background rejection of 1% for light jets from removal of spurious secondary vertices
 - inclusion of timing in the b-jet algorithm ongoing
 - [Gain amplified in multi-particle final states]

(di-)Higgs boson acceptance projections

Gain in signal yield ~20-25% in multi-object final states [at constant rejection power for reducible background]

15 🕨

- Unique capability to match photon time to vertex time + position
 CMS ECAL is non-pointing, but will have photon timing capability
 50% of events require MIP timing to find correct vertex
- Identifies photon vertex: improves di-photon mass resolution by 25% and also $H \rightarrow \gamma \gamma$ signal significance

Projections for VBF + H $\rightarrow \tau\tau$

• Performance gain from timing (S/ \sqrt{B}) ~80% :

- +30% from isolation
- +30% from VBF tagging [pileup jet rejection]
- +10% from di-tau mass resolution [p_T^{miss} resolution]
- Timing offsets performance degradations from 140 to 200 PU
- Large impact from endcap MTD

$\mathbf{Missing } \mathbf{p}_{\mathrm{T}} \text{ performance with MTD}$

Puppi MET resolution improves by 15% at 200 PU

Recovers performance at 140 PU

• Missing p_T tails reduced 40% for $p_T^{miss} > 150 \text{ GeV}$

Game changer for searches in high pileup

Searches in missing p_T tails

Extend the reach of searches for massive invisible particles

- Without MTD: searches at 200 PU less sensitive than at 140 PU
- Sensitivity spoiled by MET tails from pileup

With MTD: MET tail reduction offsets the performance loss

Search at 200 PU same sensitivity as at 140 PU (for the same luminosity)

CMS Phase-2 Simulation preliminary

100

150

200

PU = 200

no MTD

MTD

- 200 PU running provides +25% luminosity
 - → +150 GeV sensitivity

Searches for long-lived particles (LLP)

20

Postulated in many BSM:

 split-SUSY, GMSB, RPV SUSY, SUSY with degenerate states

cτ ~ O(1 cm)

New capabilities afforded by the MTD (examples):

- 1. Improved TOF resolution for charged and neutral particles
- 2. Ability to reconstruct LLP velocity from the decay *length* and *time:*
 - Peaking observable from decay kinematics

INFN LLP searches with MTD

- Vast acceptance extension 1. for massive LLP
 - Example: photon + vertex timing [neutralino to photon + gravitino]
- LLP mass (or mass splitting) 2. reconstruction
 - Model-independent peaking observable (depend on how velocity relates to the model structure)
 - Example: primary and secondary vertex timing [neutralino to gravitino + Z] TD fundamentally changes
- MTD *fundamentally* changes how we execute these searches
 - Massive particles yield central signatures \rightarrow barrel coverage

Summary on performance

Signal	Detector requirement	Analysis impact	Physics impact
$H \rightarrow \gamma \gamma$	30 ps photon and track timing • barrel: central signal • endcap: improved time-zero and acceptance	S/\sqrt{B} : +20% - isolation efficiency +30% - diphoton vertex	+25% (statistical) precision on cross section
VBF+	30 ps track timing	S/\sqrt{B} :	+20% (statistical)
$H \rightarrow \tau \tau$	 barrel: central signature endcap: forward jet tagging hermetic coverage: optimal p_T^{miss} reconstruction 	+30% - isolation efficiency +30% - VBF tagging +10% - mass (p_T^{miss}) resolution	precision on cross section (upper limit or significance)
HH	30 ps track timing • hermetic coverage	signal acceptance : +20% b-jets and isolation efficiency	Consolidate HH searches
$\chi^{\pm}\chi^{0} \rightarrow$	30 ps track timing	S/\sqrt{B} :	+150 GeV
$W^{\pm}H+p_T^{miss}$	 hermetic coverage: p_T^{miss} 	+40% - reduction of $p_{\rm T}^{\rm miss}$ tails	mass reach
Long-lived	30 ps track timing	mass reconstruction	unique sensitivity
particles	• barrel: central signature	of the decay particle	to split-SUSY and SUSY with com- pressed spectra

Higgs boson physics

Searches

MTD: improves the full range of Phase-2 physics

- ~20-30% improvements across all measurements
- Recovery of performance for MET-tail based searches
- Enhanced capability for reconstructing the secondary vertices of long-lived particles (LLPs)
 - Resonance reconstruction for LLPs (novel method)

MTD: design and technologies

- Hermeticity: barrel (lηl<1.48) and endcap (1.6<lηl<2.95)
- Radiation: 2x10¹⁴ (barrel) and up to 2x10¹⁵ neq/cm² (endcap)
- Minimal impact on calorimeter performance
- Mechanics and services compatible with existing upgrades

ĮNFŃ

Barrel timing layer (BTL) layout

LYSO:Ce + SiPMs embedded in the tracker support tube CO₂ cooling at ~ -30 °C (limit SiPMs self-heating and dark rate) Production-ready and scalable technology

24

Radiation tolerance of the BTL sensors

Radiation at the end of HL-LHC Fluence: 1.7-2.0×10¹⁴ n_{eq}/cm²; Dose: ~18-25 kGy

PRELIMINARY Simulation: Crystal 12x12 + SiPM 4x4 + glue - thick4 120 آھر م LYSO: fast, bright scintillator PDE = 10 % Sufficiently radiation hard PDE = 15 % 100 PDE = 20 % PDE = 25 % 80 SiPM: existing devices close PDE = 30 % to 30 ps at end of HL-LHC 60 Lines: resolution from simulation BK4x4 +1.5V varying photon detection efficiency (PDE) and dark count rate (DCR) 40 Points: extrapolation to 20 2.0×10¹⁴ n_{eq}/cm² of SiPMs irradiation studies 20 60 40 DCR [counts per second]

To optimize: reflective wrappings, SiPMs size / layout, thicker tiles, ...

80

100

BTL sensor package: time resolution

Sensor package qualified in test beams

- Nominal geometry: 11x11x4 mm³ + SiPM 4x4 mm²
- Timing dependence on hit position for SiPM small compared to crystal
- Tracker z resolution sufficient at $p_T > 2.0 \text{ GeV}$

Options to mitigate position dependence being pursued

- Custom SiPM (uniform surface coverage at constant active area)
- Crystal slabs with double-end read out

INFN

∆t (ns)

BTL ASIC: TOFHIR

TOFHIR: tailored version of commercial TOFPET2 chip

- TOFPET2 with sensor package RMS already 37 ps
- Goal: 25 ps with sensor package (achieved at test beam with NINO)

Reasons for the difference understood

- Pulse slew rate (amplifier configuration) and TDC contribution
- Radiation hard design in parallel (TSMC 130 nm)

Endcap timing layer (ETL) layout

- Low gain silicon detectors (LGADs):
 - Established technology available from at least three foundries

Overlapping disk structure

- Similar to outer tracker
- Independent cold volume for accessibility
- Al wedges with embedded cooling pipes (CO₂ cooling at ~ -30 °C)

Sensors on both disk sides

- Single layer hermetic coverage
- Nominal geometry: 4.8 x 9.6 cm² modules with 1x3 mm² pads
 - ~3-5% occupancy

28

LGAD performance and radiation tolerance

Irradiation studies with single pad LGADs:

- LGAD can deliver < 40 ps timing resolution for entirety of HL-LHC
- Compensation of gain loss with increased external bias

- R&D: Bias scheme for individual pads
- R&D: Multi-pad sensors (uniformity, yield, fill factor)

Multi-pad sensor development

- Large arrays of LGADs with small pad sizes already possible:
 - Production of pixelated LGAD sensors show viable pad yields
- Prototypes of multi-pad sensors with CMS pad size available:
 - 2x8 arrays now, 4x24 in early 2018 (1/16 of a full sensor)

Front-end ETL ASIC

Chip specs defined (25 ps without sensor, 110 mW/cm²)

- Cascade of timing measurements to achieve distributed TDC over large-area ASIC
 - Established technology, used already in PicoTDC
 - Layout being designed in 65 nm TSMC benefitting from experience and available common blocks in RD53

Simulations ongoing to define layout

Concluding remarks A CONTINUES

MTD will benefit the whole physics program

- Preserves the performance of Particle Flow and PUPPI
- Increases effective luminosity: +20% for (di-)Higgs physics
- Recovers search performance in MET tails
- Benefits equivalent to additional 2-3 years of luminosity
- New capabilities for long-lived particle searches

Sensor technologies becoming mature

Installation timeline for ETL provides time to complete R&D

Further investigations

- A region-of-interest readout for level one trigger
- Benefit for HLT performance and offline computing
- Ways to extend coverage to $|\eta| < 4.0$