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and diving through by exp(⌧) we obtain the standard equation of 1D radiative transfer,

I(⌧) = e�⌧


I(0) +

Z ⌧

0
Se⌧ 0

d⌧ 0
�

. (172)

We see from the above equation that the optical depth corresponds to an e-folding of the absorption.

In other words, in the absence of emission, radiation passing through gas will be attenuated by a factor

of e, after one optical depth.

If we can take the gas properties to be constant over the length of interest, S is a constant which can

be removed from the integral above. Then eq. (172) becomes:

I(⌧) = I(0)e�⌧ + S
�
1 � e�⌧

�
(173)

= S + e�⌧ [I(0) � S] . (174)

From the above, we can clearly see the asymptotic trends that for an optically-thick medium, with

⌧ ! 1, we have the intensity approaching the appropriately-named source function, I ! S. Similarly, for

an optically-thin medium, with ⌧ ! 0, the intensity remains unchanged from the incoming background

radiation, I ! I(0).

4.2. The Intergalactic Medium

Thus far in our study of baryons, we have focused on those residing inside dark matter halos, i.e.

galaxies. One can argue that they have the most interesting fates. However, the fraction of baryons which

reside in galaxies is actually very small: atomic cooling halos host at most a few percent of the baryons at

z
⇠

> 6. The vast majority of matter lies in the di↵use web stretching between the galaxies, the so-called

intergalactic medium (IGM).

The IGM can be characterized by the following fundamental properties: (i) density; (ii) ionization

state; (iii) temperature. We discuss each of these in the following sections.

4.2.1. Ionization evolution: the Epoch of Reionization (EoR)

The Epoch of Reionization (EoR) is the last major phase change of the IGM. Light from the first

stars and galaxies, discussed in the previous section, spread out throughout the Universe, ionizing and

heating the IGM. It is a complex process, encoding the physics of the first structures and how they

impacted their surroundings. It is challenging also to model, as the epoch involves a huge range of scales,

with the small-scale physics of star formation driving ionization structures which are inhomogeneous on

cosmological scales. Here we will establish a basic analytic framework, and encourage readers to delve

deeper in the field with reviews such as Mesinger (2016).

Let’s begin with an early, star-forming galaxy surrounded by the neutral IGM. Ionizing radiation

from its stars can escape the galaxy into the IGM, driving a local, expanding HII region19 with comoving

volume, VHII. The evolution of this HII region can be written as:

hnHi

dVHII

dt
=

dN�

dt
� ↵ABhn2

HiVHIIa
�3 . (175)

19Note that the width of the ionization fronts roughly correspond to the mean free path of the typical ionizing photons.

For any UV source, this mean free path in the IGM is very small, of order ⇠ kpc. Therefore the EoR is an inhomogeneous

process with almost fully ionized HII regions around the first galaxies expanding into almost fully neutral HI regions. Here

we assume a completely bimodal IGM: either fully neutral or fully ionized. Therefore, we have no ionized fraction terms in

eq. (175). In §4.2.3, we shall relax this assumption, which primarily impacts the recombination rate inside the cosmic HII

regions.
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Here the LHS is the rate at which new HI is ionized as the HII region expands. The first term on the RHS

corresponds to the rate (per H atom) at which ionizing photons are escaping the galaxy into the IGM,

while the second term corresponds to the average number of recombinations per H atom inside the HII

region (note the final a�3 term converts the recombination coe�cient, ↵AB, 20 to comoving units). For the

cosmic HII region to grow, the emission rate of ionizing photons has to be larger than the recombination

rate.

We can expand the emission term as a product of the following:

N� = fescN�/bf⇤N
halo
b (176)

Here the number of baryons in the galaxy is Nhalo
b , f⇤ is the fraction of those baryons inside stars (c.f.

§4.1.5), N�/b is the number of ionizing photons produced per stellar baryon, and fesc the fraction of these

ionizing photons which manage to escape into the IGM.

For the absorption term, it is convenient to define a clumping factor, C ⌘ hn2
Hi/hnHi

2. The clumping

factor is a measure of substructure, and should only be computed inside the ionized regions which contribute

to recombinations. With these definitions, we can rewrite eq. (175) as:

dVHII

dt
=

1

hnHi

d[fescN�/bf⇤N
halo
b ]

dt
� ↵ABhnHiCVHIIa

�3 . (177)

To simplify this further, we can assume that the growth of the galaxy, i.e. the Nhalo
b term, evolves

much more rapidly that the other factors in the first term on the RHS. Then if we divide by some “total”

(large enough to be representative) volume Vtot, we obtain the evolution of the filling factor (fraction of

total volume) of this particular cosmic HII region:

V �1
tot

dVHII

dt
=

fescN�/bf⇤

VtothnHi

dNhalo
b

dt
� ↵ABhnHiC

VHII

Vtot
a�3 . (178)

So far we discussed a single HII region. The Universe during the EoR contains many HII regions. We

are now in the position to perform an ensemble average over various individual VHII. The total ionized

volume, summing over all cosmic HII regions is
P

i V
i
HII. Analogously, the filling factor of HII regions is

QHII ⌘ V �1
tot

P
i V

i
HII. Finally, we note that [VtotnH]�1 P

i N
halo,i
b = [Ntot]�1 P

i N
halo,i
b is the fraction of

baryons inside star-forming galaxies. If we assume that star-forming galaxies are hosted by halos with

masses above some critical threshold mass (set by cooling or feedback), Mmin, then the fraction of baryons

20The recombination coe�cient for a given species (hydrogen or helium) is usually written as being either “case A”, ↵A,

or “case B”, ↵B. The case A coe�cient includes the sum of probabilities of a recombination to any state (including directly

to the ground state), while the case B excludes recombinations directly to the ground state (which result in the emission of

an ionizing photon). For hydrogen at a temperature of 104 K, we have ↵A = 4.2 ⇥ 10�13 cm3 s�1, and ↵B = 2.6 ⇥ 10�13

cm3 s�1 (e.g. Osterbrock 1989). When computing the ionization balance of the IGM, it is more appropriate to use case A if

the recombinations are taking place in optically-thick systems (at low redshifts referred to as Lyman limit systems; LSSs).

The reasoning behind this is that the photons resulting from ground state recombinations are likely to be absorbed locally,

inside the LLS). After some number of ionizations/absorptions, the recombination happens into an excited state, and there

is no more ionizing photon. Thus the ionizing photons resulting from ground state recombinations do not escape the LLS,

and so do not contribute to the ionization balance in the di↵use IGM (Miralda-Escudé 2003). The case B recombination

coe�cient is more appropriate when recombinations are happening in more di↵use, optically thin systems. In this case, the

ground state photon can travel in the IGM, and result in another IGM ionization. As a result this photon is ionization

neutral when computing the IGM ionization state, and so is not counted in the rate equations. While it is clear that for the

post-reionization IGM the case A is more appropriate, it is really not clear what is better at high redshifts, as it depends on

knowing the properties of the systems which are dominating the recombinations (are they occurring mostly in dense systems

or in the actual di↵use IGM which one is modeling). In the next chapter, we develop the framework for studying recombining

systems, but current uncertainties in the strength of the ionizing background prevent us from knowing which recombination

coe�cient is more appropriate. In this chapter therefore, we use a general notation, ↵AB, to indicate that the appropriate

coe�cient is somewhere between case A and case B.
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inside star-forming galaxies is just the collapsed fraction, fcoll(> Mmin) from §3.3. With this ensemble

averaging, we arrive at the evolution of the HII filling factor:

dQHII

dt
= fescN�/bf⇤

dfcoll(> Mmin, z)

dt
� ↵ABhnHiCa�3QHI . (179)

Each of the parameters in the above equation is the subject of topical research.

• The fraction of galactic baryons inside stars, f⇤, depends on the e�ciency of star formation, as

discussed in §4.1.5. Simple estimates which scale the halo mass function by a constant amount to

fit the LF suggest values of order f⇤ ⇠ per cent, for the bulk of the high-redshift galaxy population

(e.g. Vale & Ostriker 2006; Dijkstra et al. 2014; Dayal et al. 2014, Park et al. in prep).

• The typical number of ionizing photons produced per stellar baryon, N�/b, depends on the IMF of

the stars. Population II stars should produce roughly 5000 ionizing photons over their lifetime,

while more top-heavy IMFs or metal-free PopIII stars could increase this number by an order of

magnitude (see e.g. Fig. 13 and Tumlinson & Shull 2000; Schaerer 2002).

• The halo mass threshold for star-formation, Mmin, depends on cooling e�ciency or feedback, and

can take on values ranging between Mmin ⇠ 106M� for the first, molecularly-cooled halos (e.g.

Bromm et al. 2002; Abel et al. 2002; Yoshida et al. 2008), Mmin ⇠ 108M� for atomically-cooled

halos. If feedback was e�cient in quenching star formation in these small-mass halos the threshold

could be as high as Mmin ⇠ 1010M�, corresponding the faintest high-redshift galaxies observed

today (see Fig. 16).

• The fraction of ionizing photons which escape the galaxy, fesc, depends on the galactic morphologies

and the corresponding distribution of column densities. These in turn are likely set by a combination

of dynamical and thermal evolution, with strong SNe feedback episodes likely clearing away the

surrounding medium, facilitating the escape of ionizing photons. Direct observations of Lyman

continuum emission are impossible at high redshifts given current technology. Stacks of Lyman

break galaxies at lower redshifts, z ⇠ 3–4, motivate typical values of fesc ⇠ per cent (e.g. Steidel

et al. 2001; Shapley et al. 2006; Siana et al. 2007; Marchi et al. 2017); however fainter galaxies at

high redshifts are expected to have higher escape fractions as low column density sightlines are easier

to be created by SNe explosions in shallower potential wells (e.g. Paardekooper et al. 2015; Xu et al.

2016). If Mmin is much larger the atomic cooling threshold, so that only rare bright galaxies drive

the EoR, we would need to have escape fractions of order tens of per cent to have the Universe

reionize by z ⇠ 5–6 (e.g. Mitra et al. 2013; Kuhlen & Faucher-Giguere 2012; Robertson et al. 2013;

Greig & Mesinger 2017).

• The clumping factor inside the ionized IGM, C, is expected to be of order unity – few for the bulk

of reionization, but could be much larger in the initial EoR stages if the ionized gas is heated and

smoothed as its Jeans mass increases (e.g. Emberson et al. 2013; Pawlik et al. 2017), or rise rapidly

in the later stages of the EoR as the ionization fronts penetrate into increasingly dense clumps

thus allowing higher densities to contribute to the recombination rate (e.g. Furlanetto & Oh 2005;

Sobacchi & Mesinger 2014; see §4.2.3).

We can simplify eq. (179) even further if we assume that these astrophysical parameters are redshift-

independent. In this case, we can integrate over cosmic time:

QHII(z) = fescN�/bf⇤

Z z(t)

1

dfcoll(> Mmin, z)

dt0
dt0 �

Z z(t)

1

dnrec

dt0
dt0 (180)

= fescN�/bf⇤fcoll(> Mmin, z) � nrec(z) , (181)
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where the number of recombinations per baryon is explicitly denoted as nrec. To first order, we can take

the recombinations to be linearly distributed in QHII (i.e. assuming a weaker dependence on the other

terms). This allows us to write:

QHII(z) ⇡ fescN�/bf⇤fcoll(> Mmin, z) � n̄recQHII(z) , (182)

where n̄rec is the total number of recombinations per baryon during the EoR. Finally, we have:

QHII(z) ⇡

fescN�/bf⇤

(1 + n̄rec)
fcoll(> Mmin, z) (183)

As seen from eq. (183), the EoR only depends on the product of the aforementioned astrophysical

quantities. Therefore, it is common to define this product as an “ionizing e�ciency”, ⇣:

⇣ ⌘ 20

✓
fesc

0.1

◆✓
f⇤

0.03

◆✓
N�/b

5000

◆✓
1.5

1 + n̄rec

◆
(184)

with eq. (183) becoming simply:

QHII = ⇣fcoll . (185)

Patchy Reionization

Finally, it is important to remember that reionization by UV photons is a very inhomogeneous process,

with a fraction ⇠ QHII of the Universe virtually fully ionized, while the remaining 1�QHII is virtually fully

neutral. The topology of this process thus tells us how the star-forming galaxies are spatially distributed.

We can simulate this patchy reionization with large radiative transfer simulations; however the results

are uncertain as we do not know the ionizing e�ciencies of galaxies. Luckily, we can build some intuition

analytically. As was noted by Furlanetto et al. (2004), we can use the same excursion-set tools we used

to build the halo mass functions.

We can rephrase the global evolution in eq. (185), by realizing that each sub-region of the Universe

is itself ionized if:

⇣fcoll(> Mmin, z|MHII, �HII) � 1 . (186)

Here we have replaced the global collapsed fraction, with the conditional one: the fraction of matter

inside collapsed structures above Mmin at z, given that they reside in a large-scale region that has a

matter overdensity �HII on a scale MHII. We can express this conditional collapsed fraction as (§3.3):

fcoll(> Mmin, z|MHII, �HII) = erfc

"
�crit(z) � �HIIp

2[�2(Mmin) � �2(MHII)]

#
. (187)

Plugging this into eq. (186), and inverting the complimentary error function:

�crit(z) � �HIIp
2[�2(Mmin) � �2(MHII)]

 erfc�1(⇣�1) . (188)

Therefore, we can stipulate that a region of scale MHII is ionized at redshift z, if it has an overdensity of:

�HII � �crit(z) � erfc�1(⇣�1)
p

2[�2(Mmin) � �2(MHII)] (189)

This overdensity is analogous to the “critical overdensity” for the collapse of dark matter halos.

In §3.3, we constructed a halo mass function from the distribution of first upcrossings of the barrier

�crit. Analogously, here we can construct the “HII region mass function” from the distribution of first

upcrossings of the barrier �HII. This can be done either numerically, or analytically by linearizing the

function in �2: �HII ⌘ B0 + B1�
2(M). The constants B0 and B1 can be obtained by considering the

asymptotic limit on large-scales, �2(MHII) ! 0. In this large-scale limit, the barier becomes �HII ! B0 =
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�crit � erfc�1(⇣�1)

q
2[�2(Mmin) �⇠⇠⇠⇠⇠: 0

�2(MHII)] = �crit �

p

2�(Mmin)erfc
�1(⇣�1). Moreover the slope of the

barrier becomes @�HII/@�2
! B1 = erfc�1(⇣�1)/

q
2[�2(Mmin) �⇠⇠⇠⇠⇠: 0

�2(MHII)] = erfc�1(⇣�1)/
p

2�2(Mmin).

Having a linear barrier allows us to use the ellipsoidal functional form derivation of the halo mass function

by Sheth et al. (2001). In analogy to the linear ellipsoidal barrier used for the ST mass functions, we

can write the HII bubble mass fuction, i.e. the comoving number density of HII regions of mass scale

MHII ⇠ (4/3)⇡R3
HII⇢̄, as (Furlanetto et al. 2004):

dn

d ln MHII
=

r
2

⇡

⇢̄

MHII

����
d ln �

d ln MHII

����
B0

�
exp


(B0 + B1�

2)2

2�2

�
(190)

Fig. 18.— Slices through a simulated 21-cm signal during the EoR, with black corresponding to cosmic ionized patches

(from Mesinger et al. 2011). The left panel was generated from a hydrodynamic radiative-transfer simulation, while the right

panel was generated using an analytic excursion-set procedure applied to density fields which were evolved with the ZA.

Both share the same initial conditions. All slices are 143 Mpc on a side and 0.56 Mpc thick.

In addition to the analytic “HII mass function”, the excursion-set approach discussed above has been

applied directly to 3D realizations. This is computationally very e�cient, since smoothing the 3D density

field to obtain fcoll(> Mmin, z|MHII, �HII) just involves doing an FFT on the scale MHII. Starting from

some maximum scale corresponding to a horizon for ionizing photons, the criterion from eq. (186) is

evaluated at each cell of the simulation. Cells which reside in su�ciently large overdensities smoothed on

that scale are marked as ionized. Then the smoothing scale is decreased and the procedure is iterated.

Ionization fields obtained with this procedure are in a good agreement with computationally-intensive

radiative transfer methods, on moderate to large scales (
⇠

> 1 Mpc; e.g. Zahn et al. 2011; see also Fig.

18). The conditional collapsed fraction from eq. (186) can be computed using (i) the halo field directly

from N -body simulations (Zahn et al. 2007); (ii) the halo field from perturbation theory (Mesinger &

Furlanetto 2007); (iii) the evolved density field (Mesinger et al. 2011). The later, although a little more

approximate, has the advantage of facilitating a nearly unlimited dynamical range. This is important

when modeling the signal on very large scales, such as is required for 21-cm observations (see §4.3).
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4.2.2. Current EoR probes

Our current knowledge about the EoR stems from two classes of probes: (i) integral constraints from

the CMB in the form of the Thompson scattering optical depth to the lass scattering surface (LSS)21; and

(ii) astrophysical “flashlights” which illuminate the intervening IGM. We briefly discuss each in turn.

Optical depth to the CMB

Fig. 19.— CMB temperature (left) and E-mode (zero curl) polarization (right) power spectra, for several di↵erent values

of the mean Thompson scattering optical depth, ⌧e. Increasing ⌧e dampens the temperature fluctuations; however, this e↵ect

is strongly degenerate with reducing the primordial amplitude, As. Although a far weaker signal, the large-scale polarization

fluctuations do not su↵er from this degeneracy. These figures are taken from Reichardt (2016).

As light from the last scattering surface (LSS; i.e. the CMB) passes through the Universe, it interacts

with free electrons through Thompson scattering. Thompson scattering is gray scattering, thus the

dominant e↵ect is to dampen the CMB temperature fluctuations, as light from hot spots gets scatter into

lines of sight towards cold spots, and visa versa. The more free electrons (corresponding to an earlier

EoR), the stronger is the distortion of the primordial CMB.

This imprint of the EoR can be characterized through the mean Thompson scattering optical depth,

⌧e = h

Z zLSS

0
ne�T

����
cdt

dz

���� dziLOS (191)

Here, ne is the electron number density, �T the Thompson scattering cross-section, c dt the line element

to the LSS, and the averaging is performed over all lines of sight (LOSs). Thus the higher the ⌧e, the

more the CMB temperature fluctuations are damped (see the left panel of Fig. 19). This damping is easy

to detect. Unfortunately, it is also strongly degenerate with the primordial power spectrum amplitude,

As, as shown in the left panel of Fig. 19.

Luckily, the CMB has a large-scale quadrupole anisotropy. This means the EoR creates a linear

polarization signal in the CMB, which peaks on scales larger than the horizon during the EoR. Unlike for

the temperature power spectra, the impact of ⌧e on the polarization power spectra is not degenerate with

cosmology (see the right panel of Fig. 19). Unfortunately, this signal is much weaker and more di�cult

to detect, compared to the temperature fluctuations.

21Alternative probes such as E-mode polarization as a function of angular scale (e.g. Mortonson & Hu 2008), the patchiness

of ⌧e (e.g. Dvorkin & Smith 2009), the kinetic Sunyaev-Zel’dovich signal from patchy reionization (e.g. Mesinger et al. 2012),

could yield interesting results in the future provided systematics can be controlled (see the review of Reichardt 2016).
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Fig. 20.— Left: Historical trend of the 1 � constraint on the mean Thompson scattering optical depth to the CMB, ⌧e.

Figure is adapted from Planck Collaboration XLVI et al. (2016), with the addition of the 1-yr WMAP result of ⌧e = 0.17±0.04

using only the temperature power spectrum at the top (Kogut et al. 2003) and the alternate HFI estimate from Planck

Collaboration XLVII et al. (2016) ⌧e = 0.058 ± 0.012 at the bottom. Right: Constraints on the evolution of the average

neutral fraction, x̄HI = 1�QHII, corresponding to the latest Planck estimate of ⌧e = 0.058±0.12 (Planck Collaboration XLVII

et al. 2016). 68% C.L. are shown in yellow, while 95% C.L. are shown in red. x̄HI(z) was sampled from physically-motivated

EoR models, based on eq. (183), with the optical depth used to compute a �2 likelihood. Taken from Greig & Mesinger

(2017).

In the left panel of Fig. 20, we show the historical trend of ⌧e estimates. Starting with the WMAP

satellite, the first estimate using only the temperature power-spectra was ⌧e = 0.17 ± 0.04 (1�) (Kogut

et al. 2003). This unexpectedly-high optical depth implied there were abundant ionizing sources in the

very Universe (z > 15), at a time when the furthest objects were at z ⇠ 6. The resulting implications on

structure formation caused much excitement/confusion in the community.

However, in subsequent years the value of ⌧e decreased, with the errors shrinking. This was driven

mainly by the addition of polarization data, first through the temperature-polarization cross-power spectra

and then through the detection of the polarization auto power spectra with the Planck satellite. The

current (2017) conservative estimate is ⌧e = 0.058 ± 0.012 (Planck Collaboration XLVII et al. 2016),

obtained using Planck’s high frequency instrument (HFI).

How does this constrain the reionization history? Because ⌧e is an integral measurement, it cannot

tell us about the duration and patchiness of the EoR. Translating ⌧e to a reionization history requires

assuming a functional form for QHII(z). In the right panel of Fig. 20 we show the 1-� (yellow) and

2-� (red) constraints on the reionization history created by sampling EoR models based on eq. (183),

using ⌧e = 0.058 ± 0.012 to compute a �2 likelihood, and marginalizing over the free parameters in

the model. We see that the mean reionization redshift implied by Planck Collaboration XLVII et al.

(2016) is z = 7.64+1.34
�1.82. We caution however that the exact shape of these EoR history constraints are

model-dependent, depending on the QHII(z) functionals and their corresponding priors.

Ly↵ damping wing absorption

The Ly↵ line of hydrogen has emerged as a powerful probe of the EoR. To understand its utility, let’s

consider the schematic shown in Fig. 21. Sources during the EoR (galaxies and QSOs) emit an intrisic

Ly↵ flux (bottom right panel), whose profile is set by local and interstellar properties of the source. These

photons emerge from the galaxy/QSO into some local patch of the IGM, which has already been ionized

by the contribution from neighboring sources; the residual HI inside these local ionized patches (top right

panel) is determined by the local density and ionizing radiation, as we shall see in the next section. The

photons pass through the local HII region, redshifting along the way. Those which are not scattered out
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of the line of sight by the residual HI inside the local ionized patch then pass through the large-scale EoR

topology of cosmic HI and HII regions (left panel), redshifting as they travel towards us.Can the IGM cause a rapid drop in Ly� emission at z > 6? 3

Mul$%scale*approach*

Figure 1. Schematic showing the various components of our model. From left to right we show: (i) a 0.75 Mpc thick slice through our large-scale reionization
simulation at QHII � 0.5 (Sobacchi & Mesinger 2014); (ii) a 21 kpc slice through our hydro simulation of the ionized IGM surrounding high-z galaxies;
(iii) the Ly↵ line emerging from a galaxy including RT through local outflows. (i) and (ii) are used in this work, while (iii) is taken from Dijkstra et al. (2011).
Relative scales are approximate.

Figure 2. Distributions of the damping wing opacity from an inhomogeneous reionization, as functions of the rest-frame velocity offset from the Ly↵ line
center (shown as a vertical dashed line). Panels correspond to QHII = 0.20, 0.50, 0.77, (left to right). Red lines correspond to the mean profile, while
boxes/whiskers enclose the first two quartiles of the distribution. The scatter represents the sightline-to-sightline scatter, but it should be noted that damping
wings of individual profiles are smooth functions of wavelength. Absorption profiles from a sample sightline are over-plotted with green curves.

ing wing optical depth according to (e.g. Miralda-Escude 1998):

d⌧reion = 6.43 ⇥ 10�9

„
�e2f�nH(z)
mecH(zs)

«
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⇥
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where n̄H is the mean hydrogen number density and
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The resulting distributions of reionization opacities,

c� 0000 RAS, MNRAS 000, 000–000

Fig. 21.— Schematic showing the various components determing the observed Ly↵ line from high redshift QSOs and

galaxies druring the EoR. From left to right we show: (i) a 0.75 Mpc thick slice through large-scale reionization simulation

at QHII ⇠ 0.5 (Sobacchi & Mesinger 2014); (ii) a 21 kpc slice through hydro simulation of the ionized IGM surrounding

high-z galaxies (Mesinger et al. 2015); (iii) the intrinsic Ly↵ line emerging from a galaxy including RT through local outflows

(Dijkstra et al. 2011).

The observed flux at a wavelength, �obs, for a source at redshift zs can be expressed as:

Fobs(�obs) = F0

✓
�obs

1 + z

◆
e�⌧(�obs) , (192)

where F0 is the intrinsic (i.e. emerging from the galaxy/QSO into the IGM) spectrum, evaluated at a

rest frame wavelength �obs/(1 + z), and the total IGM optical depth due to Ly↵ absorption, ⌧ , is given

by (neglecting peculiar velocities):

⌧(�obs) =

Z zs

0
dz

c dt

dz
nH xHI � (193)

where c(dt/dz) is the proper line element in a given cosmology, nH(z) is the hydrogen number density at

redshift z, xH(z) is the hydrogen neutral fraction at redshift z, and �[�obs/(1 + z)] is the Ly↵ absorption

cross section.

As described above, each source sits inside a local HII region, allowing the total optical depth to be

separated into a component sourced by the resonant absorption, ⌧R, and that from the damping wing of

the cross section, ⌧D. The common practice is to use the size of the local HII region, RS , to separate the

terms:

⌧ = ⌧R + ⌧D (194)

=

Z zs

zHII

d⌧R +

Z zHII

zend

d⌧D .
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Figure 4: The black solid line in top panel shows the Ly↵ absorption cross section, ��(x), at a gas
temperature of T = 104 K as given by the Voigt function (Eq 15). This Figure shows that the absorption
cross section is described accurately by a Gaussian profile (red dashed line) in the ‘core’ at |x| < xcrit ⇠ 3.2
(or |�v| < 40 km s�1), and by a Lorentzian profile in the ‘wing’ of the line (blue dotted line). The Voigt
profile is only an approximate description of the real absorption profile. Another approximation includes
the ‘Rayleigh’ approximation (grey solid line, see text). The green dotted line shows the absorption profile
resulting from a full quantum mechanical calculation (Lee 2013). The di↵erent cross sections are compared
in the lower panel, which highlights that the main di↵erences arise only far in the wings of the line.

where P ⌘ hE�,ioni/13.6 eV, in which hE�,ioni de-
notes the mean energy of ionising photons7. Further-
more, fcoll ⌘

1+anHI
b+cnHI

, in which a = 1.62 ⇥ 10�3, b =

1.56, c = 1.78 ⇥ 10�3, and nHI denotes the number
of density of hydrogen nuclei. Eq 14 resembles the
‘standard’ equation, but replaces the factor 0.68 with
Pfcoll, which can exceed unity. Eq 14 implies that
for a fixed IMF, the Ly↵ luminosity may be boosted
by a factor of a few. Incredibly, for certain IMFs the
Ly↵ line may contain 40% of the total bolometric lu-
minosity of a galaxy, which corresponds to a rest frame
EW⇠ 4000 Å.

We point out that the collisional processes dis-
cussed here are distinct from the collisional-excitation
process discussed above (in § 3.2), as they do not di-

rectly produce Ly↵ photons. Instead, they boost the
number of Ly↵ photons that we can produce per ion-
ising photon.

4 Ly� Radiative Transfer Ba-

sics

Ly↵ radiative transfer consists of absorption followed
by (practically) instant reemission, and hence closely
resembles pure scattering. Here, we review the basic
radiative transfer that is required to understand why
& how Ly↵ emitting galaxies probe the EoR.

7That is, �E�,ion� � h
� �
13.6 eV d�f(�)� �

13.6 eV d�f(�)/�
, where f(⌫) de-

notes the flux density.

It is common to express the frequency of a pho-
ton ⌫ in terms of the dimensionless variable x ⌘ (⌫ �

⌫�)/�⌫D. Here, ⌫� = 2.46 ⇥ 1015 Hz denotes the fre-
quency corresponding the Ly↵ resonance, and �⌫D ⌘

⌫�

�
2kT/mpc2

⌘ ⌫�vth/c. Here, T denotes the tem-
perature of the gas that is scattering the Ly↵ radiation,
and vth denotes the thermal speed.

4.1 The Cross Section

The frequency dependence of the Ly↵ absorption cross-
section, ��(x), is described well by a Voigt function.
That is

��(x) = �0 ⇥

av

�

Z +�

��
dy

exp(�y2)
(x � y)2 + a2

v

⌘ �0 ⇥ �(x).

(15)

�0 =
f�

p

��⌫D

�e2

mec
= 5.88 ⇥ 10�14(T/104 K)�1/2 cm2

where f� = 0.416 denotes the Ly↵ oscillator strength,
and av = A�/[4��⌫D] = 4.7⇥ 10�4(T/104 K)�1/2 de-
notes the Voigt parameter, and �0 denotes the cross
section at line center. We introduced the Voigt func-
tion8 �(x), which is plotted as the black solid line in the
upper panel of Figure 4. This Figure also shows that
the Voigt function �(x) is approximated accurately as

�(x) ⇡

�
e�x2

‘core’, i.e. |x| < xcrit;
av�
�x2 ‘wing’, i.e. |x| > xcrit,

(16)

8We adopt the normalization �(0) = 1, which translates
to

�
�(x)dx =

�
⇡.

Fig. 22.— Left: Ly↵ cross section. Like all line transitions, the Ly↵ cross section consists of a relatively narrow core,

whose width is set by a combination of turbulent motions and thermal Doppler broadening, and Lorenzian tails extending

far from the core of the line (e.g. Rybicki & Lightman 1979). The figure is taken from Dijkstra (2014). Right: Optical depth

contributions from within (⌧R) and from outside (⌧D) the local HII region for a typical line of sight towards a zs = 6 quasar

embedded in a fully neutral IGM. The dashed line corresponds to ⌧D, and the solid line corresponds to ⌧R. In this example,

the damping wing of the IGM, ⌧D, contributes significantly to the total optical depth at �obs ⇠ 8430 Å and �obs & 8470 Å.

The figure is taken from Mesinger & Haiman (2007).

Here zHII corresponds to the redshift of the edge of the local HII region, and zend denotes the redshift by

which HI absorption is insignificant along the line of sight to the source (of order a hundred Mpc from

the source).

The two components in eq. (194) are qualitatively di↵erent, as can be seen from the right panel of

Fig. 22. Due to the relatively narrow core, ⌧R pics up density and residual HI fluctuations inside the

local HII region; thus it is a rapidly fluctuating quantity resulting in the so-called Ly↵ forest in QSO

spectra. On the other hand, the damping wing is a smooth function of wavelength, averaging over opacity

fluctuations over relatively large scales.

The strength of the damping wing absorption depends directly on the neutral fraction of the IGM.

Studies looking for the imprint of the damping wing in galaxy and QSO spectra either focus on its

spectral smoothness (e.g. Mesinger & Haiman 2004, 2007; Schroeder et al. 2013) or on the absolute

absorption on the red side of the Ly↵ line where resonant absorption is negligible (e.g. Miralda-Escude

1998; Haiman & Spaans 1999; Santos et al. 2004; Bolton et al. 2011; Mesinger et al. 2015). In fact the

later approach was used by Greig et al. (2017) to obtain the first detection (2�) of ongoing reionization

from the spectrum of a bright z = 7.1 quasar (see Fig. 23).

Combining current probes

Fig. 24 summarizes the current state of knowledge on the history of reionization (pre-2017; taken from

Greig & Mesinger (2017); see also similar results by Mitra et al. (2015); Price et al. (2016)). Fitting

a physically-motivated basis set of x̄HI(z) to current observations, these authors constrain the epochs

corresponding to an average neutral fraction of (75, 50, 25) per cent, to z = (8.52+0.96
�0.87, 7.57+0.78

�0.73, 6.82+0.78
�0.71),

(1-�). The strongest constraints here come from the first detection of ongoing reionization, obtained from

the spectra of the z = 7.1 QSOs ULASJ1120+0641: x̄HI(z = 7.1) = 0.4+0.41
�0.32 (2-�); see also the recent work

by Mason et al. (2017) who obtain comparable limits from the disappearance of Lyman alpha emitting

galaxies beyond z
⇠

> 6 (not shown in the figure).
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Fig. 23.— Left: FIRE spectrum of the z = 7.08 QSO, ULASJ1120+0641 is shown in black (Simcoe et al. 2012). The

intrisic emission, F0, of the QSO (before it passes through the intervening IGM) is shown in red (maximum likelihood) and

gray (sampling the posterior), obtained by using the reconstruction procedure of Greig et al. (2017). The zoom-in inset

also shows the 1 and 2 � uncertainty on the total observed spectrum, F0e
�⌧D , with ⌧D computed from the simulations of

Mesinger et al. (2016). The fact that the total observed spectrum is systematically higher than the intrinsic one is evidence

of a non-zero ⌧D from ongoing reionization. Right: The PDFs of x̄HI = 1 � QHII, quantifying the imprint of the damping

wing shown in the right panel. The two curves correspond to opposite extreme assumptions about the topology of the EoR.

Figures are taken from Greig et al. (2017).

4.2.3. Density evolution

Neglecting the impact of radiation, the density distribution of the IGM can be obtained by evolving

the continuity equations from §4.1.1. The linear evolution of gas was already discussed above, when

discussing the initial stages of collapse. However the IGM is only quasi-linear; thus hydrodynamic simu-

lations are also used to obtain its density field. Fig. 25 shows the gas distribution from such a simulation

by Viel et al. (2010) (top left panel), together with the corresponding DM field (bottom left panel). On

large scales, the gas and dark matter trace each other very well, while on small scales the baryons are

more di↵use owing to pressure support (note that the Jeans length in the mean density, ionized IGM is

⇠ 0.6
p

(1 + z)/10 cMpc). On sub-galactic scales this trend is reversed, as radiative cooling allows baryons

to collapse to much higher densities, creating stars and black holes.

For many applications, it would be very useful to have an analytic or parametric model of the IGM

density distribution. In the linear regime, the density PDF is a Gaussian centered on � ⌘ ⇢/⇢̄ = 1. We

would expect structure formation to result in an extended tail towards large �, thus shifting the median

of the distribution to � < 1 (i.e. the under dense, so-called “voids” take up most of the volume of the

Universe). This behavior is evident in Fig. 26. We could also expect the width of the distribution to

be related to the Jeans scale. Using these guiding principles, Miralda-Escudé et al. (2000) (hereafter

MHR00) proposed the following parametric form for the volume-weighted density PDF:

P (�, z) = A��� exp

"
�

(��2/3
� C0)2

2(2�0/3)2

#
. (195)

where A and C0 are constants set by volume and mass normalization, at each redshift:
Z 1

0
P (�)d� = 1 ; (196)

Z 1

0
�P (�)d� = 1 . (197)

In the limit of �0 ⌧ 1 and C0 ! 1, we would recover the linear density field behavior, with the distribution

approaching a Gaussian in � � 1, with a dispersion of �0. Thus we expect �0 / (1 + z)�1 following the
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Fig. 24.— Constraints on the evolution of the average neutral fraction, x̄HI = 1 � QHII, from various probes (pre-2017).

A physically-motivated EoR model was sampled, with the likelihood of each resulting x̄HI(z) curve provided by current

observations. The figure is taken from Greig & Mesinger (2017).

evolution of the linear Growth factor in matter-dominated cosmologies. MHR00 take �0 / 7.61(1 + z)�1,

with the proportionality constant fit to match hydrodynamic simulations. The final constant, �(z) ⇠ 2.2–

2.5, is also fit to simulation outputs at z = 2–4, though again we can “guesstimate” its value by noting

that in the � � 1 tail of the distribution which probes collapsed structures, the exponential factor in

eq. (195) approaches unity. Thus the total distribution approaches P (�) / ��� . If we assume collapsed

structures, i.e. halos, follow an isothermal density profile: �(r) / r�2, then the fraction of the halo

volume with density greater than > � is V (> �) / r3
/ ��3/2, making the volume-averaged probability

density scale as P (�) = dV (> �)/d� / ��5/2. Thus isothermal structures result in � = 2.5, close to

the fit found by MHR00.

How well does eq. (195) reproduce simulations? This can be seen from Fig. 27. Although there

are some physically-motivated trends in eq. (195), it is still an empirical fit to simulations and therefore

the agreement in the left panel (the original work from MHR00) is understandable. Bolton & Becker

(2009) subsequently revisited this functional form and tested its agreement against larger simulations,

over a more extended redshift range out to z = 6. Their results are shown in the right panel of Fig. 27.

They find that the MHR00 form is accurate to withing a few percent over two decades around � = 1,

becoming increasingly inaccurate for large values. Note however that the high value tail is not known

even in simulations, since the density distribution of gas in and around galaxies is very sensitive to SNe

feedback (e.g. McQuinn et al. 2011).
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simulation. The total CPU consumption for simulations with the smallest neutrino mass

�m⌫ =0.15 eV is thereby about 10% larger than that for the largest mass we investigated

�m⌫ =0.6 eV.
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Figure 1: Density slices of thickness 6 h�1 comoving Mpc at z = 3 extracted from two 60h�1 Mpc
hydrodynamical simulations with gas and dark matter and no neutrinos. The right column shows
a simulation that includes neutrinos with �m� =1.2 eV. The presence of neutrinos (bottom panel,
green) clearly a↵ects both the gas (red) and the dark matter (blue) distribution.

In Figure 1 we show illustrative slices of the density distribution of thickness 6/h

comoving Mpc extracted from two 60/h comoving Mpc simulations at z = 3 with and
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Figure 2: Left: Dimensionless matter power spectrum at z = 3. We show the following quantities:
linear matter power spectrum for a model with massive neutrinos with �m� =0.6 eV (thin black
line); non-linear matter power spectrum obtained with the particle implementation (thick blue
curve) and with the grid implementation (thick orange curve); non-linear matter power spectrum
for a model without neutrinos (thick black line); linear neutrino power spectrum (thin blue curve);
Poisson contribution due to neutrinos (dashed red curve). All results are for simulations with box
size 512 Mpc/h. N� = 5123 for the particle based and PM = 5123 for the grid based implementation
of neutrinos. Right: Fractional di↵erence of the matter power spectrum for simulations with the
grid and particle based implementation of neutrinos at di↵erent redshifts (z = 0, 1, 3 shown as the
red, blue and black curves, respectively) for the large box size simulations with a starting redshift
z = 49.

results can be directly compared to those obtained by [23] for the same �m⌫ = 0.6 eV

(figure 1 in their paper) but note that despite our attempt to choose similar parameters

there may be still small di↵erences in some of the parameters and that the simulations in

[23] do not contain baryons. The discrepancies between the two implementations albeit

small on large scales appear to be somewhat larger in our simulations.

In Figure 3 we compare results from the two methods in terms of neutrino suppression

for the large simulation box with results for a box size nearly ten times smaller (60/h

Mpc), more appropriate for the modeling of Lyman-↵ forest data. Large boxes are shown

as thin curves which are red dashed in the grid implementation and black continuous in

the particle one, respectively. Smaller boxes are reported as thick curves only at z = 3.

At the smaller scales, that are not fully resolved by the large box-size simulation, non-

linear e↵ects are already important at the redshifts probed by Lyman-↵ forest data and

this is clearly demonstrated by the discrepancies between large and small scales. In fact,

at (k = kmax, z = 3) �2
nonlinear ⇠ 3�2

linear (see left panel of Figure 2) and this non-linear

evolution is missed in the large box simulations. We have checked that we get numerical

convergence in terms of non-linear matter power spectra between the Ndm,gas = 5123 and

the Ndm,gas = 3843 cases, so our results can be trusted at a quantitative level. We interpret

– 10 –

Fig. 25.— The simulated intergalactic medium at z = 3. The top left shows a 6 h�1 Mpc slice through the dark matter

distribution in a 5123 simulation, while the panel below it shows the correspond baryon field. Note that on large scales, the

gas and dark matter trace each other very well, while on small scales the baryons are more di↵use owing to pressure support.

On sub-galactic scales this trend is reversed, as radiative cooling allows baryons to collapse to much higher densities, creating

stars and black holes. On the right, there is the corresponding dimensionless power spectra, including some models with

massive neutrinos. Neutrino free streaming results in a suppression of small scale structure. The figures are taken from Viel

et al. (2010).

Corresponding HI structure

As we saw in the previous section, observables generally do not depend only on the IGM density, but

on the combination of the density and neutral fraction. In the (ionized) Universe, we can expect low

density regions to be optically thin to ionizing radiation, while dense clumps are optically thick, capable

of self-shielding against the ionizing background radiation. MHR00 also proposed a bi-modal model for

self-shielding, shown in Fig. 28, with a critical density threshold separating the optically thin regime from

the optically thick regime.
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Fig. 26.— Volume-averaged PDFs of the density fields (� ⌘ ⇢/⇢̄) smoothed on scale Rfilter, computed from a 143 Mpc on

a side, 10243 simulation of the gas (solid red curves), DM (dotted green curves), and linear perturbation theory (ZA; dashed

blue curves) fields, at z = 20, 15, 10, 7 (top to bottom). The left panel corresponds to Rfilter = 0.5 Mpc; the right panel

corresponds to Rfilter = 5 Mpc. At early times and large scales, the density field is still fairly linear (approaching a Gaussian

in � � 1, with a dispersion of �M ). Non-linearity as one approaches late times and small scales is evident in the appearance

of the high value tail, with the median of the distribution shifting to under-densities (matching the visual trends seen in the

previous figure. All smoothing was performed with a real-space, top-hat filter. The figures are taken from Mesinger et al.

(2011).

In this model, the gas sees a local ionizing background, �(�), which instantaneously transitions from

the impinging (usually taken to be the mean) ionizing background, �bg, to zero at the critical self-shielding

density:

�(�) =

(
�bg if � < �ss

0 if � > �ss
(198)

The above step function is a reasonable approximation, resulting in recombination rates similar to what

is seen in simulations (see below) but over-estimating the neutral hydrogen content of � � �ss systems

(e.g. McQuinn et al. 2011; Rahmati et al. 2013; Keating et al. 2014; Mesinger et al. 2015). The transition

from optically thin to optically thick is more gradual, and depends somewhat on the spectral shape of

the ionizing background (harder photons can penetrate deeper into clumps). Using a Haardt & Madau

(2001) UV background, Rahmati et al. (2013) provide an empirical fit to their hydrodynamic simulations

which show a more gradual self-shielding, in better agreement with observations of HI column densities:

�(�) = �bg ⇥

8
<

:0.98

"
1 +

✓
�

�ss

◆1.64
#�2.28

+ 0.02


1 +

�

�ss

��0.84
9
=

; (199)

Can we compute the characteristic self-shielding overdensity �ss? Let’s begin by first discritizing the

density field into self-gravitating clouds on the local (i.e. �-dependent) Jeans scale, i.e. the distance a

pressure wave can travel in a free-fall time (Schaye 2001):22

LJ ⌘

cs
p

G⇢
. (200)

22Note that the 1D distance is a more robust quantity than the Jeans mass, which assumes a 3D geometry for the conversion

from scale to mass.
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No. 1, 2000 REIONIZATION OF INHOMOGENEOUS UNIVERSE 5

FIG. 1.ÈMass- and volume-weighted di†erential density distribution of
the IGM, at the three indicated redshifts. The lines with noise are from the
numerical simulation in MCOR, and the smooth lines are the Ðt we have
obtained with the analytical model in eq. (6).

We note here the possibility that a signiÐcant fraction of
all baryons is contained in small halos with virial tem-
peratures D104 K, which collapsed to high densities before
reionization, when the Jeans mass was very small (e.g., Abel
& Mo 1998). These halos (which would not have been
resolved in the simulations used for Fig. 1) could survive for
a long time after reionization occurs if neither star forma-
tion nor tidal and ram-pressure stripping due to mergers
into larger structures are able to destroy them. In this case,
the density distribution would be wider than in our model
at high redshift, with a larger fraction of the baryons at very
high densities.

2.2. T he Global Recombination Rate
In Figures 2a, 2b, and 2c, the solid and dotted lines show

the cumulative probability distribution of the gas density
weighted by mass and volume, respectively, at redshifts
z \ 2, 3, and 4. These are obtained from equation (6), with
the Ðt parameters in Table 1. Figure 2d shows the same
cumulative distributions obtained at z \ 6, according to the
prescription described for choosing the parameters in equa-
tion (6) ; the values of these parameters at z \ 6 are also
given in Table 1. The dashed line shows the ratio asR/R

uobtained from equation (1).

TABLE 1

FIT PARAMETERS FOR GAS DENSITY

DISTRIBUTION

Redshift A d0 b C0
2 . . . . . . . . 0.406 2.54 2.23 0.558
3 . . . . . . . . 0.558 1.89 2.35 0.599
4 . . . . . . . . 0.711 1.53 2.48 0.611
6 . . . . . . . . 0.864 1.09 2.50 0.880

The model used in equation (1) sets the ionized fraction to
unity for and to zero for Clearly, the change* \ *

i
, * [ *

i
.

in the mean ionization with * should in reality be more
gradual. To test the sensitivity of the model to this assump-
tion, we use also an alternative formula for the global
recombination rate based on ionization equilibrium with a
constant background intensity (notice that the change of
the ionized fraction with density should be steepened by
self-shielding e†ects and widened by Ñuctuations in the
background intensity and a dispersion in the size of the
clumps). The ionized fraction x is then given by R

u
x2*2 \

!*(1 [ x), where ! is the photoionization rate and col-
lisional ionization is neglected. DeÐning as the over-*

idensity where gives andx \ 12 *
i
\ 2!/R

u
x \ *

i
/(4*)

and the global recombination rate is[(1 ] 8*/*
i
)1@2 [ 1],

given by This is shown as theR(*
i
) \ R

u
/0= d* P

V
(*)x2*2.

dash-dotted line in Figure 2. The result is very similar to the
case of the sudden change of the ionized fraction, except for

(where the model is not relevant anyway because*
i
[ 1

even at the earliest stages of reionization, with Q
i
> 1, *

ishould be of order unity or larger).
As long as is less steep than *~3 at large *,P

V
(*) R(*

i
)

should increase monotonically with as seen in Figure 2.*
i
,

This property of the global recombination rate is the main
reason why high-density regions should generally be
ionized at a later stage than low-density regions when there
is a balance between global recombination and emissivity. If
low-mass, dense halos formed before reionization and not
resolved in the simulation we use were present, then the
wider density distribution implied would cause a more
rapidly increasing global recombination rate with *

i
.

The late ionization of the high-density gas implies that
the clumpiness of the IGM does not necessarily increase the
number of photons required to complete reionization. As an
example, if overlap occurs at z \ 6 and with only*

i
\ 3,

about 70% of the baryons need to have been ionized, but
95% of the volume is ionized (Fig. 2d). The dashed curves
also show that at so clumpiness in thisR/R

u
\ 1 *

i
D 3,

case does not increase the net number of recombinations,
and actually makes reionization easier by reducing the frac-
tion of baryons that need to be ionized. In fact, if additional
gas is in small-scale, high-density halos not resolved in the
simulations, the required number of photons to complete
reionization should be further decreased. Since atR

u
^ 1

z \ 6, only about one ionizing photon per baryon needs to
be emitted to complete reionization. A low value of at the*

iepoch of overlap requires that the sources are numerous ;
reionization by more luminous sources would imply a
higher and therefore a greater number of recombi-*

i
,

nations.

3. THE Lya FLUX DECREMENT

We now address the question of the Ñux decrement that
should be observed to the blue of the Lya wavelength, as the
redshift increases toward the epoch of reionization. The
optical depth of a uniform, completely neutral IGM, isq0,
extremely large,

q0 \ 2.6 ] 105[)
b
h(1 [ Y )/0.03]

] [H0(1 ] z)3@2/H(z)][(1 ] z)/7]3@2 . (7)

Because of this, a small neutral fraction is sufficient to yield
a high enough optical depth to make the transmitted Ñux

4 J.S. Bolton & G.D. Becker

Figure 4. The volume weighted gas density distribution at z = 2
(left panel) and z = 5 (right panel) from the 10-50 (dotted curve)
and 10-100 (solid curve) models. The dashed curve is computed
from the 10-100 simulation after doubling the particle smoothing
lengths, matching those used in the 10-50 model in order to mimic
lower mass resolution.

close to the continuum (F = 1) regardless of mass resolu-
tion, and so under-resolving these regions has little impact
on the Ly↵ flux statistics. In contrast, underdense regions
dominate the transmission at z = 5, impacting significantly
on the convergence of the simulated Ly↵ forest properties.

This behaviour is a consequence of the spatially adap-
tive nature of SPH, which provides excellent spatial resolu-
tion in high density regions but poorer resolution in under-
dense regions. In Fig. 4 we demonstrate this by comparing
the density distribution from the 10-50 and 10-100 models
to a third distribution, again drawn from the 10-100 model.
The latter is computed by interpolating the particle masses
onto a grid using the 10-50 model particle smoothing lengths
(twice the 10-100 values), mimicking particle masses a factor
of eight larger. The 10-50 distribution at low densities is well
reproduced by the resmoothed 10-100 distribution, implying
that di↵erences in the density distribution at log � < �0.5
are largely a consequence of the intrinsic mass resolution
limit. However, additional e↵ects such as gas being trans-
ferred from the low density IGM to previously unresolved
haloes may also play a small role (Theuns et al. 1998).

Lastly, we consider fits to the gas density distribution
which are widely used in analytical models of the Ly↵ forest.
In Fig. 5 we compare the volume weighted density distribu-
tion from our 10-400 simulation to the four parameter fits1

obtained at z = (2, 3, 4) by Miralda-Escudé et al. (2000)
(hereafter MHR00). The solid curves in Fig. 5 correspond
to our 10-400 simulation data, while the dashed curves show
the fits obtained by MHR00. The dot-dashed curve at z = 6
corresponds to a more recent fit2 to an SPH simulation by
Pawlik et al. (2009) (hereafter PSS09), who also use the pa-
rameterisation suggested by MHR00.

1 The MHR00 fits are derived from the L10 sim-
ulation of Miralda-Escudé et al. (1996), which uses
(⌦m, ⌦�, ⌦bh2, h, �8, ns) = (0.4, 0.6, 0.015, 0.65, 0.79, 0.96),
with a box size of 10Mpc/h box and 2883 cells. This gives an
average gas mass per cell of 6 � 105 M�. Note the z = 6 MHR00
distribution is an extrapolation from the lower redshift fits.
2 PSS09 use a GADGET-2 simula-
tion with (⌦m,⌦�,⌦bh2, h, �8, ns) =
(0.258, 0.742, 0.0228, 0.719, 0.796, 0.963), a box size of 6.25Mpc/h
and Mgas = 1.8 � 105 M�/h (2563 gas particles).

Figure 5. The volume weighted gas density distribution ex-
tracted from the 10-400 simulation at z = (2, 3, 4, 6) (solid
curves). The dotted curves correspond to an eighth order polyno-
mial fit to the simulation data over the range �1  log �  2.5.
The fits obtained by MHR00 correspond to the dashed curves.
The dot-dashed curve in the panel at z = 6 also shows the recent
fit presented by PSS09. The di↵erences in the fits relative to the
simulation data are shown in the lower third of each panel.

Although our simulation is in reasonable agreement
with the MHR00 fits for �0.5  log �  1, we confirm
the claim by PSS09 that the power law tail in the MHR00
parameterisation, PV(�) / ��� for � � 1, provides a
poor description of the density distribution. This is per-
haps not too surprising; the MHR00 prescription is based
on the assumption of a power-law density profile for col-
lapsed objects and is not obtained directly from the sim-
ulations. The 10-400 model also di↵ers considerably from
the MHR00 fits at log � < �0.5, although note that our
data are not fully converged here. The PSS09 fit is in poor
agreement with our simulation at z = 6. However, PSS09
find a similar discrepancy between their fit and simulation
results, suggesting that the di↵erence between their sim-

ulated density distribution and our data is actually much
smaller. Furthermore, we use a very di↵erent star formation
prescription to PSS09 which is designed to optimise Ly↵ for-
est simulations. We have verified this has little e↵ect on the
simulated gas density distribution at log � < 2 when com-
pared to a more sophisticated star formation prescription
(Springel & Hernquist 2003), but this choice will produce
di↵erences in the density distribution at higher densities.

We conclude that the MHR00 parameterisation is not
fully adequate for describing PV from our simulations at
log � > 1. Consequently, we provide polynomial fits to the
10-400 density distribution in Table 2 over the range �1 

log �  2.5 only (dotted curves in Fig. 5). We deliberately
avoid parameterising the data, preferring to instead provide
an accurate representation of the simulations for reference.
Note, however, that PV is still only marginally converged
with resolution for �0.5  log �  2.5 and has not fully
converged with box size.

c� 0000 RAS, MNRAS 000, 000–000

Fig. 27.— Density PDFs. On the left, we have the original results from Miralda-Escudé et al. (2000); the lines with noise

correspond to a hydrodynamic simulation while the smooth curves correspond to their analytic fit. Narrow distributions

are volume weighted, i.e. P (�, z), while broad distributions are mass weighted, i.e. �P (�, z). On the right we have an

analogous study by Bolton & Becker (2009) showing how the MHR00 distribution, although accurate at the percent level for

two decades around the mean, becomes inaccurate at high densities for this model. It is worth noting that the true density

distribution in the high value tail is sensitive to SNe feedback, and is poorly understood.

Taking c2
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µmp
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i
⇢H, where fg is the fraction of the total mass in gas,

fg(1�YHe) is the fraction of the total mass in hydrogen, and ⇢H = mpnH is the mass density of hydrogen,

we can write:
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The first factor is just made of constants, while the second factor can change somewhat due to ionization

(µ = 0.6/1.2 for an ionized/neutral medium, and we expect the gas fraction to be close to the cosmic

mean value ⌦b/⌦m). The final factor can vary significantly. For reference, the typical Jeans length inside

galaxies can be ⇠ pc, while the typical Jeans length inside the (ionized) IGM can be ⇠ Mpc at high

redshifts.

Given the Jeans length of our gas element, we can compute the corresponding HI column density,

NHI, to see if it is su�cient to self-sheild:

NHI = xHI�n̄HLJ = xHI

p

T�

s
�kBfgn̄H

Gµm2
p

= 1.5 ⇥ 1020cm�2 xHI

p
T4�100Z

3/2
7 , (202)

where we take � = 5/3 for a monatomic gas, fg = ⌦b/⌦m ⇡ 0.17, µ = 0.6, and subscripts in the last

line denote the values used for normalization: T4 ⌘ T/104K, �100 ⌘ �/100, Z7 ⌘ (1 + z)/7. The

corresponding optical depth is obtained by multiplying with the ionization cross section, �LL ⇠ 6 ⇥ 10�18

cm2, resulting in: ⌧ = NHI�LL ⇡ 103xHI
p

T4�100Z
3/2
7 . Thus, even gas with a modest fraction of neutral

hydrogen (our default values correspond to xHI > 10�3), can self-shield against ionizing radiation.
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Fig. 28.— Simple model for the ionization structure of gas illuminated by a pervasive ionizing background. Roughly

spherical, self-gravitating clumps have a thin shell with overdensity, �ss, corresponding to an optical depth of unity. Gas

inside this shell is self-shielded from the ionizing background, and remains largely neutral.

Since highly ionized gas can self shield, in computing �ss we can simplify the equation of ionization

equilibrium, i.e.

xHInH� = (1 + fHe) [nH(1 � xHI)]
2 ↵A , (203)

to its xHI ⌧ 1 limit:

xHI =
(1 + fHe)nH↵A

�
, (204)

where fHe = (4/YHe �3)�1
⇡ 0.077 is the helium number fraction, and we assume helium is singly-ionized

together with hydrogen (an accurate assumption given their comparable energy thresholds). Taking the

empirical fit for the recomination coe�cient from Cen (1992): ↵A(T ) ⇡ 4.2 ⇥ 10�13 T�0.7
4 cm3 s�1, and

defining �12 = �/(10�12s�1), we have:

xHI ⇡ 3 ⇥ 10�3 ��1
12 T�0.7

4 �100Z
3
7 . (205)

Putting this into eq. (202) we have:

NHI,xHI⌧1 ⇡ 4.5 ⇥ 1017cm�2 �12T
�0.2
4 �3/2

100Z
9/2
7 . (206)

If we define �ss to be the value for which ⌧ = NHI,xHI⌧1�LL = 1, we obtain:

�ss ⇡ 50 �2/3
12 T 0.13

4 Z�3
7 (207)

We now have the framework to calculate one of the fundamental quantities for the IGM: the recom-

bination rate. The recombination rate per hydrogen atom is computed by integrating over the density

distribution:
dnrec

dt
=

Z 1

0
�2n̄H ↵A [1 � xHI]

2 P d� . (208)

Here the density PDF, P , can be computed from eq. (195), and the neutral fraction, xHI, from eq. (203).

In Fig. 29 we show the evolution of the mean emissivity (thick curves) and recombination rate (thin

curves) for several simulations in which the above framework was included via a sub-grid prescription

(taken from Sobacchi & Mesinger 2014). The most complete model is denoted as “FULL”. Towards

the end stages of reionzation (x̄HI
⇠

< 0.1), the recombination rate balances the emission rate of ionizing

photons (see also Furlanetto & Oh 2005), resulting in a so-called “photon-starved” end to reionization

(e.g. Bolton & Haehnelt 2007).

56



A. Mesinger Structure Formation in the Early Universe

McQuinn + H2011L
Bolton &Haehnelt H2007L

FULL RnF

nRF

5 6 7 8 9 10 11 12 13 14 15

0.5

1

5

10

z

G
yr
-1

Fig. 29.— Evolution of the average emissivity (thick) and recombination rate per baryon (thin) with di↵erent models in

Sobacchi & Mesinger (2014). The most complete model is denoted as “FULL”. The vertical ticks correspond to x̄HI = 0.2 and

x̄HI = 10�2. For comparison we show the emissivity constraints inferred from the Ly ↵ forest at z
⇠

< 6 (Bolton & Haehnelt

2007; McQuinn et al. 2011).

4.2.4. Thermal evolution

Gas in the IGM behaves as a classical ideal gas, which quickly reaches local thermal equilibrium

(LTE). In LTE, the temperature of any gas component with number density ni and internal energy Ui

can be written as:

T =
2Ui

3kBni

=
2Utot

3kBntot
(209)

The second line follows from equipartition of energy in an ideal gas in LTE. Utot is the total internal

energy per unit volume, and ntot is the total number density of the gas, composed primarily of hydrogen

and helium:

ntot =
X

i

ni ⇡ ne + nHI + nHII + nHeI + nHeII

⇡ xi(nH + nHe) + (1 � xi)nH + xinH + (1 � xi)nHe + xinHe

= xi(nH + nHe) + nH + nHe

= nb(1 + xi) (210)

As in the previous section, here we assume that hydrogen and helium are singly ionized with an ionization

fraction of xi; thus ne = xi(nH + nHe). Moreover, we ignore doubly-ionized Helium (assuming nHeIII=0),

whose high ionization threshold requires very hard sources, and is thus expected to be ionized with the

advent of QSOs at lower redshifts, z
⇠

< 4.

We can explicitly solve for the evolution of the IGM temperature of an IGM gas element, starting

with the time derivative of eq. (209):

dT

dt
=

2

3kB


1

ntot

dUtot

dt
�

Utot

n2
tot

dntot

dt

�
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