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and diving through by exp(7) we obtain the standard equation of 1D radiative transfer,

I(t)=eT [1(0) + /0 ' SeT,dT/:| . (172)

We see from the above equation that the optical depth corresponds to an e-folding of the absorption.
In other words, in the absence of emission, radiation passing through gas will be attenuated by a factor
of e, after one optical depth.

If we can take the gas properties to be constant over the length of interest, S is a constant which can
be removed from the integral above. Then eq. (172) becomes:

I(r)=1(0)e "+ S (1—€7) (173)
=S+e T[I(0)-9] . (174)

From the above, we can clearly see the asymptotic trends that for an optically-thick medium, with
T — 00, we have the intensity approaching the appropriately-named source function, I — S. Similarly, for
an optically-thin medium, with 7 — 0, the intensity remains unchanged from the incoming background
radiation, I — 1(0).

4.2. The Intergalactic Medium

Thus far in our study of baryons, we have focused on those residing inside dark matter halos, i.e.
galaxies. One can argue that they have the most interesting fates. However, the fraction of baryons which
reside in galaxies is actually very small: atomic cooling halos host at most a few percent of the baryons at
z 2 6. The vast majority of matter lies in the diffuse web stretching between the galaxies, the so-called
intergalactic medium (IGM).

The IGM can be characterized by the following fundamental properties: (i) density; (ii) ionization
state; (iii) temperature. We discuss each of these in the following sections.

4.2.1.  lonization evolution: the Epoch of Reionization (EoR)

The Epoch of Reionization (EoR) is the last major phase change of the IGM. Light from the first
stars and galaxies, discussed in the previous section, spread out throughout the Universe, ionizing and
heating the IGM. It is a complex process, encoding the physics of the first structures and how they
impacted their surroundings. It is challenging also to model, as the epoch involves a huge range of scales,
with the small-scale physics of star formation driving ionization structures which are inhomogeneous on
cosmological scales. Here we will establish a basic analytic framework, and encourage readers to delve
deeper in the field with reviews such as Mesinger (2016).

Let’s begin with an early, star-forming galaxy surrounded by the neutral IGM. Ionizing radiation
from its stars can escape the galaxy into the IGM, driving a local, expanding HII region!® with comoving
volume, Virr. The evolution of this HII region can be written as:

dvi dN. _
(nm) dI:H = ditv — oA (ny) Vara ™ (175)

9Note that the width of the ionization fronts roughly correspond to the mean free path of the typical ionizing photons.
For any UV source, this mean free path in the IGM is very small, of order ~ kpc. Therefore the EoR is an inhomogeneous
process with almost fully ionized HII regions around the first galaxies expanding into almost fully neutral HI regions. Here
we assume a completely bimodal IGM: either fully neutral or fully ionized. Therefore, we have no ionized fraction terms in
eq. (175). In §4.2.3, we shall relax this assumption, which primarily impacts the recombination rate inside the cosmic HII
regions.
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Here the LHS is the rate at which new HI is ionized as the HII region expands. The first term on the RHS
corresponds to the rate (per H atom) at which ionizing photons are escaping the galaxy into the IGM,
while the second term corresponds to the average number of recombinations per H atom inside the HII
region (note the final =3 term converts the recombination coefficient, axg, 2° to comoving units). For the
cosmic HII region to grow, the emission rate of ionizing photons has to be larger than the recombination
rate.

We can expand the emission term as a product of the following;:
NW = fescN»y/bf*Nglalo (176)

Here the number of baryons in the galaxy is Nglalo, f« is the fraction of those baryons inside stars (c.f.
§4.1.5), N, 1, is the number of ionizing photons produced per stellar baryon, and fesc the fraction of these
ionizing photons which manage to escape into the IGM.

For the absorption term, it is convenient to define a clumping factor, C = <n%1> / (nH>2 The clumping
factor is a measure of substructure, and should only be computed inside the ionized regions which contribute
to recombinations. With these definitions, we can rewrite eq. (175) as:

dVHII_ 1 d[fescN'y/bf*Nglalo]
dt  {(nmu) dt

— aAB<nH)CVHHa_3 . (177)

To simplify this further, we can assume that the growth of the galaxy, i.e. the Nglalo term, evolves
much more rapidly that the other factors in the first term on the RHS. Then if we divide by some “total”
(large enough to be representative) volume Vo, we obtain the evolution of the filling factor (fraction of
total volume) of this particular cosmic HII region:

—1 dVHII o fcscny/bf* nglalO

_ Van i
ot gt Viot(nu)  dt '

—_— 178
‘/tot ( )

— aap{ng)C

So far we discussed a single HII region. The Universe during the EoR contains many HII regions. We
are now in the position to perform an ensemble average over various individual Vi, The total ionized
volume, summing over all cosmic HII regions is Y, Vi;;. Analogously, the filling factor of HII regions is
Quir = Vig! 32, Viiyp. Finally, we note that [Viggnm] ™' 32, N = [Nige] 71 32, N1 is the fraction of
baryons inside star-forming galaxies. If we assume that star-forming galaxies are hosted by halos with
masses above some critical threshold mass (set by cooling or feedback), My, then the fraction of baryons

20The recombination coefficient for a given species (hydrogen or helium) is usually written as being either “case A”, aa,
or “case B”, ap. The case A coefficient includes the sum of probabilities of a recombination to any state (including directly
to the ground state), while the case B excludes recombinations directly to the ground state (which result in the emission of
an ionizing photon). For hydrogen at a temperature of 10* K, we have asx = 4.2 x 107" ¢cm® s7!, and ap = 2.6 x 107*®
em® 571 (e.g. Osterbrock 1989). When computing the ionization balance of the IGM, it is more appropriate to use case A if
the recombinations are taking place in optically-thick systems (at low redshifts referred to as Lyman limit systems; LSSs).
The reasoning behind this is that the photons resulting from ground state recombinations are likely to be absorbed locally,
inside the LLS). After some number of ionizations/absorptions, the recombination happens into an excited state, and there
is no more ionizing photon. Thus the ionizing photons resulting from ground state recombinations do not escape the LLS,
and so do not contribute to the ionization balance in the diffuse IGM (Miralda-Escudé 2003). The case B recombination
coefficient is more appropriate when recombinations are happening in more diffuse, optically thin systems. In this case, the
ground state photon can travel in the IGM, and result in another IGM ionization. As a result this photon is ionization
neutral when computing the IGM ionization state, and so is not counted in the rate equations. While it is clear that for the
post-reionization IGM the case A is more appropriate, it is really not clear what is better at high redshifts, as it depends on
knowing the properties of the systems which are dominating the recombinations (are they occurring mostly in dense systems
or in the actual diffuse IGM which one is modeling). In the next chapter, we develop the framework for studying recombining
systems, but current uncertainties in the strength of the ionizing background prevent us from knowing which recombination
coefficient is more appropriate. In this chapter therefore, we use a general notation, aas, to indicate that the appropriate
coefficient is somewhere between case A and case B.
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inside star-forming galaxies is just the collapsed fraction, feon(> Mmin) from §3.3. With this ensemble
averaging, we arrive at the evolution of the HII filling factor:

dQun
dt

dfcott (> Muin, 2)
dt

= fescINy b [ — aas(nu)Ca > Qur | - (179)

Each of the parameters in the above equation is the subject of topical research.

e The fraction of galactic baryons inside stars, f., depends on the efficiency of star formation, as
discussed in §4.1.5. Simple estimates which scale the halo mass function by a constant amount to
fit the LF suggest values of order f,. ~ per cent, for the bulk of the high-redshift galaxy population
(e.g. Vale & Ostriker 2006; Dijkstra et al. 2014; Dayal et al. 2014, Park et al. in prep).

e The typical number of ionizing photons produced per stellar baryon, N, depends on the IMF of
the stars. Population IT stars should produce roughly 5000 ionizing photons over their lifetime,
while more top-heavy IMFs or metal-free Poplll stars could increase this number by an order of
magnitude (see e.g. Fig. 13 and Tumlinson & Shull 2000; Schaerer 2002).

e The halo mass threshold for star-formation, Muy, depends on cooling efficiency or feedback, and
can take on values ranging between My, ~ 10°Mg for the first, molecularly-cooled halos (e.g.
Bromm et al. 2002; Abel et al. 2002; Yoshida et al. 2008), My, ~ 108M;, for atomically-cooled
halos. If feedback was efficient in quenching star formation in these small-mass halos the threshold
could be as high as My, ~ 10'°M, corresponding the faintest high-redshift galaxies observed
today (see Fig. 16).

e The fraction of ionizing photons which escape the galaxy, fes., depends on the galactic morphologies
and the corresponding distribution of column densities. These in turn are likely set by a combination
of dynamical and thermal evolution, with strong SNe feedback episodes likely clearing away the
surrounding medium, facilitating the escape of ionizing photons. Direct observations of Lyman
continuum emission are impossible at high redshifts given current technology. Stacks of Lyman
break galaxies at lower redshifts, z ~ 3-4, motivate typical values of fesc ~ per cent (e.g. Steidel
et al. 2001; Shapley et al. 2006; Siana et al. 2007; Marchi et al. 2017); however fainter galaxies at
high redshifts are expected to have higher escape fractions as low column density sightlines are easier
to be created by SNe explosions in shallower potential wells (e.g. Paardekooper et al. 2015; Xu et al.
2016). If M, is much larger the atomic cooling threshold, so that only rare bright galaxies drive
the EoR, we would need to have escape fractions of order tens of per cent to have the Universe
reionize by z ~ 5-6 (e.g. Mitra et al. 2013; Kuhlen & Faucher-Giguere 2012; Robertson et al. 2013;
Greig & Mesinger 2017).

e The clumping factor inside the ionized IGM, C, is expected to be of order unity — few for the bulk
of reionization, but could be much larger in the initial EoR stages if the ionized gas is heated and
smoothed as its Jeans mass increases (e.g. Emberson et al. 2013; Pawlik et al. 2017), or rise rapidly
in the later stages of the EoR as the ionization fronts penetrate into increasingly dense clumps
thus allowing higher densities to contribute to the recombination rate (e.g. Furlanetto & Oh 2005;
Sobacchi & Mesinger 2014; see §4.2.3).

We can simplify eq. (179) even further if we assume that these astrophysical parameters are redshift-
independent. In this case, we can integrate over cosmic time:

=(t) df ol (> Mmin, 2 (1) dnyec
QHH(Z) = fescN'y/bf*/ f H( o7 )dt/ —/ o

= fcscny/bf*fcoll(> Min, Z) - nroc(z) ) (181)

dt’ (180)
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where the number of recombinations per baryon is explicitly denoted as nye.. To first order, we can take
the recombinations to be linearly distributed in Qg (i.e. assuming a weaker dependence on the other
terms). This allows us to write:

QHH(Z) ~ fescN'y/bf*fcoll<> Mmin, Z) - ﬁrecC)HH(z) s (182)

where 7i,ec is the total number of recombinations per baryon during the EoR. Finally, we have:

~ fescN—y/bf*

QHH(Z) - (1 + ﬁ1rec)

feon(> Mmin, 2) (183)

As seen from eq. (183), the EoR only depends on the product of the aforementioned astrophysical
quantities. Therefore, it is common to define this product as an “ionizing efficiency”, (:

fesc f* N’y/b 1.5
=2 184
¢ 0 (0.1 0.03 5000 1+ 7irec (184)
with eq. (183) becoming simply:
- (185)

Patchy Reionization

Finally, it is important to remember that reionization by UV photons is a very inhomogeneous process,
with a fraction ~ Qg of the Universe virtually fully ionized, while the remaining 1 — Qyy is virtually fully
neutral. The topology of this process thus tells us how the star-forming galaxies are spatially distributed.
We can simulate this patchy reionization with large radiative transfer simulations; however the results
are uncertain as we do not know the ionizing efficiencies of galaxies. Luckily, we can build some intuition
analytically. As was noted by Furlanetto et al. (2004), we can use the same excursion-set tools we used
to build the halo mass functions.

We can rephrase the global evolution in eq. (185), by realizing that each sub-region of the Universe
is itself ionized if:
Cfeont(> Munin, 2| My, 0umr) > 1. (186)

Here we have replaced the global collapsed fraction, with the conditional one: the fraction of matter
inside collapsed structures above My, at z, given that they reside in a large-scale region that has a
matter overdensity dyyp on a scale M. We can express this conditional collapsed fraction as (§3.3):

Ocrit(2) — Onm

Jeoll (> Muin, 2| My, 6un) = erfe (187)
V2[0%(Myyin) — 0%(Mgn)]
Plugging this into eq. (186), and inverting the complimentary error function:
0, i -9 _ _
c t(Z) HII < erfe 1(< 1) ' (188)

V/2[02(Mpin) — 0%(My)]

Therefore, we can stipulate that a region of scale Mpyys is ionized at redshift z, if it has an overdensity of:

St > derit (2) — erfe™ (¢ V/2[02(Minin) — 02(Mun)] (189)

This overdensity is analogous to the “critical overdensity” for the collapse of dark matter halos.
In §3.3, we constructed a halo mass function from the distribution of first upcrossings of the barrier
dcrit- Analogously, here we can construct the “HII region mass function” from the distribution of first
upcrossings of the barrier dgy;. This can be done either numerically, or analytically by linearizing the
function in o2: dpi = By + B102(M ). The constants By and Bj can be obtained by considering the
asymptotic limit on large-scales, o?(Myyr) — 0. In this large-scale limit, the barier becomes dyi; — By =

45



A. Mesinger Structure Formation in the Early Universe

0
Ocrit — erfcfl((’l)\/2[02(Mmin) — 2] = Oerit — V20 (Miin )erfc™1(¢1). Moreover the slope of the
0
barrier becomes ddpy/do? — By = erfc_l(C_l)/\/Q[JQ(Mmin) — o2 (M| = erfe (¢ /7202 (Momin).-

Having a linear barrier allows us to use the ellipsoidal functional form derivation of the halo mass function

by Sheth et al. (2001). In analogy to the linear ellipsoidal barrier used for the ST mass functions, we
can write the HII bubble mass fuction, i.e. the comoving number density of HII regions of mass scale
My ~ (4/3)7R}y;p, as (Furlanetto et al. 2004):

dlno
dln MHII

dn 2 p

dln MHII - ;MHH

(190)

By [(30+B10’2)2}
Xp _—

o 202

Fig. 18.— Slices through a simulated 21-cm signal during the EoR, with black corresponding to cosmic ionized patches
(from Mesinger et al. 2011). The left panel was generated from a hydrodynamic radiative-transfer simulation, while the right
panel was generated using an analytic excursion-set procedure applied to density fields which were evolved with the ZA.

Both share the same initial conditions. All slices are 143 Mpc on a side and 0.56 Mpc thick.

In addition to the analytic “HII mass function”, the excursion-set approach discussed above has been
applied directly to 3D realizations. This is computationally very efficient, since smoothing the 3D density
field to obtain feon(> Mmin, 2| Murr, 0urr) just involves doing an FFT on the scale Myyy. Starting from
some maximum scale corresponding to a horizon for ionizing photons, the criterion from eq. (186) is
evaluated at each cell of the simulation. Cells which reside in sufficiently large overdensities smoothed on
that scale are marked as ionized. Then the smoothing scale is decreased and the procedure is iterated.

Tonization fields obtained with this procedure are in a good agreement with computationally-intensive
radiative transfer methods, on moderate to large scales (> 1 Mpc; e.g. Zahn et al. 2011; see also Fig.
18). The conditional collapsed fraction from eq. (186) can be computed using (i) the halo field directly
from N-body simulations (Zahn et al. 2007); (ii) the halo field from perturbation theory (Mesinger &
Furlanetto 2007); (iii) the evolved density field (Mesinger et al. 2011). The later, although a little more
approximate, has the advantage of facilitating a nearly unlimited dynamical range. This is important
when modeling the signal on very large scales, such as is required for 21-cm observations (see §4.3).
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4.2.2.  Clurrent EoR probes

Our current knowledge about the EoR stems from two classes of probes: (i) integral constraints from
the CMB in the form of the Thompson scattering optical depth to the lass scattering surface (LSS)Ql; and
(ii) astrophysical “flashlights” which illuminate the intervening IGM. We briefly discuss each in turn.

Optical depth to the CMB
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Fig. 19.— CMB temperature (left) and E-mode (zero curl) polarization (right) power spectra, for several different values
of the mean Thompson scattering optical depth, 7.. Increasing 7. dampens the temperature fluctuations; however, this effect
is strongly degenerate with reducing the primordial amplitude, As. Although a far weaker signal, the large-scale polarization

fluctuations do not suffer from this degeneracy. These figures are taken from Reichardt (2016).

As light from the last scattering surface (LSS; i.e. the CMB) passes through the Universe, it interacts
with free electrons through Thompson scattering. Thompson scattering is gray scattering, thus the
dominant effect is to dampen the CMB temperature fluctuations, as light from hot spots gets scatter into
lines of sight towards cold spots, and visa versa. The more free electrons (corresponding to an earlier
EoR), the stronger is the distortion of the primordial CMB.

This imprint of the EoR can be characterized through the mean Thompson scattering optical depth,

’ dz)1,08 (191)

ZLSS cdt
Te = Ned
e </0 edT dz

Here, n. is the electron number density, o7 the Thompson scattering cross-section, ¢ dt the line element
to the LSS, and the averaging is performed over all lines of sight (LOSs). Thus the higher the 7., the
more the CMB temperature fluctuations are damped (see the left panel of Fig. 19). This damping is easy
to detect. Unfortunately, it is also strongly degenerate with the primordial power spectrum amplitude,

Ag, as shown in the left panel of Fig. 19.

Luckily, the CMB has a large-scale quadrupole anisotropy. This means the EoR creates a linear
polarization signal in the CMB, which peaks on scales larger than the horizon during the EoR. Unlike for
the temperature power spectra, the impact of 7. on the polarization power spectra is not degenerate with
cosmology (see the right panel of Fig. 19). Unfortunately, this signal is much weaker and more difficult
to detect, compared to the temperature fluctuations.

2! Alternative probes such as E-mode polarization as a function of angular scale (e.g. Mortonson & Hu 2008), the patchiness
of 7¢ (e.g. Dvorkin & Smith 2009), the kinetic Sunyaev-Zel’dovich signal from patchy reionization (e.g. Mesinger et al. 2012),
could yield interesting results in the future provided systematics can be controlled (see the review of Reichardt 2016).
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Fig. 20.— Left: Historical trend of the 1 o constraint on the mean Thompson scattering optical depth to the CMB, ..
Figure is adapted from Planck Collaboration XLVI et al. (2016), with the addition of the 1-yr WMAP result of 7. = 0.17+0.04
using only the temperature power spectrum at the top (Kogut et al. 2003) and the alternate HFI estimate from Planck
Collaboration XLVII et al. (2016) 7. = 0.058 £ 0.012 at the bottom. Right: Constraints on the evolution of the average
neutral fraction, Zur = 1 — Quir, corresponding to the latest Planck estimate of 7. = 0.058+0.12 (Planck Collaboration XLVII
et al. 2016). 68% C.L. are shown in yellow, while 95% C.L. are shown in red. Zui(z) was sampled from physically-motivated
EoR models, based on eq. (183), with the optical depth used to compute a x? likelihood. Taken from Greig & Mesinger
(2017).

In the left panel of Fig. 20, we show the historical trend of 7. estimates. Starting with the WMAP
satellite, the first estimate using only the temperature power-spectra was 7. = 0.17 + 0.04 (10) (Kogut
et al. 2003). This unexpectedly-high optical depth implied there were abundant ionizing sources in the
very Universe (z > 15), at a time when the furthest objects were at z ~ 6. The resulting implications on
structure formation caused much excitement/confusion in the community.

However, in subsequent years the value of 7. decreased, with the errors shrinking. This was driven
mainly by the addition of polarization data, first through the temperature-polarization cross-power spectra
and then through the detection of the polarization auto power spectra with the Planck satellite. The
current (2017) conservative estimate is 7. = 0.058 £ 0.012 (Planck Collaboration XLVII et al. 2016),
obtained using Planck’s high frequency instrument (HFT).

How does this constrain the reionization history? Because 7. is an integral measurement, it cannot
tell us about the duration and patchiness of the EoR. Translating 7. to a reionization history requires
assuming a functional form for Quri(z). In the right panel of Fig. 20 we show the 1-0 (yellow) and
2-0 (red) constraints on the reionization history created by sampling EoR models based on eq. (183),
using 7. = 0.058 £ 0.012 to compute a x? likelihood, and marginalizing over the free parameters in
the model. We see that the mean reionization redshift implied by Planck Collaboration XLVII et al.
(2016) is z = 7.647:%:2421. We caution however that the exact shape of these EoR history constraints are
model-dependent, depending on the Qurr(z) functionals and their corresponding priors.

Lya damping wing absorption

The Ly« line of hydrogen has emerged as a powerful probe of the EoR. To understand its utility, let’s
consider the schematic shown in Fig. 21. Sources during the EoR (galaxies and QSOs) emit an intrisic
Ly« flux (bottom right panel), whose profile is set by local and interstellar properties of the source. These
photons emerge from the galaxy/QSO into some local patch of the IGM, which has already been ionized
by the contribution from neighboring sources; the residual HI inside these local ionized patches (top right
panel) is determined by the local density and ionizing radiation, as we shall see in the next section. The
photons pass through the local HII region, redshifting along the way. Those which are not scattered out
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of the line of sight by the residual HI inside the local ionized patch then pass through the large-scale EoR
topology of cosmic HI and HII regions (left panel), redshifting as they travel towards us.
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Fig. 21.— Schematic showing the various components determing the observed Lya line from high redshift QSOs and
galaxies druring the EoR. From left to right we show: (i) a 0.75 Mpc thick slice through large-scale reionization simulation
at Qumr ~ 0.5 (Sobacchi & Mesinger 2014); (ii) a 21 kpc slice through hydro simulation of the ionized IGM surrounding
high-z galaxies (Mesinger et al. 2015); (iii) the intrinsic Ly« line emerging from a galaxy including RT through local outflows
(Dijkstra et al. 2011).

The observed flux at a wavelength, Agps, for a source at redshift z; can be expressed as:

Aob _
Fobs(/\obs) =Fy (1 :_SZ> € 7(Aobs) s (192)
where Fj is the intrinsic (i.e. emerging from the galaxy/QSO into the IGM) spectrum, evaluated at a
rest frame wavelength Agps/(1 + 2), and the total IGM optical depth due to Ly« absorption, 7, is given
by (neglecting peculiar velocities):

= cdt
7(Mobs) :/O dz Cd—z ny Tl o (193)

where ¢(dt/dz) is the proper line element in a given cosmology, ng(z) is the hydrogen number density at
redshift z, zy(2) is the hydrogen neutral fraction at redshift z, and o[Aops/(1 + 2)] is the Ly« absorption
cross section.

As described above, each source sits inside a local HII region, allowing the total optical depth to be
separated into a component sourced by the resonant absorption, 7z, and that from the damping wing of
the cross section, 7p. The common practice is to use the size of the local HII region, Rg, to separate the
terms:

T=Tr+ 7D (194)

Zs ZHII
ZHIL Z

end
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Fig. 22.— Left: Lya cross section. Like all line transitions, the Lya cross section consists of a relatively narrow core,

whose width is set by a combination of turbulent motions and thermal Doppler broadening, and Lorenzian tails extending
far from the core of the line (e.g. Rybicki & Lightman 1979). The figure is taken from Dijkstra (2014). Right: Optical depth
contributions from within (7r) and from outside (7p) the local HII region for a typical line of sight towards a zs = 6 quasar
embedded in a fully neutral IGM. The dashed line corresponds to 7p, and the solid line corresponds to 7r. In this example,
the damping wing of the IGM, 7p, contributes significantly to the total optical depth at Aops ~ 8430 A and Aeps > 8470 A.
The figure is taken from Mesinger & Haiman (2007).

Here zpqr corresponds to the redshift of the edge of the local HII region, and z.,qs denotes the redshift by
which HI absorption is insignificant along the line of sight to the source (of order a hundred Mpc from
the source).

The two components in eq. (194) are qualitatively different, as can be seen from the right panel of
Fig. 22. Due to the relatively narrow core, 7g pics up density and residual HI fluctuations inside the
local HII region; thus it is a rapidly fluctuating quantity resulting in the so-called Ly« forest in QSO
spectra. On the other hand, the damping wing is a smooth function of wavelength, averaging over opacity
fluctuations over relatively large scales.

The strength of the damping wing absorption depends directly on the neutral fraction of the IGM.
Studies looking for the imprint of the damping wing in galaxy and QSO spectra either focus on its
spectral smoothness (e.g. Mesinger & Haiman 2004, 2007; Schroeder et al. 2013) or on the absolute
absorption on the red side of the Ly« line where resonant absorption is negligible (e.g. Miralda-Escude
1998; Haiman & Spaans 1999; Santos et al. 2004; Bolton et al. 2011; Mesinger et al. 2015). In fact the
later approach was used by Greig et al. (2017) to obtain the first detection (20) of ongoing reionization
from the spectrum of a bright z = 7.1 quasar (see Fig. 23).

Combining current probes

Fig. 24 summarizes the current state of knowledge on the history of reionization (pre-2017; taken from
Greig & Mesinger (2017); see also similar results by Mitra et al. (2015); Price et al. (2016)). Fitting
a physically-motivated basis set of Zyr(z) to current observations, these authors constrain the epochs

corresponding to an average neutral fraction of (75, 50, 25) per cent, to z = (8.52’_L8:g$, 7.57+8:;§, 6.82‘*'8:;?),

(1-0). The strongest constraints here come from the first detection of ongoing reionization, obtained from
the spectra of the z = 7.1 QSOs ULASJ1120+0641: Zyi(z =7.1) = O.4J_r8:§; (2-0); see also the recent work
by Mason et al. (2017) who obtain comparable limits from the disappearance of Lyman alpha emitting

galaxies beyond z > 6 (not shown in the figure).
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Fig. 23.— Left: FIRE spectrum of the z = 7.08 QSO, ULASJ1120+0641 is shown in black (Simcoe et al. 2012). The
intrisic emission, Fo, of the QSO (before it passes through the intervening IGM) is shown in red (maximum likelihood) and
gray (sampling the posterior), obtained by using the reconstruction procedure of Greig et al. (2017). The zoom-in inset
also shows the 1 and 2 o uncertainty on the total observed spectrum, Foe™ "P, with 7p computed from the simulations of
Mesinger et al. (2016). The fact that the total observed spectrum is systematically higher than the intrinsic one is evidence
of a non-zero 7p from ongoing reionization. Right: The PDFs of Zur = 1 — Qurr, quantifying the imprint of the damping
wing shown in the right panel. The two curves correspond to opposite extreme assumptions about the topology of the EoR.

Figures are taken from Greig et al. (2017).

4.2.8.  Density evolution

Neglecting the impact of radiation, the density distribution of the IGM can be obtained by evolving
the continuity equations from §4.1.1. The linear evolution of gas was already discussed above, when
discussing the initial stages of collapse. However the IGM is only quasi-linear; thus hydrodynamic simu-
lations are also used to obtain its density field. Fig. 25 shows the gas distribution from such a simulation
by Viel et al. (2010) (top left panel), together with the corresponding DM field (bottom left panel). On
large scales, the gas and dark matter trace each other very well, while on small scales the baryons are
more diffuse owing to pressure support (note that the Jeans length in the mean density, ionized IGM is
~ 0.64/(1 4 2)/10 cMpc). On sub-galactic scales this trend is reversed, as radiative cooling allows baryons
to collapse to much higher densities, creating stars and black holes.

For many applications, it would be very useful to have an analytic or parametric model of the IGM
density distribution. In the linear regime, the density PDF is a Gaussian centered on A = p/p = 1. We
would expect structure formation to result in an extended tail towards large A, thus shifting the median
of the distribution to A < 1 (i.e. the under dense, so-called “voids” take up most of the volume of the
Universe). This behavior is evident in Fig. 26. We could also expect the width of the distribution to
be related to the Jeans scale. Using these guiding principles, Miralda-Escudé et al. (2000) (hereafter
MHRO00) proposed the following parametric form for the volume-weighted density PDF:

—2/3 _ ()2
_ AA-B (A 0)
P(A,z) = AA P exp 50032 (195)
where A and Cj are constants set by volume and mass normalization, at each redshift:

/ P(A)IA =1 ; (196)

0
/ AP(A)IA =1 . (197)

0

In the limit of 6y < 1 and Cy — 1, we would recover the linear density field behavior, with the distribution
approaching a Gaussian in A — 1, with a dispersion of §y. Thus we expect 6y o< (1 + z)~! following the
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Fig. 24.— Constraints on the evolution of the average neutral fraction, Zur = 1 — Quu, from various probes (pre-2017).

A physically-motivated EoR model was sampled, with the likelihood of each resulting Zmui(z) curve provided by current

observations. The figure is taken from Greig & Mesinger (2017).

evolution of the linear Growth factor in matter-dominated cosmologies. MHROO take dg o< 7.61(1 4 2)~1,
with the proportionality constant fit to match hydrodynamic simulations. The final constant, 3(z) ~ 2.2—
2.5, is also fit to simulation outputs at z = 2-4, though again we can “guesstimate” its value by noting
that in the A > 1 tail of the distribution which probes collapsed structures, the exponential factor in
eq. (195) approaches unity. Thus the total distribution approaches P(A) oc A=8. If we assume collapsed
structures, i.e. halos, follow an isothermal density profile: A(r) oc =2, then the fraction of the halo
volume with density greater than > A is V(> A) oc r? A73/2 making the volume-averaged probability
density scale as P(A) = dV (> A)/dA o« A~5/2. Thus isothermal structures result in 8 = 2.5, close to

the fit found by MHRO00.

How well does eq. (195) reproduce simulations? This can be seen from Fig. 27. Although there
are some physically-motivated trends in eq. (195), it is still an empirical fit to simulations and therefore
the agreement in the left panel (the original work from MHRO00) is understandable. Bolton & Becker
(2009) subsequently revisited this functional form and tested its agreement against larger simulations,
over a more extended redshift range out to z = 6. Their results are shown in the right panel of Fig. 27.
They find that the MHROO form is accurate to withing a few percent over two decades around A = 1,
becoming increasingly inaccurate for large values. Note however that the high value tail is not known
even in simulations, since the density distribution of gas in and around galaxies is very sensitive to SNe

feedback (e.g. McQuinn et al. 2011).
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Fig. 25.— The simulated intergalactic medium at z = 3. The top left shows a 6 h~* Mpc slice through the dark matter
distribution in a 5123 simulation, while the panel below it shows the correspond baryon field. Note that on large scales, the
gas and dark matter trace each other very well, while on small scales the baryons are more diffuse owing to pressure support.
On sub-galactic scales this trend is reversed, as radiative cooling allows baryons to collapse to much higher densities, creating
stars and black holes. On the right, there is the corresponding dimensionless power spectra, including some models with
massive neutrinos. Neutrino free streaming results in a suppression of small scale structure. The figures are taken from Viel
et al. (2010).

Corresponding HI structure

As we saw in the previous section, observables generally do not depend only on the IGM density, but
on the combination of the density and neutral fraction. In the (ionized) Universe, we can expect low
density regions to be optically thin to ionizing radiation, while dense clumps are optically thick, capable
of self-shielding against the ionizing background radiation. MHROO also proposed a bi-modal model for
self-shielding, shown in Fig. 28, with a critical density threshold separating the optically thin regime from
the optically thick regime.
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Fig. 26.— Volume-averaged PDFs of the density fields (A = p/p) smoothed on scale Rgiier, computed from a 143 Mpc on
a side, 1024® simulation of the gas (solid red curves), DM (dotted green curves), and linear perturbation theory (ZA; dashed
blue curves) fields, at z = 20, 15, 10, 7 (top to bottom). The left panel corresponds to Reaier = 0.5 Mpc; the right panel
corresponds to Rgier = 5 Mpc. At early times and large scales, the density field is still fairly linear (approaching a Gaussian
in A — 1, with a dispersion of oas). Non-linearity as one approaches late times and small scales is evident in the appearance
of the high value tail, with the median of the distribution shifting to under-densities (matching the visual trends seen in the
previous figure. All smoothing was performed with a real-space, top-hat filter. The figures are taken from Mesinger et al.
(2011).

In this model, the gas sees a local ionizing background, I'(A), which instantaneously transitions from
the impinging (usually taken to be the mean) ionizing background, I'yg, to zero at the critical self-shielding
density:

The if A< Ay

I'(A) =
(&) 0 if A>Ag

(198)
The above step function is a reasonable approximation, resulting in recombination rates similar to what
is seen in simulations (see below) but over-estimating the neutral hydrogen content of A > Ay systems
(e.g. McQuinn et al. 2011; Rahmati et al. 2013; Keating et al. 2014; Mesinger et al. 2015). The transition
from optically thin to optically thick is more gradual, and depends somewhat on the spectral shape of
the ionizing background (harder photons can penetrate deeper into clumps). Using a Haardt & Madau
(2001) UV background, Rahmati et al. (2013) provide an empirical fit to their hydrodynamic simulations
which show a more gradual self-shielding, in better agreement with observations of HI column densities:

1.647 —2-28 —0.84
T(A) =Ty x  0.98 |1+ (A> +0.02 [1 + A] (199)

S Ss

Can we compute the characteristic self-shielding overdensity Ag? Let’s begin by first discritizing the
density field into self-gravitating clouds on the local (i.e. A-dependent) Jeans scale, i.e. the distance a
pressure wave can travel in a free-fall time (Schaye 2001):22

Ly= . (200)

22Note that the 1D distance is a more robust quantity than the Jeans mass, which assumes a 3D geometry for the conversion
from scale to mass.
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Fig. 27.— Density PDFs. On the left, we have the original results from Miralda-Escudé et al. (2000); the lines with noise
correspond to a hydrodynamic simulation while the smooth curves correspond to their analytic fit. Narrow distributions
are volume weighted, i.e. P(A,z), while broad distributions are mass weighted, i.e. AP(A,z). On the right we have an
analogous study by Bolton & Becker (2009) showing how the MHROO distribution, although accurate at the percent level for
two decades around the mean, becomes inaccurate at high densities for this model. It is worth noting that the true density

distribution in the high value tail is sensitive to SNe feedback, and is poorly understood.

_ vkBT
T opmyp
fq(1—Yhe) is the fraction of the total mass in hydrogen, and pg = m,ny is the mass density of hydrogen,

Taking c? and p = <é) Pgas = [m} pu, where fg is the fraction of the total mass in gas,

we can write:

kBT | fo(1 — Yie)
Hmy Gmypnyu

_ ks |fy | T
=G\ u\ B (201)

The first factor is just made of constants, while the second factor can change somewhat due to ionization

Ly=

(0 = 0.6/1.2 for an ionized/neutral medium, and we expect the gas fraction to be close to the cosmic
mean value ©,/€Q,,). The final factor can vary significantly. For reference, the typical Jeans length inside
galaxies can be ~ pc, while the typical Jeans length inside the (ionized) IGM can be ~ Mpc at high
redshifts.

Given the Jeans length of our gas element, we can compute the corresponding HI column density,
Nyi, to see if it is sufficient to self-sheild:

n
Nugr = zaiAngLy = earvT A %
Gumg
= 1.5 x 10%cm 2 ay1y/TyA 100252 (202)

where we take v = 5/3 for a monatomic gas, f; = Q/Q, ~ 0.17, u = 0.6, and subscripts in the last
line denote the values used for normalization: Ty = T/10*K, Ao = A/100, Z; = (1 + 2)/7. The
corresponding optical depth is obtained by multiplying with the ionization cross section, oy, ~ 6 x 1071%
cm?, resulting in: 7 = Ngropn, ~ 103xH1\/MZ$/2. Thus, even gas with a modest fraction of neutral
hydrogen (our default values correspond to xyr > 1073), can self-shield against ionizing radiation.
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Fig. 28.— Simple model for the ionization structure of gas illuminated by a pervasive ionizing background. Roughly

spherical, self-gravitating clumps have a thin shell with overdensity, Ass, corresponding to an optical depth of unity. Gas

inside this shell is self-shielded from the ionizing background, and remains largely neutral.

Since highly ionized gas can self shield, in computing Ay we can simplify the equation of ionization
equilibrium, i.e.

ermnal = (1 + fue) [nu(1 — )] aa (203)

to its g < 1 limit:
(A + fue)nnon

T : (204)

THI =

where fio = (4/Yhe —3) ™! & 0.077 is the helium number fraction, and we assume helium is singly-ionized
together with hydrogen (an accurate assumption given their comparable energy thresholds). Taking the

empirical fit for the recomination coefficient from Cen (1992): aa(T) =~ 4.2 x 10713 T, %" em? s71, and
defining I'15 = I'/(107 1257 1), we have:
xEr ~ 3 x 1073 T Ty %" Ao Z3 . (205)
Putting this into eq. (202) we have:
Nipxge1 & 4.5 x 1077em ™2 Ty, Ty 02AY2 792 (206)
If we define A to be the value for which 7 = Ny« <1011, = 1, we obtain:
Ay ~ 50 T3 1013 73 (207)

We now have the framework to calculate one of the fundamental quantities for the IGM: the recom-
bination rate. The recombination rate per hydrogen atom is computed by integrating over the density
distribution:

ANyec
dt

= / A’y ap [1—zm)? P dA . (208)
0

Here the density PDF, P, can be computed from eq. (195), and the neutral fraction, xy, from eq. (203).
In Fig. 29 we show the evolution of the mean emissivity (thick curves) and recombination rate (thin
curves) for several simulations in which the above framework was included via a sub-grid prescription
(taken from Sobacchi & Mesinger 2014). The most complete model is denoted as “FULL”. Towards
the end stages of reionzation (Zgy < 0.1), the recombination rate balances the emission rate of ionizing
photons (see also Furlanetto & Oh 2005), resulting in a so-called “photon-starved” end to reionization
(e.g. Bolton & Hachnelt 2007).
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Fig. 29.— Evolution of the average emissivity (thick) and recombination rate per baryon (thin) with different models in
Sobacchi & Mesinger (2014). The most complete model is denoted as “FULL”. The vertical ticks correspond to Zur = 0.2 and
Zur = 1072, For comparison we show the emissivity constraints inferred from the Ly « forest at z < 6 (Bolton & Haehnelt
2007; McQuinn et al. 2011).

4.2.4. Thermal evolution

Gas in the IGM behaves as a classical ideal gas, which quickly reaches local thermal equilibrium
(LTE). In LTE, the temperature of any gas component with number density n; and internal energy U;
can be written as:

20
~ 3kpn;
_ 2Utot
B 3antot

(209)

The second line follows from equipartition of energy in an ideal gas in LTE. Uiyt is the total internal
energy per unit volume, and nyq; is the total number density of the gas, composed primarily of hydrogen
and helium:

Ntot = § N; = Ne + NHI + NHIT + NHel + NHell
i

~ zi(nu + nue) + (1 — zi)nu + zing + (1 — z5)nHe + TinHe
= xl(nH + ?”LHe) + nyg + NHe
=np(1 + ;) (210)

As in the previous section, here we assume that hydrogen and helium are singly ionized with an ionization
fraction of x;; thus n. = x;(ng + npe). Moreover, we ignore doubly-ionized Helium (assuming nyerrr=0),
whose high ionization threshold requires very hard sources, and is thus expected to be ionized with the
advent of QSOs at lower redshifts, z < 4.

We can explicitly solve for the evolution of the IGM temperature of an IGM gas element, starting
with the time derivative of eq. (209):

dT . 2 1 dUtot Utot dntot

At 3kp |nwew dt  nk, dt
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