EM non-thermal emission

Gamma-Ray Bursts

Before and after Fermi LAT observation of GRB 130427A

Brief, sudden, intense flashes of gamma ray radiation which release energy up to ~ 10⁵³ erg (isotropic-equivalent)

> Duration: from few ms to hundreds of s Observational band: 10 keV – 1 MeV Flux: 10⁻⁸ - 10⁻⁴ erg cm⁻² s⁻¹

GRBs were discovered serendipitously in the late 1960s by U.S. military satellites looking out for Soviet nuclear testing

Galactic or cosmological?

BATSE 20 keV-MeV (1991-2000)

Paczynsky, PASP, 107, 1167

BeppoSAX (1996-2002) Italian–Dutch satellite for X-ray astronomy resolved the origin of gamma-ray bursts

Scintillator for gamma-rays 60-600 keV, poor angular resolution

> *Wide Field Camera (WFC) 2-30 keV; 20x20 degree FoV 5 arcmin angular resolution*

GRB 970228 in the FOV of the WFC

Well localized fading X-ray afterglow!

Costa et al., 1997

Optical afterglow/host galaxy

Groot, Galama, van Paradijs, et al IAUC 6584, March 12, 1997 van Paradijs et al., 1997 z=0.695, D_L=3.6 Gpc

Cosmological redshift

Swift: "everything in space"

Sínce Nov. 2004

GRBs are extragalctic, cosmological, and occur in galaxies

GRBs host galaxies observed by HST

Different Progenitor

Short Hard GRB

- lack of observed SN
- association with older stellar population
- larger distance from the host galaxy center (~ 5-10 kpc)
- accretion timescale of disk in binary merger model is short (t ~ 1s)

NS-NS NS-BH mergers

Long Soft GRB

- observed Type Ic SN spectrum
- accretion disk is fed by fallback of SN material onto disk, timescale t ~ 10-100s

Core-collapse of massive stars

Long GRB and Supernovae

SN 1998bw/GRB 980425 Type Ic supernova

Galama et al. 1998; Stanek et al. 2003; Hjorth et al. 2003; Della Valle et al. 2003; Malesani et al. 2004; Soderberg et al. 2005; Pian et al. 2006; Campana et al. 2006; Della Valle et al. 2006, Bufano et al. 2012, Melandri et al. 2012, Schulze et al. 2014, Melnadri et al. 2014 and others...

Type Ic supernova

Iwamoto et al 1998; Woosley et al. 1999

GRBs emission - Fireball Model

Kinetic energy of the relativistic jet converted into radiation Mjet = 10^{-7} - 10^{-5} Mo, $\Gamma \ge 100$, E= 10^{48} - 10^{51} erg

Optical afterglows of on-axis GRBs

On-axis GRBs

5

10

15

20

25

30

Red magnitude

10

Time (days)

Observed GRB optical afterglows

Credit: Ghirlanda

Credit: Ghirlanda

Optical afterglows of Off-axis GRBs

Off-axis GRB

LONG bright GRB E_jet = $2e51 \text{ erg}, n = 1 \text{ cm}^{-3}$

LONG faint/ SHORT bright GRB E_jet = 1e50 erg , n=1 cm-3

SHORT GRB E_jet = 1e50 erg, $n=10^{-3} \text{ cm}^{-3}$

Modelled afterglows - Source at 200 Mpc

short GRB afterglows in numbers

- About 140 SGRBs detected since 2005
- Afterglow detection percentage : 90% in X-rays 40% in opt 7% in radio
- About 30 with redshift
- z_{min}=0.12 → 560 Mpc
- Energy =10⁴⁸⁻⁵² erg

Fong et al. 2015

Thermal-emission

Kilonova

Tidal-tail ejecta → r-process

Neutron capture rate much faster than decay, special conditions: $T > 10^9$ K, high neutron density 10^{22} cm⁻³

nucleosynthesis of heavy nuclei

radioactive decay of heavy elements

Power short lived RED-IR signal (days)

Li & Paczynski 1998; Kulkarni 2005 Metzger et al. 2010; Tanaka et al. 2014; Barnes & Kasen 2013

Shock-heated ejecta, accretion disc wind outflow, secular ejecta

- \rightarrow Weak interactions: neutrino absorption, electron/positron capture
- → Higher electron fraction, no nucleosynthesis of heavier element
- \rightarrow Lower opacity

- Kasen et al. 2015, Perego et al. 2014, Wanajo et al. 2010
- → brief (~ 2 day) blue optical transient

Most Elements above the iron peak are believed to be produced through neutron capture

The two extremes are

- s-process: neutron capture timescale is longer (slower) than the decay timescale
- r-process neutron capture timescale is faster (more rapid) than the decay timescale

basic reactions:

- a) n-capture: $n + (Z,A) \Rightarrow (Z,A+1)$ b) β -decay: $(Z,A) \Rightarrow (Z+1,A) + e + \overline{\nu}_e$
- Z=proton number N=neutron number A=mass number=Z+N

r-process

BNS and NS-BH mergers as factories of heavy elements in the Universe

Examples of r-process elements

Solar system abundances

Iridium Z= 77, A= 192

Platinum Z= 78, A= 195

Gold Z= 79, A= 197

Lead Z= 82, A= 207

R-PROCESS: ELECTRON FRACTION YE PLAYS DECISIVE ROLE!

"electron fraction"
$$Y_e = \frac{\# \text{ protons}}{\# \text{ nucleons}} = \frac{\# \text{ electrons}}{\# \text{ nucleons}}$$

 High temperature (as ~ 10 MeV) → copious e⁻e⁺ pairs that activate the WEAK INTERACTIONS

$$e^+ + n \longrightarrow p + \bar{\nu}_e$$
$$p + e^- \longleftarrow \nu_e + n$$

The e+ and v_e captures convert some part of neutrons to protons \rightarrow Ye increase

• High neutrino flux, neutrino-matter interactions \rightarrow Ye increase

$$\nu_e + n \longrightarrow p + e^-$$
 Neutrino-absorption

- $Y_e > 0.5$: no *r*-process
- ▶ $0.25 \leq Y_e < 0.5$: weak *r*-process
- $Y_e \lesssim 0.25$: strong *r*-process

Production of lathanides dramatically changes photon opacity

- no lanthanides: low opacity $(\kappa_{\gamma} \lesssim 1 \text{ cm}^2/\text{g})$
- presence of lanthanides: increased opacity $(\kappa_{\gamma} \gtrsim 10 \text{ cm}^2/\text{g})$

ΕЈЕСТА ТҮРЕ

i) dynamic a) tidal:

- equatorial
- cold
- low Ye~ 0.1
- -~1% Mo

b) shock-heated:

- polar
- hot
- higher Ye> 0.1
- ~1% Mo

ii) neutrino-driven winds

- polar
- higher Ye> 0.1
- -~1% Mo

iii) Secular

- isotropic
- broad range of Ye
- ~30% initial disk mass

~1 ms

~10-100 ms

~1s

From Rosswog et al. 2017

From Perego et al. 2014

From Siegel & Metzger et al. 2014

EM emissiom key ingredients:

- ejecta mass and velocity \Rightarrow astrophysics
- opacity $\kappa \Rightarrow$ atomic physics
- radioactive heating rate ⇒ nuclear physics

EM emissiom key ingredients:

- ejecta mass and velocity ⇒ astrophysics
- opacity $\kappa \Rightarrow$ atomic physics
- radioactive heating rate ⇒ nuclear physics

r-process opacity

- broader light curve
- suppression of UV/O emission and shift to IR

EM emissiom key ingredients:

- ejecta mass and velocity ⇒ astrophysics
- opacity $\kappa \Rightarrow$ atomic physics
- radioactive heating rate ⇒ nuclear physics

Credit: Rosswog@GWPAW2017

Geometry of the Ejecta

Courtesy of S. Ascenzi

Tidal Ejecta

unbound by hydrodynamic interaction and gravitational torques

Secular – isotropic

accretion disk matter unbound by viscous and nuclear heating

Red Macronova

Peaks at days - 1 week after the merger

Shock-heated

squeezed matss at NS contact interface ejected by remnant pulsations

Blue Macronova

Peaks at 1-2 day after the merger

Disk Winds

neutrino absorption or magnetically launched winds

longer-lived NS \rightarrow stronger neutrino irradiation

Cartoon picture

- "Winds", Ye ~ 0.3
- "weak r-process" (A <130)
- lanthanide/actinide-free
- moderately opaque \Rightarrow blue
- τpeak ~ 1 day

Kasen et al. 2015, MNRAS, 450

- Dynamic Tidal ejecta, Ye ~ 0.1
- "strong r-process"
- lanthanide/actinide
- very opaque \Rightarrow Red/IR
- τpeak ~ 1 week/10 days

Credit: Rosswog@GWPAW2017

Possible HST kilonova detection for short GRB130603B after 9.4 days (Tanvir et al. 2013, Nature, 500)

Examples of Optical kilonova ligth curves

Kilonova-Radio remnant

Significant mass (0.01-0.1 M_o) is dynamically ejected during NS-NS NS-BH mergers at sub-relativistic velocity (0.1-0.3 c)

Power KILONOVA
short lived IR-UV signal (days)

RADIO REMNANT

long lasting radio signals (months-years)

produced by interaction of sub-relativistic outflow with surrounding matter

Piran et al. 2013, MNRAS, 430 Hotokezaka 2016, ApJ, 831, 190

Kilonova-Radio remnant + Radio sGRB afterglow

Hotokezaka 2016, ApJ, 831, 190

Key role of the circum-merger densities

Hotokezaka 2016, ApJ, 831, 190

X-ray emission from the long-lived NS remnant

- X-ray afterglow radiation produced by spindown energy extracted from the NS prior to collapse, slowly diffusing through optically thick environment composed of a pulsar wind nebula (PWN) and outer shell of ejected material
- signal peaks at 10²-10⁴ s after the merger
- Iuminosities 10⁴⁶-10⁴⁹ erg/s
- mostly in the soft X-rays (0.2-10 keV)

Siegel & Ciolfi 2016, ApJ, 819, 14 Siegel & Ciolfi 2016, ApJ, 819, 15

X-ray emission from the long-lived NS remnant

ISOTROPIC

BRIGHT

0

LONG LASTING

Siegel & Ciolfi 2016, ApJ, 819, 14 Siegel & Ciolfi 2016, ApJ, 819, 15

Rowlinson et al. 2013

The plateaus can be explained with the spin-down of magnetar or SMNS

"X-ray plateaus"

- Plateaus are found in a large fraction of long GRB X-ray light curves
- Possible evidence of ongoing central engine activity

Rowlinson+2013 found that ~50% Short GRB X-ray afterglows show a plateau phase in their light curves

NS-NS merger EM-emissions

BH-BH mergers \rightarrow EM emission

Stellar-mass BH mergers are not expected to produce detectable counterparts, due to the absence of baryonic matter (no NS tidal disruption → no accreting material)

Some unlikely scenarios that might produce unusual presence of matter around BBH:

- from the remnants of the stellar progenitors (Loeb,2016; Perna et al., 2016; Janiuk et al., 2017)
- the tidal disruption of a star in triple system with two black holes (Seto & Muto, 2011; Murase et al., 2016)
- enviroment of binaries residing in active galactic nuclei (Bartos et al., 2017; Stone et al., 2017)