# Gamma-ray emitters and multimessenger signatures of particle acceleration

(A few selected cases)

#### **F. Tavechio** INAF-OABrera







## Outlook

Introduction

Galactic sources: SNR and PWN

Extragalactic sources: (starbursts), AGN, blazars The case of TXS 0506+056

**Final considerations** 

## Introduction

#### Messengers: a synoptic view



#### **Messengers from cosmic accelerators**



#### **Processes in a nutshell**



#### Hadronic processes

proton-proton (pp)  $p + p \rightarrow \pi + X$ 

**proton-photon (p**γ)

 $p + \gamma \rightarrow \pi + X$ 

Relevant in sources with large <u>gas</u> density Relevant in sources with large <u>photon</u> density

#### Hadronic processes



#### Hadronic processes

proton-photon (p<sub>Y</sub>)  $p + \gamma \rightarrow \pi + X$ 

$$E_{\rm th} = \frac{2m_p m_\pi + m_\pi^2}{4\epsilon} \simeq 7 \times 10^{16} \left(\frac{\epsilon}{\rm eV}\right)^{-1} \, \rm eV$$
  
Ev~Ep/10  
Lv~Lv  

$$E_{\nu} = 100 \, {\rm TeV} \rightarrow E_{\rm p} = 2 \times 10^{15} \, \rm eV$$

 $\rightarrow \epsilon \simeq 30 \text{ eV}$ 

### Opacity



## Opacity

Efficient photomeson reactions require high photon density

Large opacity to gamma rays

The direct link between high-energy gamma-ray emission and neutrinos is (at least partially) lost

 $L_{\nu} \approx f_{p\gamma} L_p$  $f_{p\gamma} \propto n_{soft}$  $\tau_{\gamma\gamma}(\varepsilon_{\gamma}^{c}) \approx \frac{\eta_{\gamma\gamma}\sigma_{\gamma\gamma}}{\eta_{p\gamma}\hat{\sigma}_{p\gamma}} f_{p\gamma}(\varepsilon_{p}) \sim 10\left(\frac{f_{p\gamma}(\varepsilon_{p})}{0.01}\right)$  $\varepsilon_{\gamma}^{c} \approx \frac{2m_{e}^{2}c^{2}}{m_{n}\bar{\varepsilon}_{\Lambda}}\varepsilon_{p} \sim \text{GeV}\left(\frac{\varepsilon_{\nu}}{25 \text{ TeV}}\right)$ Murase et al. 2016

#### Particle acceleration at shocks



Diffusive acceleration

$$\left\langle \frac{\Delta E}{E} \right\rangle = \frac{4}{3} \frac{v_1 - v_2}{c}$$

Fírst order Fermí process

#### **Diffusive shock acceleration**



PIC símulation by L. Sironi

## **Magnetic reconnection**



### Turbulence



#### Gamma ray emitters: potential MM sources



## Gamma ray emitters: potential MM sources

Galactic

Supernova remnants Pulsar wind nebulae Star forming regions

. . .





Starburst Galaxies AGNs Relativistic jets



## Galactic sources: SNRs and PWN

#### Supernova remnants







#### **Left-over of SN explosions**

**Shell-like remnants** 

Emission dominated by a shock propagating into the ISM

#### Supernova remnants







**FREE EXPANSION VELOCITY:**  $V_s = \sqrt{\frac{2E_{ej}}{M_{ej}}} = 10^9 E_{51}^{1/2} M_{ej,\Theta}^{-1/2} cm/s$ STRONG (COLLISIONLESS) SHOCK WAVE

Expected to provide the bulk of galactic protons up to 10<sup>15</sup> eV

#### Gamma rays and neutrinos



#### Gamma rays and neutrinos



#### **SNR and cosmic rays**



Age <1000 y or even 100 y

#### RXJ1713.7-3946







HESS Coll. 2007,2018

The remnant **RX J1713.7-3946** has been considered the most promising candidate to prove the existence of accelerated hadrons

FermiLAT data seem to favor a probable leptonic origin

BUT... Need a IR background 30 > Gal. average



#### Hadronic model(s): $\pi^i \rightarrow \gamma \gamma$



#### Leptonic model(s): inverse Compton scattering



#### The CTA view



CTA Coll., 2017

#### Gamma rays

#### RXJ1713.7-3946



CTA Coll., 2017

## Neutrinos: the hadronic smoking gun



requires good gamma-ray data above 10 TeV

Ambrogi et al. 2018

### **Pulsar Wind Nebulae**

Pulsar-dríven (pleríon) SNR The majority of LAT and CT galactic sources



Crab Nebula



MW and variable (Crab!) sources

## **Pulsar Wind Nebulae**







#### Fundamental open issues:

- Origin of Crab-like flares (reconnection?)

- Particle acceleration in PWN (shock? reconnection?) -Problem of particle acceleration at relativistic shocks: B is very large!

- Transformation of B energy into kinetic energy of the wind

- Connection with positrons in cosmic rays?

## **Neutrinos from PWN?**

Idea: part of the gamma-rays are of hadronic (pp) origin (this would solve problems with the powerful IC)

Present data cannot esclude that the <u>entire</u> gamma-ray emission is hadronic

Bednarek 2003 Amato et al. 2003 Di Palma et al. 2017

#### **Positron excess from PWN?**



#### **Positron excess from PWN?**



HAWC Coll. 2017







#### But see:

Cholis et al. 2018 Amato 2018 Di Mauro et al. 2019 Fang et al. 2019

Sum of the galactic pulsar population still consistent

## Extragalactic sources: AGNs & blazars
## From galaxies to central black holes



# Starburst/Superwinds/AGN winds

### CR accelerated by SNR



Romero & Torres 2003 Loeb & Waxman 2006 Tamborra et al. 2014

> Anchordoqui et al. 1999 Romero et al. 2018

Díffusing CR accelerated in shocks + dense gas/dust

> CR accelerated by AGN-driven shock



Wang & Loeb 2016 Lamastra et al. 2016, 2017 Liu et al. 2018



CR accelerated by galactic scale shock

## **Gamma-ray emission**



Ohm & Hinton 2012

# Starbursts: MM sources?



Neutrínos

e.g. Waxman & Loeb 2006 Tamborra et al. 2014 and many others

Possible overproduction of the gamma-ray bkg?



Magnetic deflection not included!

## **Starbursts: MM sources?**



Tamborra et al. 2014

### Difficult to obtain a direct association (low fluxes!)

But see Lunardini et al. 2019: <10% to the total flux

Most powerful sources in the Universe (up to  $10^{48}$  erg/s). Energy is generated by conversion of gravitational energy of the infalling material onto SMBH ( $M_{BH}=10^{6}-10^{9}$  M<sub> $\odot$ </sub>) into radiation and outflows.

#### Non-jetted AGN:

- Bulk of the AGN population
- Wider angle winds with velocities from a few thousands km/s up to mildly relativistic values.
- Electromagnetic emission dominated by thermal emission in the UV-optical band produced by the accretion disk around SMBH

#### Jetted AGN:

- ~10% of the AGN population
- Highly collimated relativistic outflows
- Electromagnetic emission dominated by jet non-thermal emission in the radio and gamma-ray band



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.





# **AGN-driven shocks**

### Widespread evidence for outflows at different scales





King & Pounds 2015



Lamastra et al. 2016, 2017

## **Sturbursts and AGNs**



Akermann et al. 2012

# NGC 1068

- distance D=14.4 Mpc
- composite starburst/AGN galaxy (M<sub>BH</sub>≈10<sup>7</sup>M<sub>☉</sub>)
- Luminous infrared galaxy L<sub>IR</sub>=2.8x10<sup>11</sup>L<sub>☉</sub>
- + High luminosity (L\_{AGN}=10^{44}-10^{45} erg/s) high obscured (N<sub>H</sub>>10<sup>24</sup> cm<sup>-2</sup>) AGN





Molecular AGN-driven wind

ALMA





outflow velocity: v<sub>out</sub>≈(100- 200) km/s outflow size: R<sub>out</sub>≈100 pc mass outflow rate: dM<sub>out</sub>/dt≈10<sup>8</sup> M<sub>☉</sub>/yr kinetic luminosity: L<sub>kin</sub>≈1.5x10<sup>42</sup> erg/s

x

## Models for NGC 1068

### Starburst model



### AGN jet model



| Source   | Component* | 6,  | B(G) | n, (cm)              | T (K)   | $\tau L_{mer}$ (erg s <sup>-1</sup> ) | R (cm)             | K (cm <sup>-3</sup> ) | <i>n</i> 1 | <i>m</i> 2 | Yhreak | Year            |
|----------|------------|-----|------|----------------------|---------|---------------------------------------|--------------------|-----------------------|------------|------------|--------|-----------------|
| NGC 1068 | 1          | 1.2 | 10-4 | $2.0 \times 10^{19}$ | 130-520 | $1.5 \times 10^{12}$                  | $2.2\times10^{20}$ | 12.5                  | 2.2        | 3.3        | 104    | 10 <sup>6</sup> |

### AGN wind model



| Model | Lica/LAGN          | <sup>n</sup> H<br>(cm <sup>-3</sup> ) | Fcal | B<br>(G)            | $\eta_p$ | ηe   |
|-------|--------------------|---------------------------------------|------|---------------------|----------|------|
| W1    | $3 \times 10^{-3}$ | 104                                   | 1    | $3 \times 10^{-5}$  | 0.2      | 0.02 |
| W2    | $3 \times 10^{-3}$ | 104                                   | 1    | $2 \times 10^{-3}$  | 0.2      | 0.02 |
| W3    | $7 \times 10^{-4}$ | 120                                   | 0.5  | $25 \times 10^{-5}$ | 0.5      | 0.4  |
| W4    | $3 \times 10^{-3}$ | 104                                   | 1    | $60 \times 10^{-5}$ | 0.3      | 0.1  |

x

# **Neutrinos from NGC 1068?**



Credits: Tessa Carver (Workshop on Neutrino Telescopes) Francis Halzen (CTA 1st Science Symposium)

x

Name Ra (°) Dec (°) TS -log\_(p\_mail) Pre-trial o γ n<sub>stand</sub> NGC 1068 40.67 -0.01 17.04 50.4 3.16 4.74 4.13 TXS 0506+056 77.35 2.08 3.72 5.70 13.05 12.32 3.55 PKS 1424+240 216.76 23.8 9.88 41.47 3.94 2.8 2.95 GB6 J1542+6129 235.75 2.74 61.50 9.29 29.72 3.02 2.91 MGRO J1908+06 4.22 1.96 1.42 1.77 287.17 6.18 3.48 PKS 1717+177 259.81 17.75 19.82 3.65 1.32 1.66 2.96 PKS 2233-148 339.14 -14.56 2.8 5.32 2.80 1.26 1.6 B2 1215+30 184.48 30.12 2.67 18.60 3.39 1.09 1.4 M 31 10.82 41.24 2.11 10.99 4.0 1.09 1.4 4C +55.17 149.42 55.38 1.61 11.88 3.27 1.02 1.31 Evidence for a flaring Blazar from Most signifcant excess in the Northern Source List. a flare in 2014. (M. G. Aartsen et  $\rightarrow 2.9\sigma$  post-trial 0.35<sup>e</sup> from the hottest point in the sky. al. 2018)

- The MAGIC telescopes observed NGC 1068 from January 2016 to January 2019 for a total of 125 hours
- Constraints on the hadron-nuclear emission of the models (both AGN-wind and SB) (no contraints on leptonic jet model)



MAGIC Coll. 2019

## Gamma rays and neutrinos









MAGIC Coll. 2019

## **Emission from the nucleus?**









## **Emission from the nucleus?**



Most powerful sources in the Universe (up to  $10^{48}$  erg/s). Energy is generated by conversion of gravitational energy of the infalling material onto SMBH ( $M_{BH}=10^{6}-10^{9}$  M<sub> $\odot$ </sub>) into radiation and outflows.

#### Non-jetted AGN:

- Bulk of the AGN population
- Wider angle winds with velocities from a few thousands km/s up to mildly relativistic values.
- Electromagnetic emission dominated by thermal emission in the UV-optical band produced by the accretion disk around SMBH

### Jetted AGN:

- ~10% of the AGN population
- Highly collimated relativistic outflows
- Electromagnetic emission dominated by jet non-thermal emission in the radio and gamma-ray band



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.











**FRI** 



FR II



## Blazars: relativistic jets pointing at us



## (Special) relativity at work





## **Blazars in a nutshell**



### **Jet physics**

. . .

Particle acceleration Plasma and B-field physics Reconnection vs shock Hadronic vs leptonic emission Location of emission region



### **Propagation effects**

Extragalactic background light Intergalactic magnetic field Hadronic beams LIV and ALPs-induced effects and other anomalies



# The spectral energy distribution

### Extended over the whole EM spectrum Extremely variable

Important observational effort



Abdo et al. 2011

## Variability



# Variability



## Blazars: basic phenomenology

Blazars occur in two flavors:

**FSRQ**: high power, thermal optical components (broad lines)

**BL Lacs**: low power, almost purely non-thermal components



The "blazar sequence"

Fossati et al. 1998 Donato et al. 2002 Ghisellini et al. 2009

But see several papers by Giommi & Padovani

## **Blazars in a nutshell**


# **Blazars in a nutshell**





# The full problem



McKinney, Tchekhovskoy, and Blandford 2012

"One zone"





Hadron not important for the emission (but not for energetics!)









Inverse Compton





In principle, in this simple version of the Synchrotron-Self Compton (SSC) model, all parameters can be constrained by quantities available from observations:



# **Blazars in a nutshell**



# Application: BL Lacs





# FSRQs: the "canonical" scenario

Dermer et al. 2009 Ghisellini, FT 2009 Sikora et al. 2009





#### 4C454.3



# Jet powers



# Leptons or hadrons?

**Hadrons** could be accelerated to very-high and ultra-high energy

Jets offer ideal conditions (B, radius, power)



# Maximum proton energy









# Opacity





# Lepto-hadronic models



Cerruti et al. 2015

# Lepto-hadronic models



#### Lepto-hadronic models

Zech et al. 2017



PKS 2155-304

### TXS 0506+056 & IC-170922A

#### 2017 september 22



# A burst of (one-zone) models ...



But the required jet power is very large!

 $L_{\nu} \approx \frac{3}{8} f_{p\gamma} L_p$ 

 $f_{p\gamma} \propto n_{soft}$ 



Low target density

Large proton lumínosíty



Ghisellini et al. 2010

# **Structured jets in BL Lacs**



Ghisellini, FT and Chiaberge 2005 Tavecchio & Ghisellini 2008

# **Structured jets in BL Lacs**



Simulations predict spine-layer structure

Entrainment/instability e.g. Rossi et al. 2008 Acceleration process e.g. McKinney 2006



Limb brightening Mkn 501, Mkn 421, M87, NGC 1275 Laing 1996 Giroletti et al. 2004 Piner & Edwards 2014 Pushkarev et al. 2005 Clausen-Brown 2011 Murphy et al. 2013

#### Unification requires velocity structures

Chiaberge et al. 2000 Meyer et al. Sbarrato et al. 2014



Símílar suggestions for GRBs...

# **Structured jets in BL Lacs**

 $\Gamma_{\rm rel} = \Gamma_{\rm s} \Gamma_{\rm l} (1 - \beta_{\rm s} \beta_{\rm l})$  $U' \simeq U \Gamma_{\rm rel}^2$ 



 $\star$  The spine "sees" an enhanced  $U_{rad}$  coming from the layer



Rates of processes involving soft photons are enhanced w.r.t. to the one-zone model

# Application: BL Lacs

Mkn 421



Tavecchio and Ghisellini 2016

# A structured jet in TXS!



Ros et al. 2019
## Structured jets in BL Lacs

 $L_{\nu} \approx \frac{3}{8} f_{p\gamma} L_p$ 

 $f_{p\gamma} \propto n_{soft}$ 

Increased target density



Reduced proton lumínosíty

FT et al. 2014, 2015 Righi FT, Guetta 2017

# Jet-sheath model



# Jet-sheath model

MAGIC Coll. 2018

#### Effect of maximum proton energy



## Jet-sheath model





Scenario for "extreme Bl Lacs"

## **Extreme BL Lacs**

after Costamante et al. 2001



Bonnoli et al. 2015



-11 s<sup>-1</sup>] SS Photons Log E<sup>2</sup> $\phi(E)$  [erg cm<sup>-2</sup> (+EBL absorption) -12 CTA-South SO h -13 (HB) (S) Protons -14 ∟ 0.01 0.1 10 100 E [TeV]

Tavecchio et al. 2019

Tavecchio et al. 2019



## **Extreme BL Lacs**



## **Neutrinos from hadron beams?**



Essey et al. 2011

#### Difficult to detect single sources

Murase et al. 2012

# A role for the accretion flow?



Powering low luminosity AGN

Kimura et al. 2015; Khiali et al. 2016



Kimura et al. 2018

Emission either through pp or  $p\gamma$ 

# A role for the magnetosphere?



Hígh energy particles can be accelerated by dírect electric fields in gaps or centrifugally

e.g. Rieger 2011

# **Gamma-ray bursts**



# **Gamma-ray bursts**



MAGIC Coll. 2019

# **Gamma-ray bursts**

CR accelerated in Shocks + radiation (py)

Probably no...



Waxman & Bahcall 1997

And many others...



Aartsen et al. 2017

# **Cumulative MM fluxes**



# **Cumulative MM fluxes**



# **γ-v connection**

Gamma-rays can be **directly** connected to neutrinos for **transparent** sources. In case of important opacity situation is more complex (cascades etc...).

From TXS we know that hadronic gamma-rays are **subdominant** with respect to leptonic emission. This is probably valid in general for blazars.

Since blazars contribute to ~80% to ExGal BKG, the "hadronic background" is max 20% of the total.



# **Cumulative MM fluxes**



# **CR-v** connection



Rodrigues et al. 2018 Tavecchio et al. 2019

# **Radiation energy density**

#### A key parameter for several MM processes:

Inverse Compton, absorption Y-rays

photomeson reactions V

destruction of heavy nuclei UHECR

## **Two scenarios**



# Maximum radiation energy density

$$U_{\rm rad} = 10 \times U_{SSC}$$



Tavecchio, Oikonomou, Righi 2019

## **BL Lac population**





# Photodisintegration of nuclei





$$U_{\rm rad} = 10 \times U_{SSC}$$

$$E_{Z,\max} = 7 \times 10^{20} \,\mathrm{eV}\left(\frac{Z}{26}\right) \left(\frac{B}{0.35 \,\mathrm{G}}\right)$$

## Photodisintegration of nuclei



# **UHECR: BL Lac population**



$$E_{Z,\max} = 7 \times 10^{20} \,\mathrm{eV}\left(\frac{Z}{26}\right) \left(\frac{B}{0.35 \,\mathrm{G}}\right)$$

# **UHECR: BL Lac population**





# **Final thoughts**

Strong synergy between theory/models and observations

The astrophysical conditions of sources must be considered!

Important to compile smart lists/catalogues of candidates (trials)