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Gravitation, do we still need to study it?

* All the lessons on this schools you had until today are substantially
based on the “other 3 fundamental interactions”:

* Weak, Strong and electromagnetic
e Gravity is the “oldest” interaction described in our books

* Hypothesis, models and theories about the “force” is bonding us to
the Earth have been formulated since thousands of years

* Here we focus on the “last two steps”
* Newton & Einstein



Do we really know gravity?
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F — _G G. Rosi et al., Nature 510, 518-521 (2014)
’/' 2 e E NIST-82 torsion balance
e i TR&D-96  ftorsion balance
I—;.—| LANL-97 torsion balance

— CODATA 1998 —

* Despite the fact that the first r Mash00 trson balance
measurement of G has been made by T emm—
Cavendishin 1798, the G value is |—|-—| CODATA 2002

poorly known et ot
* The comparison with the other [ P
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CODATA 2014

TABLE I An abbreviated list of the CODATA recommended values of the fundamental constants of physics and chemistry
based on the 2014 adjustment.

Relative std.

Quantity Symbol Numerical value Unit uncert. ur
speed of light in vacuum c, co 299 792 458 m s} exact
magnetic constant L0 41 x 1077 N A2

= 12.566 370614... x 1077 N A™? exact

electric constant lf,ugcp‘ €0 8.854 187 817... x 10712 Fmt! exact
Newtonian constant of gravitation G 6.67408(31) x 10~ m® kg~! 572 4.7 x107° —
Planck constant h 6.626 070 040(81) x 1034 Js 1.2 x 1078

h/2m h 1.054 571 800(13) x 1073* Js 1.2 x107%8
elementary charge e 1.602176 6208(98) x 10~ C 6.1 x 107°
magnetic flux quantum h/2e &g 2.067 833831(13) x 1071° Wb 6.1 x 1077
conductance quantum 2¢2/h Go 7.748 091 7310(18) x 105 S 2.3 x 10710
electron mass Me 9.109 383 56(11) x 10731 kg 1.2 x 1078
proton mass mp 1.672621898(21) x 10727 kg 1.2 x 1078
proton-electron mass ratio mp/me  1836.152 673 89(17) 9.5 x 1071
fine-structure constant e*/4meohc a 7.297 352 5664(17) x 1073 2.3 x 107

inverse fine-structure constant a~! 137.035 999 139(31) 2.3 x 1071
Rydberg constant o>mec/2h R 10973 731.568 508(65) m~! 5.9 x 10712
Avogadro constant Na, L 6.022 140 857(74) x 10 mol ™! 1.2 x 1078
Faraday constant Nae F 96 485.332 89(59) C mol~! 6.2 x 1077
molar gas constant R 8.314 4598(48) Jmol ' K=!  57x1077
Boltzmann constant R/Na k 1.380 648 52(79) x 1072 JK1 5.7 x 1077
Stefan-Boltzmann constant

(2 /60)k*/Rh3e? o 5.670 367(13) x 10~° Wm?K* 23x107°
Non-SI units accepted for use with the SI

electron volt (e/C) J eV 1.602 176 6208(98) x 10~ J 6.1 x 1077
(unified) atomic mass unit 15m(*>C) u 1.660 539 040(20) x 107" kg 1.2 x 1078
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s really F o< 727

* Let use the Gravitational potential : ¢(’”) =-G—

M »
* Let suppose to have a modification according to a ¢(r) = —G—(l + e /ﬂ)
Yukawa-like interaction N r

e Aisthe Compton wavelength
of the interaction boson
(“graviton”):

17

A=

m C ' D.M. Lucchesi
g {CSN2 2 '0 16). Lmlar Prece

precision

Reterence: Coy, Fischbach, Hellings, Standish, & Talmadge (2003)



Gravitational Potential of a mass distribution

* Let consider a continuous distribution of mass having density p(x’). To evaluate the value of the potential ¢ (x)
in a point X external to the mass distribution:

¢(55):—J G'P(X')dsx, ¥

gl

X

—

« Being X external to the mass distribution, we can Taylor-expand 1 / | | in multi-poles around x" = 0 :

xX—xI
1 1 1 xkx'k 1 v ) xkxl
e =—+ +—> Bx"x" —r""o + ...
X=X \/(x—x')2+(y—y’)2+(z—z’)2 r Zk: 7 2;( ") 5

r
«  Where x!23=x,y,zand r=4/x>+y* +2°

» The gravitational potential becomes:

k1
pF)=-M G5 up Oy oury,
Fk 2 k.l

r 4




Quadrupolar terms of the gravitational potential

where: M = jp(x')d3x' D" = jx'kp(x')d3x' le = j(3x'kx'l — r'25lk )p()_é')d3x'
v v v

Note: it is possible to find a reference system where the center of mass terms (dipole) D
vanishes

If the quadrupolar terms of the mass distribution are QX=0, a term ocr? in ¢(xX) (r* in force)
remains.

Earth has a difference between the polar and equatorial diameters of 3x10-3 and this impacts
on the orbits of the satellites (precession of the orbits)



Distance in 3D

* In Newtonian physics, space and time are independent and the
distance is defined by Pythagora’s formula:

dl’ =dx’ +dy> +dz" (space interval)
dt’ (time interval)

1 0 0)\fdx
di’ =dx’ +dy’ +dz* = (dx dy dz) 0 1 Ofdy
0 0 I)\dz



Distance in 4D flat space

* In Special Relativity we have a 4

dimensions space-time: -1 00 0)fcdt
ds’ =—c’dt’ +dx’ +dy’ +dz>  (space-time interval) ds® = (cdt dx dy dz) 0 10 0)dr
0O 0 1 O} dy
0 _ 1 _ 2 _ 3 _ 0O 0 0 1)ldz
X =ct, X =X, X =), X =Z
-1 0 0 O
S O 1 00 Metric tensor or Minkowski tensor. It defines the metric of a flat space-time
o o0to e ds? < 0 timelike interval: 2 events could lie on the worldline
0 0 0 1 (trajectory) of a material particle. In SR (and in Newtonian

physics) the worldline of a particle which is not being acted by
any external force is a straight line

3 3
ds’ = ZZU dx"dx’ = n dx“dx’ < * ds*® > 0spacelike interval, 2 events cannot lie on the worldline
HY HV of a material particle

« ds? = 0 lightlike; 2 eventsts could be in the worldline of a
photon

—



Curved space-time

* Let generalise the metric of the space-time:

8w &n 8w & |[cdt
o & &n 8&s | dx
o & 8&n 8&xl| dy
o &1 & &)\ dz

dszz(cdt dx dy dz) =g, dx"dx’

* In General Relativity (GR) gravity manifests itself as spacetime curvature
* Trajectories (worldlines) of particle which are not being acted upon any non-gravitational force are
generalised to curved path named geodesics.

* The correct mathematical definition of a geodesic goes beyond the complexity level of this
course (spacetime curves that parallel transport their own tangent vectors), but we can easily
define a geodesic as the extremal path:

* Along a geodesic between two events E, and E, the elapsed proper time is an extremum:

3G+LISA-1 10



Curvature of the spacetime

* The curvature of the spacetime is revealed through the deviation of
neighbouring geodesics

Sphere: positive intrinsic ~ Saddle: negative intrinsic
curvature. The geodesics  curvature. The geodesics
converge diverge

* The acceleration of the deviation between neighbouring geodesics is the signature of
spacetime curvature due to the presence of a non-uniform (tidal) gravitational fields

3G+LISA-1 11



Geodesic deviation in Newtonian gravity

* Let jump back for a while to Newtonian Gravity

&(t) is the separation between the two free falling particles particles in P, and in P,

Pl 5() [)2

f(t) — §0 — k Similar triangle — k is a constant \\, 50 /
r(t) 7 )

. . () GM
=kr(t)=-—

s(O)=kr(t)=—- o 70

Considering r(t)=Rg, =R and making an arbitrary change of
variable t—>ct:

Using Newton law

d’é __ GM
d(Ct)z R3CZ

To understand the meaning of the above equation let consider a 3
dimensional space time (a sphere of radius a)

S



Intrinsic curvature

e Consider the geodesicsin a
spacetime represented by a
sphere of radius a

* A bit of trigonometry:
E(s)=adpcosO=¢, cosO =, cos—
a

0 latitude

d2§ 1 Comparing with the last formula in d¢ longitude differepice
e = — 3G the previous page
GM ) 1
M)
a = [a] — GM — [[] Hence, a represents the radius of curvature of the spacetime.
R’c’ R
Let compute the radius of curvature of the spacetime deformed by the Earth gravity field:
R=6.3x10°m

g =2%x1011m The spacetime is rather flat around the Earth (weak gravitational field)



Einstein Equation of field

* The correct derivation of the Einstein equation goes beyond this course, but we can
try to approach starting from the (differential) Gauss law for the Newtonian
gravitational field -

V-g=—4rGp

* We stated that in GR the presence of an non-uniform gravitational field is revealed by the
acceleration of the divergence of the geodesics:

* In the left side of a relativistic equation must appears an operator O of the metrics g ., related to the
curvature of the spacetime

* In the right side must be appear something related to the mass, generating the field. It cannot be the
mass itself, but it must have a invariant form: T, , the energy-momentum tensor of the matter

877G

T (A.Einstein 1915)




Einstein Equation of Field

StG
Effect of the deformation G — T Cause of the deformation
Hv C‘4 v
S1G
—43 1
~2x]10 N
C‘

* Comparing (naif interpretation) the Equation of fleld to an elastic equation, we can see
the space-time as a very stiff elastic medium (k,;~ /SnG)
* Very energetic phenomena, determine small curvature of the space-time

* To solve the Einstein equation is an hard task
* They are a set of highly non linear equations:

Knowing or imposing the metric g, it is possible to compute I v and then, obtaining T, determine
the spatial and temporal dependence of physical parameters like den5|ty or pressure of the system

But the way back, from T, to the metric of the space-time is usually intractable

Luckily, far from heavy masses the equation of field can be simplified (linearized) in the weak field
approximation (A.Einstein 1916).



Weak gravitational fields

* The spacetime is flat in absence of gravitational field:

* In presence of a weak field we can define a nearly flat space time, a spacetime where we can
find a coordinate system (called Nearly Lorentz) in which the metric has components

g =n +h
uv v )75 %
where: n o= diag(—l,l,l,l) and

u

h |<<l1

* The “secret” to solving tensor equations in GR is, often, to choose the right
coordinate system where the equations appear relatively simple

* Not all the systems in a weak field approximation have the above simplified
expression and the first target is to find the right coordinate system:
* When one system is found an infinite class is found thanks to the coordinate

v

transformations:
e Back dL tz t f ti Once we have identified a “nearly Lorentz” coordinate system,
ackground orentz transtormations we can add an arbitrarily small vector £% to the coordinates x“

* Gauge transformations without altering the validity of our assumption that the space is
nearly flat




Linearized field equations: GW

* The computation of the linearized field equation and the derivation of the
gravitational waves (GW) is beyond the level and the time of this course, but
you can use

* [1] Michele Maggiore, Gravitational Waves. Volume 1, Theory and Experiments, Oxford
University Press

e [2] Bernard Schutz, A first Course in General Relativity. Cambridge
* [3] Hans C. Ohanian, Remo Ruffini, Gravitazione e Spazio-Tempo, Zanichelli

* Here we highlight just the results and some important intermediate step
* |In case of weak field the Rieman tensor (“the curvature”) becomes (at the first order in
hyy):
R, .= (aah +0,0,h,,—0,0,h,—0,8,h,)

pvpo v p tuc p-ovp - p've vZo up



Gravitational Waves

* We select the so-called Lorenz or Hilbert gauge: a‘/l?w =0

— 1

* Where we defined  wace(h,, )=h=n"h,  and h,=h,——n,h

2
* The Einstein equation of field becomes:

c® ot

* Where o is the flat space d’Alambertian 0=7,0"¢"=0,0" =(—L26—2+V2j

* If we are far from matter 7,,,, = 0: th =0

N
4




S 1 o
Gravitational waves (—C—§+V]hﬂv 0

e This is the equation of a wave propagating at speed c: the metric perturbation
propagates at the speed of light. This is an effect of the Einstein theory of the GR.
Other gravity theories obtain a different speed propagation of the perturbation
(massive graviton).

* Note that g,,,and then h,, is a symmetric tensor, that corresponds to 6 conditions
h,,=h,,per u # v. Hence only 10 of the 16 components of h,,,, are independent

* But the Lorenz gauge aVEW = 0 imposes 4 conditions: the independent
components of h,,, are now 6

* The Lorenz gauge doesn’t fix completely the gauge and the condition aVEm, =0is
not spoiled by a further coordinate transformation x* — x* 4+ (¥ with Dgﬂ =0

* We are building the Transverse Traceless (TT) gauge

=0 , K.=0 , &'h =0




Polarisations of the GW

* We were arrived to 6 independent components of h ,, thanks to the Lorenz
gauge. The choice of the TT gauge tells us that, thanks to the 4 additional
conditions the independent components of h , are 2.

 The GW (in GR) has 2 polarisations!
* The equation Dhﬂv = (0 has plane wave solutions:

h;T (x) — Re{gl.j (k)eﬂ“} with k* = (w/c. k) and @/c = |K|

* The tensor Sij(k) is called the polarisation tensor. Thanks to the TT conditions,
the only non-null components of hl-TjT are orthogonal to the direction of the
propagation vector 1 = k/| k|



Polarisations of the GW

* Choosing z as direction for the propagation 71 and imposing h;; to be symmetric and traceless:

(h, h, 0)
h' (t,z)=|h  —h 0 cos[a)(t—%ﬂ
0 0 o)

. . h,
Or more simply |57 (¢, 7) = (h h L Cos[w(t_%ﬂ

 Where a,b=1,2 are indices in the transvers plane (x,y)
* h, is the plus polarisation and h, is the cross polarisation



Effect of GW on free particles

* Let suppose to have a free particle in a wave-free region of spacetime

* Let chose a Lorentz frame where the particle is initially at rest:
 four-velocity u#* = % = 5# = (1,0,0,0,0)

d’x* o d*x" d*x”

* Let write the geodesic equation: n
dr’ Yode? dr’

=0

Where 1 is the proper time. This is the classical equation of motion of a test mass in the
curved spacetime described by g .

du”

* In terms of four-velocity: +T8u'u” =0

* If the particle is initially at rest (u# = 5”)

du” |
[ 0 ] Z—Fffp v=0 2—577# (Qﬁm +6ph —aahvp)
0 p

=0 p=0




Effect of GW on free particles

. ;1
¢ ReplaCIng V,sz 1_‘()o 25(2601’101. _8ih00)

* But this term vanishes because for the TT gauge are h,, and h,, chosen zero.
* This as a crucial effect:

In the TT frame, particles that were at rest before the
arrival of the wave remain at rest even after the arrival of
the wave

* That means that the coordinates of the particle don’t change:
* The wave has not effect? Is not possible to detect it?

* No, itis an effect of the (correct) choice of the coordinate system
* The particle remain attached to the initial coordinate position

* But coordinates are merely frame-dependent labels and they do not directly convey any
invariant geometrical information about the spacetime

3G+LISA-1 23



Effect of GW on free particles

* But, let compute the proper distance between two nearby particle, initially
both at rest

* Let suppose one particle at the origin of the coordinate system and the other
at x=a, y=z=0

* The proper distance is
Afzﬂg(w dx“dxﬂ‘% =I g.. % z\/gxx (x=0)-a

0

Being: £, (x = 0) =1n.t h;T (x = 0) We obtain:

1 Coordinate distance:
Proper distance: Al = |:1 + —h)gCT ()C = O) -

unchanged
changing 2 ©

This is a crucial result: the proper distance between two test particle is what the GW
detectors are measuring

3G+LISA-1 24



Ring of test particles: passage of a GW

T
& o == O -+ Polarisation
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* If we have a pure “+” polarisation wave, propagating ¢° ) h Y
along z, the mass distribution undergoes to a Tt s e e
deformation described by the upper part of the
above panel e

* In case of a pure “x” polarisation, the deformation is R
described by the lower part of that panel . h>< .
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What we have to measure?

* Let suppose to have a pure “+” wave entering in the
screen

* We have to measure a quadrupolar distance modulation:

1 il 5 -
,-a'""r T~
~ e
¢ » Q
/ b 3
! L ’ o
i \ o
| 0
— | L )
| las e : 1 3
\ I pest 3
\ i Ml il% 5
\ = !
\H ; _..-'f
" L -~
L. s

III

A Michelson interferometer seems a “natural” choice



mirror

w 2T
Laser o, -20-"
¢ L mirror

beam
splitter

E(t, x) — Eoe—ith+ikL'x

photodetector
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E(t, x) — Eoe—ith+ikL'x



(0 — g 2 exp {—iwpt?} wmp exp{—iwrt +2iks L.}
(0 _p 2Ly o {_;g_mgvi'} == oxp {—iwpt + 2ikL,}
(i

o

t =t +2Ly/c

—

t =t + 2L, /c

E(t, x) — Eoe—ith+ikL'x

3G+LISA-1
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1 . .
El(t, O) — EEOe—LwLHZlkL-Lx

3G+LISA-1
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Why here p here is positive?

HR coating

=3

1 . .
Ez(t, 0) — _ EE'Oe—la)Lt+2lkL'Ly

3G+LISA-1 32



* The total electric fieldis E,,; = E; + E;, —

Emra‘ — 'EI'E[]' E_EMLH_M.L[LJ.+LH} S [’T‘:L(LH o L,H

E,u|* = EZsin®[kr(L, — L,)]

kL I, L AL
b= Felly = Lo) = L= = 2m T

3G+LISA-1
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In the TT gauge the coordinates of the mirrors are not
affected by the passage of the wave

mirror

w 2T
Laser o, u-22-7
mirror

beam
splitter

E(t, x) — Eoe—ith+ikL-x

The effect of the GWs is manifested
in the fact that they affect the photodetector
propagation of light

3G+LISA-1 34



* Let’s take a GW with ‘4’ polarization, propagating
along z

* In the plane of the IFO (z = 0) we haveh . (t) = hgy cos(wg,t)
and the space-time interval is
ds® = —c2dt* + [1 + ho(t)]dz® + [1 — ho (b)) dy? + dz*
* Photons travel along null geodesics ds? =0
* In the x-arm we have
ds* = —c*dt* + [1 + h.(t)] dz* = 0

cdt* = [1+ h(t)] da”

dx

& _ 1
— + \/1 0 dt ~ +cdt [l — §h(t)]



* A photon leaves the beam splitter at time t,
It reaches the mirror at the fixed coordinate x = L, at

time t, L, H |
/ dr = +c / [1 - —h(t’)] dt'
J () J 1 2

c [h
L, = c(t; — to) — 5 / h(t)dt’

J 1

* Then the photon is reflected back and reaches again
the beam splitter at time t,

0 t 1
/ dr = —c / [l — —h(t’)] dt'
Jr, Ji, 2

o

c [P
L:z‘ — C‘.(tg — tl) — E / h_(t',) dtf

J 1



* Summing we get

oL, 1 [t
to — tg = . +§/ h+(t)dt
{

0

. . 2L,
* In the integral we can approximate ¢, ~ 1ty + —+ O(ho)

QLT 1 to+2L, /e
to —ty = -+ —/ ho cos(wy,t') dt’ =
t

C 2
2L, hg
-+

0
C 2W g

{Siﬂ [w,gﬂ-'(t[} + QL’I/C)] T Sin(wgu.'t[})}

* Since sin(a + 2) — sina =2 sin f cos(a + ) we
can write

2L, hoL, sin(w,,L.,/c
to —tp = + a ( J / ) CcOS [w‘gu_.(t[} + LT_/C)]

C C (wgu.'L:r/C)
2L, L, sin(wgw L, /c
Efz —typ = + —h(to+ L./c) Woule/ )J

C C (wgru.'L:r/C)
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* In the y-arm the analysis is similar and we get

tQ — t[} — U@ h t[} + LT}/C ﬂlﬂc(wm, T}/‘C)

/

* We are interested in the light that comes out of the
IFO at a given time t

* We fix t, = t and compute the corresponding values
of t, for the two arms: t,%) and t,¥)
() 2L, L,

ty =t—————~h(t — L,/c)sinc(wyyL,/c)
) :

L, :
- 4+ ?” h(t — L,/c)sinc(wgu L,/ c)

where, at first order in h, we have set (a = x, y)

h(to+ Lu/c) = h(t —2L,/c+ Ly/c) = h(t — L,/c)

(¥) QLv




* The light that is at the beam splitter (x = 0) at t = t,¥
has phase exp {—ithéx)} SO

1 (@) 1 ’ o
E{:r]l N — _F E_E‘-‘-"Ltﬂ' __F E—zwL(t—QLx/c]l—l—z&q?)x(t]
() 5 o 5 Eo

with

wr L,
Ay (t) = hg—

- sinc(wgy L/ ¢) cos [wew(t — Ly /)]

 Similarly for the y-arm we have

1 L ly) 1
E(y] N — __F —iwrty ——Fe —wp, (t—2Ly fc) + 1Apy(t)
(t) = =5 Ee 2
and
. L-L)LL
Apy(t) = —ho——= sinc(wywLy, /¢) cos [wyw(t — L, /c)]

C

3G+LISA-1
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* In general we build our detector to have L, = L, in
order to cancel common noise in the two arms

. er + Ly er‘ My
Sincewehave Lo=—F— +—5— =L+0()

in Ag, and Ag, , which are already O(h), we can
replace L, and L, by L
2Ly 2Ly

* Inthetermst ——and t — — we need to take into

C
account the difference between L, and L,,.

We write 2L, =2L+ (L, — L,)
oL, = 2L — (L, — L)



e Then

E(:‘r)(t) _ %EDE—’E.LL:L(t—?L;’c}—l—i(ﬁru—l—i&qﬁr(tj

EW(¢) _% Eye—wn(t=2L/c)=id0~io()

* with ¢g = k(Ly — Ly) and

Ap="h, k, L sinc(a)gWL/c)cos[a)gW (t —L/C)] _

= 2ﬂﬂ£sinc[2ﬂ%] - h, cos[a)gw (¢— L/c)}

L aw

* Note the function «sine cardinal»:

3G+LISA-1

sin[27zfj
sinc(Zﬂ L ]z =
/’ng

aw
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Blind at some frequencies

sinc[27z

sin 27ri
L ]_ Ao
A
j“gW

A, =2L/n
S = n(c/2L) ’

* Virgo L=3000m
e First zero at 50kHz

£ ",
o N
1.73 I\|3.?'I3 5,79/ 7,82 . 9.85 11,88 13,91 5,94 1?.9?/;.4;’
[ I A | | |

R E—— T ' N - ' \I\“/I/
|II ."l- ,
7 \_/




Going back to the difference of phase:

L .
A¢ =2 —sinc 272/1— - h, cos[a)gw(t—L/c)}

L

gw

Going back to the difference of phase, considering the quasi static approximation A, >>L:

A¢z27z1£~h(t—L/c):1.9x10m -h(t—L/c)

L

Comparing this expression with the difference of phase for arm length difference (slide 11)

we have:

A¢z27z£~h(t—L/c)
ﬂ'L
L —L
¢o =2r L . :
PR

N

—> A(Lx—Ly)zh-@

We need giant detectors



The total electric field at the output is

Eiot(t) = E(T}(t) + E{y](t) = E'EGEi“‘"’:':m'r‘

adjustable parameter(dark fringe)

The total power P~|E,|* at the photodetector is

GWs

P,
P = Pysin? [oy + Ao(t)] = ED {1 —cos[2¢y + 2A0(t)] }

We need to maximize Ag. The amplitude of A¢ depends on L trough

L A\, L A
|A| ~ ——=sin | 27 — P sin | 27
)\L L Agu.l )‘L

The optimal arm length is given by

3G+LISA-1

L
Aguw
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* Interms of f,,, = wgy, /(21) this gives

[LN?’iﬂkm(

100 Hz )}

f';]’?i

e Quite difficult to realise on Earth ... we need a trick! (on space we need different

solutions)

(a)

im
/ '):' \
\

mirrors

--(ifcﬁf;

delay line

gap in

I| |I II |I /r mirror
I

baam

eplitter

N=3 pazs delay line

3G+LISA-1
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ETM

M =]
ITM ETM

—san H

splitter

“w'?
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Fabry-Perot

« A Fabry-Perot cavity is realized with (at least) two mirrors:

E, My M,

laser >

<
<

- Eyn

& 3
< >

* Each mirror is has deposited an high reflectivity coating (HR) having an amplitude
reflectivity coefficient r, ,.

* For each of the two substrates (plus coatings) is defined an amplitude
transmission coefficient t, , and absorption a, ,. We have:

2 2 2 . 2 2
Lt ta, =1 Neglecting losses: o+, =1

Let suppose to imping a laser light (plane wave Eeix-ob)
The first mirror reflects a fraction —Er, of the impinging electric field



... Fabry-Perot (2)

M, M —~ikL
laser > > >
_E <
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A
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—i3kL
. » Eott,nne

\ 4
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Etnr e g

A
A

—iSkL

»
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* A fraction E,t; of the impinging beam enters in the cavity
 Let follow the beam ...

« Summing up all the components, we compute the cavity amplitude transmission
and reflection coefficients:

o0 —ikL
__E;__ —ikL no 2inkl tJﬁ?
I =—=1(1,e (rr) e = -
c E 172 1" 2 1 —2ikL
0 n=0 —nr,e
—i2kL
E . . tte"
2 —12kL n- _2inkl
y =—L =—rl+tre’ E(rr)e’” ——y 4+ —12 .
C E 1°2 12 1 1 —2ikL
0 n=0 —hhnhe

3G+LISA-1 47



FP - Resonance condition

* The field in the cavity (at x=0) is

E (O) _ Eoe_iwttli(l’irz )” e—2inkL _ tl E e—ia)t

—2ikL "0
o l-rre

* The field in the cavity is maximum when

2kL = 22772-14 =2nrt =1L = ni Resonance condition

2

* At the resonance, also the other fields are quite interesting:



Fig. 3.4 Example of how 20

the power stored inside a 3 .
resonant Fabry-Perot cavity ! ! dLHWHM = ;—5‘. The power IS sto red
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Fig. 3.5 Example of the reflection of a Fabry-Perot cavity as a function of the detuning from

resonance. The cavity considered here
(large) round-trip losses of 200 ppm

has the same parameters used for Fig. 3.4, plus additional
3G+LISA-1
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0o

We are interested to —: we are blind far the resonance, but

ox

extremely more sensitive (with respect to a Michelson) around
the resonance
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Where F is named Finesse and its is
defined through the transmitted power
(t1t2)
E’ = E?
2 "1 4 (ryr9)% — 2779 cos 2k, L
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Free spectral range
|
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Response to the GW passage

* We seen that the FP amplifies the response in Ap with respect to a
Michelson:

* Its response to a GW is roughly corresponding to the response of a
Michelson having the arms 2F/w longer

* This is true at the first approximation, but we need to consider the storage
time and the low pass filtering behaviour of the cavity:

F 1

AQ| ~hy2k, L

reson

U

where —

" d4nr, 4FL
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Building Advanced Virgo
Emn(x,y,z,t):EO& W [\/Ey) v [\/Ezj.ei(mnﬂ)go e_ikJ;RJZc) e—i(kx_a,t)

Wﬂ "\ ()

Gaussian beams

Dark fringe ... all the power goes back to the input port

3G+LISA-1 -



Building Advanced Virgo
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Free falling masses

* We worked until now in the hypothesis to have free falling masses
* The mirrors should be subjected only to gravitational forces, in order to move on
geodesics .... Butis it true?
* How is it possible to realise free falling mirror on the Earth?

* Mirror suspended through a pendulum:
* For small oscillations, in the horizontal direction, the mirror is (in principle) free
* Obviously vertically is constrained by the suspension to “avoid a true free falling” damage

* But we need to suppress (in the detection frequency range) all the spurious
forces acting on the mirrors



“Fundamenta

|Il

noises

Quantum noise

* Low-freq:

newtonian noise, seismic
noise, residual technical
noises, suspension thermal

oo | — Cravity

Joo- —SLJEDEF\?«IC'H thermal noise

noise

* Seismic, Newtonian,

Optical read-out,
thermal noises are
(arbitrarily) called
fundamental noises

Strain [1VHZ]

10

Gradients

Coating Brownian noise
Coating Thermo-opftic noise
Substrate Brownian noise
Excess Gas

= TOtal noise

e e e e e e N e o e e

i = Mid-freq:
| thermal noise | ;I; i

L=

_| = High-freq:
| qguantum shot-noise

10

3G¥LOSA-T 107

1 0458



Noise budget

° But’ in effect’ We a re fighti ng 1018 S'ERAIN NoisgBudlgeF; gps= ‘1]259507‘689‘ (2919-!1?th]l 15:14!:31 l‘.IT(!:)E
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ENV
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Building Advanced Virgo
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Jumping in Space (LISA) AL =~ h- L

* In space, the length limitations (due, for example, to the curvature of the
Earth) are naturally solved:

* LISA project, 2.5 X 10°km arm length /
* 50 X 10°km away from Earth |
e Each vertex is an active transpondet:

e A 1064 nm stable laser transmits
watt from each vertex

* Due to beam divergence ~100 pW", —
arrive to the next satellite, where fre
power is emitted by a new laser, phase-
locked with the incoming beam

* Combining “offline” the 3 independent arms it is possible to build-up three
interferometric signals:
e 2 Michelson Interferometers (=2 polarisations)
* 1 Sagnac Interferometer (null stream)

3G+LISA-1 61
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LISA Pathtinder
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Sensitivity

Characteristic Strain

http://gwplotter.com/
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Emission of GW

* Let restart from the linearized theory. The equation of field in this case is

— 167G 167G
th:_ c4 TWZKTW where K= C4

* T,y is the energy-momentum tensor, it respects flat space conservation energy
condltlon 0"T,, = 0 and we are in the Lorentz gauge 0*h,,,, = 0. Let suppose to be

in a flat space approximation, far from the source that is generating GW and having
slow variations v/c<<1:

* The equation of field can be solved using the retarded potentials like in EM: .

* Introducing again the quadrupole moment

0" = j3x x' —r'25,k)p(5c")d3x'



Emission of GW

* and arresting the series to the quadrupole term we obtain:

ko1 12G 1 .
Rlr— Z}T(f—'”/c)=;c—4§ o (t=r/c)

1.6x10%* m-1kg1s?

1/r

* The amplitude of the generate GW decrease linearly with the distance of the
source (remember, GW detectors reveal the amplitude)

* Only sources having masses accelerated with (at least) a quadrupole moment non-
null generate GW

* The very small coefficient requires large (astronomical) masses and huge accelerations

* Why not monopole emission? - forbidden by mass conservation principle

* Why not dipole emission? - forbidden by momentum and angular momentum conservation



Luminosity
* The energy emitted (luminosity) by the accelerated masses is:

dJE G o -
. le le

o dr 45¢°




Quadrupolar radiation from a binary mass system .7
in circular orbit

* Let suppose to have a system of two point-like masses, having
mass m, and m,, orbiting at frequency ®

* |If we define 1 the inclination angle of the orbit wrt the sight direction and u =
m;m,/(m; + m,) the reduced mass the amplitudes of the emitted waves are (first

term PN approximation — series development in terms of (E))

5 2

ol w

5
3 3 - 1/ 5 1 c3 \8
4 (GM.\3 (1fg,(t 31+ cos?i N
hy(t) = ;( CZC> ( fgwc( ret)) > cos(P(trer) ) Jow (o) n<256ro) (GMC)
2 z Chirp mass:
4 (GM\3 (Tfow (trer)\3 o 3
hX (t) = ;< C2C> < gWC ret ) CoS i Sln(¢(tret)) MC _ M%M% _ (m1m2)5 :
(my; + m,)5

my =m, =14M, =1.4-(2:10"kg)]

2

r =10MPc=10-10° -(3-1016m) s ha15x102 —L AL=h-L=AL~5x10" @100Hz
100Hz

R =50km




Chirping waveform: Standard sirens!

The frequency sweep univocally identifies the (chirp) mass

The amplitude defines the luminosity distance:
e Standard eandles sirens!
. merger phase
In effect is more complex: inspiralling phase numerical relativity
. . . r- . . . ] ) post-Newtonian theory
e Chirp mass identification is ambiguous because of the signal red-shift .

 Amplitude measurement is entangled with orbit plane orientation

* Merging and ringdown phases need numerical relativity & BH perturbation
theory (or EOS of NS)

1.x10721

5 x10722 |

ringdown phase
BH perturbation

/ theory

I

GW amplitude

2" Close to merger, the
m, =m, = 1.5 Mg~3 x 10%° Kg s © to mersen &
* | = quasi-circular motion

assumption is no
longer valid

-0.25 -0.20 -0.15 -0.10 -0.05 0.00
Time
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T nnnunwnvnnnnnnnnnnmm

I
WLkt

i
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Detector acceptance: antenna pattern

* Interferometric GW aren’t isotropic in their acceptance

* For example if a wave arrives along the detector plane with
45 degrees wrt the arms, the detector is blind

* In general the detector (xy) measures a combination of the

two polarisations according to the formula
1 2
. (0,0) =3 (1 + cos 6') cos 2

2
h=Fh +Fh  F (0,p)=cosfsin2¢

N

{

|
=

W
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Sources of GW

* We seen that to generate a GW we need a system of large masses accelerated
with a quadrupolar component
* Binary systems:
 Composed by black holes (BH-BH)

 Composed by Neutron Stars (NS-NS)
 Composed by a BH and a NS (BH-NS)

* |solated NS
e Supernova Explosion (Sne)

* Let see (some of) these sources through the LIGO-Virgo detections and the
perspectives on the 37 generation of GW observatories
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