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Gravitation, do we still need to study it?

• All the lessons on this schools you had until today are substantially 
based on the “other 3 fundamental interactions”:

• Weak, Strong and electromagnetic

• Gravity is the “oldest” interaction described in our books
• Hypothesis, models and theories about the “force” is bonding us to 

the Earth have been formulated since thousands of years
• Here we focus on the “last two steps”

• Newton & Einstein
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Do we really know gravity?

• Despite the fact that the first 
measurement of G has been made by 
Cavendish in 1798, the G value is 
poorly known

• The comparison with the other 
“fundamental” constants in physics is 
impressive

G.Rosi (Magia atom ITF)

𝐺𝐺(10−11𝑚𝑚3𝑘𝑘𝑘𝑘−1𝑠𝑠−2)

G. Rosi et al., Nature 510, 518-521 (2014)
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Is really 𝐹𝐹 ∝ 𝑟𝑟−2?
• Let use the Gravitational potential

• Let suppose to have a modification according to a 
Yukawa-like interaction

( ) Mr G
r

φ = −

( ) ( )1 rMr G e
r

λφ α −= − +

• 𝜆𝜆 is the Compton wavelength 
of the interaction boson 
(“graviton”):

gm c
λ =


D.M. Lucchesi 
(CSN2 2016)
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Gravitational Potential of a mass distribution 

• Let consider a continuous distribution of mass having density ρ(x’). To evaluate the value of the potential 𝜙𝜙 𝑥⃗𝑥
in a point 𝑥⃗𝑥 external to the mass distribution:
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• Being 𝑥⃗𝑥 external to the mass distribution, we can Taylor-expand �1 𝑥⃗𝑥−𝑥𝑥𝑥 in multi-poles around 𝑥𝑥𝑥 = 0 :
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• Where x1,2,3=x,y,z and 222 zyxr ++=

• The gravitational potential becomes:
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Quadrupolar terms of the gravitational potential
• where: ( )∫ ′′=

V

xdxM 3ρ ( )∫ ′′′=
V

kk xdxxD 3ρ ( ) ( )∫ ′′′−′′=
V

k
l

lkkl xdxrxxQ 323 ρδ

• Note: it is possible to find a reference system where the center of mass terms (dipole) Dk

vanishes 
• If the quadrupolar terms of the mass distribution are  Qkl≠0, a term ∝r-3 in 𝜙𝜙 𝑥⃗𝑥 (r-4 in force) 

remains.
• Earth has a difference between the polar and equatorial diameters of 3×10-3 and this impacts 

on the orbits of the satellites (precession of the orbits)
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Distance in 3D

• In Newtonian physics, space and time are independent and the 
distance is defined by Pythagora’s formula:



 ++=

2

2222

dt
dzdydxdl (space interval)

(time interval)

( )2 2 2 2

1 0 0
0 1 0
0 0 1

dx
dl dx dy dz dx dy dz dy

dz

  
  = + + =   
  
  
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Distance in 4D flat space 
• In Special Relativity we have a 4 

dimensions space-time:
2 2 2 2 2 2ds c dt dx dy dz= − + + + (space-time interval) ( )2
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0 0 1 0
0 0 0 1

cdt
dx

ds cdt dx dy dz
dy
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−  
  
  =
  
  
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Metric tensor or Minkowski tensor. It defines the metric of a flat space-time

• 𝑑𝑑𝑠𝑠2 < 0 timelike interval: 2 events could lie on the worldline
(trajectory) of a material particle. In SR (and in Newtonian 
physics) the worldline of a particle which is not being acted by 
any external force is a straight line

• 𝑑𝑑𝑠𝑠2 > 0 spacelike interval, 2 events cannot lie on the worldline
of a material particle

• 𝑑𝑑𝑠𝑠2 = 0 lightlike; 2 eventsts could be in the worldline of a 
photon3G+LISA-1 9



Curved space-time
• Let generalise the metric of the space-time:

10
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  

• In General Relativity (GR) gravity manifests itself as spacetime curvature
• Trajectories (worldlines) of particle which are not being acted upon any non-gravitational force are 

generalised to curved path named geodesics.
• The correct mathematical definition of a geodesic goes beyond the complexity level of this 

course (spacetime curves that parallel transport their own tangent vectors), but we can easily 
define a geodesic as the extremal path:

• Along a geodesic between two events E1 and E2 the elapsed proper time is an extremum:

2
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0
E

E

dδ τ =∫
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Curvature of the spacetime
• The curvature of the spacetime is revealed through the deviation of 

neighbouring geodesics

11

Flat

Sphere: positive intrinsic 
curvature. The geodesics 
converge

Saddle: negative intrinsic 
curvature. The geodesics 
diverge

• The acceleration of the deviation between neighbouring geodesics is the signature of 
spacetime curvature due to the presence of a non-uniform (tidal) gravitational fields
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Geodesic deviation in Newtonian gravity
• Let jump back for a while to Newtonian Gravity

12

Particles in P1 and in P2
ξ(t) is the separation between the two free falling particles

r(t)

0

0

( )
( )
t k

r t r
ξξ

= = Similar triangle – k is a constant

2

( )( ) ( )
( ) ( )
t GMt k r t

r t r t
ξξ = = −  Using Newton law

Considering r(t)≈REarth=R and making an arbitrary change of 
variable t→ct:

( )

2

2 3 2

d GM
R cd ct

ξ ξ= −

To understand the meaning of the above equation let consider a 3 
dimensional space time (a sphere of radius a) 3G+LISA-1



Intrinsic curvature
• Consider the geodesics in a 

spacetime represented by a 
sphere of radius a

• A bit of trigonometry:

13
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dφ longitude difference
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= = =
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Comparing with the last  formula in 
the previous page

1
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3 2

GMa
R c

−
 =  
 

Hence, a represents the radius of curvature of the spacetime.

Let compute the radius of curvature of the spacetime deformed by the Earth gravity field:

R≈6.3×106m
a ≈2×1011m The spacetime is rather flat around the Earth (weak gravitational field)

[ ] [ ]
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Einstein Equation of field 
• The correct derivation of the Einstein equation goes beyond this course, but we can 

try to approach starting from the (differential) Gauss law for the Newtonian 
gravitational field 

14

4g Gπ ρ∇ ⋅ = −
 

• We stated that in GR the presence of an non-uniform gravitational field is revealed by the 
acceleration of the divergence of the geodesics:

• In the left side of a relativistic equation must appears an operator O of the metrics gµν., related to the 
curvature of the spacetime

• In the right side must be appear something related to the mass, generating the field. It cannot be the 
mass itself, but it must have a invariant form: Tµν, the energy-momentum tensor of the matter

( )O g kT
µνµν = 4

8 GG T
c µνµν
π

=

• Gµν is the curvature tensor, 𝐺𝐺𝜇𝜇𝜇𝜇 ≡ 𝑅𝑅𝜇𝜇𝜇𝜇 −
1
2
𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅 + Λ𝑔𝑔𝜇𝜇𝜇𝜇

• Rµν is the Ricci tensor, 𝑅𝑅𝜇𝜇𝜇𝜇 = 𝑅𝑅𝜇𝜇𝛼𝛼𝜈𝜈𝛼𝛼

• R is the ricci scalar, 𝑅𝑅 = 𝑔𝑔𝜇𝜇𝜇𝜇𝑅𝑅𝜇𝜇𝜇𝜇
• Γρ

µν is the Christoffel symbol, 

Γ𝜇𝜇𝜇𝜇
𝜌𝜌 =

1
2𝑔𝑔

𝜌𝜌𝜌𝜌 𝜕𝜕𝜇𝜇𝑔𝑔𝜈𝜈𝜈𝜈 + 𝜕𝜕𝜈𝜈𝑔𝑔𝜎𝜎𝜎𝜎 − 𝜕𝜕𝜎𝜎𝑔𝑔𝜇𝜇𝜇𝜇
• Rµ

νρσ is the Rieman tensor, 𝑅𝑅𝜈𝜈𝜈𝜈𝜈𝜈
𝜇𝜇 = 𝜕𝜕𝜌𝜌Γ𝜈𝜈𝜈𝜈

𝜇𝜇 − 𝜕𝜕𝜎𝜎Γ𝜈𝜈𝜈𝜈
𝜇𝜇 + Γ𝛼𝛼𝜌𝜌

𝜇𝜇 Γ𝜈𝜈𝜎𝜎𝛼𝛼 − Γ𝛼𝛼𝜎𝜎
𝜇𝜇 Γ𝜈𝜈𝜈𝜈𝛼𝛼
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(A.Einstein 1915)
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Einstein Equation of Field

• Comparing (naïf interpretation) the Equation of field to an elastic equation, we can see 
the space-time as a very stiff elastic medium (𝑘𝑘𝑒𝑒𝑒𝑒~ �𝑐𝑐4 8𝜋𝜋𝜋𝜋):

• Very energetic phenomena, determine small curvature of the space-time
• To solve the Einstein equation is an hard task

• They are a set of highly non linear equations:
• Knowing or imposing the metric gµν it is possible to compute Γµν, Rµν, Gµν and then, obtaining Tµν, determine 

the spatial and temporal dependence of physical parameters like density or pressure of the system
• But the way back, from Tµν to the metric of the space-time is usually intractable
• Luckily, far from heavy masses the equation of field can be simplified (linearized) in the weak field 

approximation (A.Einstein 1916).
15
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8 GG T
c µνµν
π

=Effect of the deformation Cause of the deformation
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c
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Weak gravitational fields
• The spacetime is flat in absence of gravitational field:

• In presence of a weak field we can define a nearly flat space time, a spacetime where we can 
find a coordinate system (called Nearly Lorentz) in which the metric has components 

16

g h
µν µν µν

η= +
where: ( )1,1,1,1diag

µν
η = − 1h

µν
<<and

• The “secret” to solving tensor equations in GR is, often, to choose the right 
coordinate system where the equations appear relatively simple

• Not all the systems in a weak field approximation have the above simplified 
expression and the first target is to find the right coordinate system:

• When one system is found an infinite class is found thanks to the coordinate 
transformations:

• Background Lorentz transformations
• Gauge transformations

Once we have identified a “nearly Lorentz” coordinate system, 
we can add an arbitrarily small vector ξα to the coordinates xα

without altering the validity of our assumption that the space is 
nearly flat3G+LISA-1



Linearized field equations: GW
• The computation of the linearized field equation and the derivation of the 

gravitational waves (GW) is beyond the level and the time of this course, but 
you can use 

• [1] Michele Maggiore, Gravitational Waves. Volume 1, Theory and Experiments, Oxford 
University Press

• [2] Bernard Schutz, A first Course in General Relativity. Cambridge
• [3] Hans C. Ohanian, Remo Ruffini, Gravitazione e Spazio-Tempo, Zanichelli

• Here we highlight just the results and some important intermediate step
• In case of weak field the Rieman tensor (“the curvature”) becomes (at the first order in 
ℎ𝜇𝜇𝜇𝜇):

( )1
2

R h h h hµνρσ ν ρ µσ µ σ νρ µ ρ νσ ν σ µρ= ∂ ∂ + ∂ ∂ − ∂ ∂ − ∂ ∂
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• We select the so-called Lorenz or Hilbert gauge:
• Where we defined 
• The Einstein equation of field becomes:

• Where □ is the flat space d’Alambertian

• If we are far from matter 𝑇𝑇𝜇𝜇𝜇𝜇 = 0:

Gravitational Waves

0hν
µν∂ =

( )trace h h hµν
µν µνη≡ ≡ 1

2
h h hµν µν µνη≡ −and

4

16 Gh T
cµν µν
π

= −

2
2

2 2

1
c t

µ ν µ
µν µη

 ∂
= ∂ ∂ = ∂ ∂ = − + ∇ ∂ 


0hµν = Wave eq.
2

2
2 2

1 0h
c t µν

 ∂
− + ∇ = ∂ 
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Gravitational waves
• This is the equation of a wave propagating at speed c: the metric perturbation 

propagates at the speed of light. This is an effect of the Einstein theory of the GR. 
Other gravity theories obtain a different speed propagation of the perturbation 
(massive graviton).

• Note that 𝑔𝑔𝜇𝜇𝜇𝜇and then ℎ𝜇𝜇𝜇𝜇is a symmetric tensor, that corresponds to 6 conditions 
ℎ𝜇𝜇𝜇𝜇=ℎ𝜈𝜈𝜈𝜈per 𝜇𝜇 ≠ 𝜈𝜈. Hence only 10 of the 16 components of ℎ𝜇𝜇𝜇𝜇 are independent 

• But the Lorenz gauge 𝜕𝜕𝜈𝜈 �ℎ𝜇𝜇𝜇𝜇 = 0 imposes 4 conditions: the independent 
components of �ℎ𝜇𝜇𝜇𝜇 are now 6

• The Lorenz gauge doesn’t fix completely the gauge and the condition 𝜕𝜕𝜈𝜈 �ℎ𝜇𝜇𝜇𝜇 = 0 is 
not spoiled by a further coordinate transformation 𝑥𝑥𝜇𝜇 → 𝑥𝑥𝜇𝜇 + 𝜁𝜁𝜇𝜇 with

• We are building the Transverse Traceless (TT) gauge

19

2
2

2 2

1 0h
c t µν

 ∂
− + ∇ = ∂ 

0µς =

0 0 , 0 , 0i i j
i ijh h h= = ∂ =
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Polarisations of the GW
• We were arrived to 6 independent components of hµν, thanks to the Lorenz 

gauge. The choice of the TT gauge tells us that, thanks to the 4 additional 
conditions the independent components of hµν are 2.

• The GW (in GR) has 2 polarisations!

• The equation                    has plane wave solutions: 

20

0hµν =

( ) ( ){ }ReTT ikx
ij ijh x eε= k with 𝑘𝑘𝜇𝜇 = ⁄𝜔𝜔 𝑐𝑐 ,𝒌𝒌 and ⁄𝜔𝜔 𝑐𝑐 = 𝒌𝒌

• The tensor εij(k) is called the polarisation tensor. Thanks to the TT conditions, 
the only non-null components of ℎ𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇 are orthogonal to the direction of the 
propagation vector �𝑛𝑛 = ⁄𝒌𝒌 𝒌𝒌

3G+LISA-1



Polarisations of the GW
• Choosing z as direction for the propagation �𝑛𝑛 and imposing hij to be symmetric and traceless:

21

( ) ( )
0

, 0 cos
0 0 0

TT
ij

ij

h h
zh t z h h t cω

+ ×

× +

 
   = − −    
 

• Or more simply ( ) ( ), cosTT
ab

ab

h h zh t z t ch h
ω+ ×

× +

   = −   − 
• Where a,b=1,2 are indices in the transvers plane (x,y)
• h+ is the plus polarisation and hx is the cross polarisation
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Effect of GW on free particles
• Let suppose to have a free particle in a wave-free region of spacetime
• Let chose a Lorentz frame where the particle is initially at rest:

• four-velocity 𝑢𝑢𝜇𝜇 ≡ 𝑑𝑑𝑥𝑥𝜇𝜇

𝑑𝑑𝜏𝜏
= 𝛿𝛿𝑡𝑡

𝜇𝜇 = 1,0,0,0,0

• Let write the geodesic equation:

22

2 2 2

2 2 2 0d x d x d x
d d d

µ ν ρ
µ
νρτ τ τ

+ Γ =

Where τ is the proper time. This is the classical equation of motion of a test mass in the 
curved spacetime described by gµν.

• In terms of four-velocity:
• If the particle is initially at rest (𝑢𝑢𝜇𝜇 = 𝛿𝛿𝑡𝑡

𝜇𝜇):
0du u u

d

µ
µ ν ρ
νρτ

+ Γ =

( ) 00
000

1
2

du h h h
d

µ
µ µσ

νννρ ν ρσ ρ νσ σ νρ
ρρ

η
τ

==
==

 
= −Γ = − ∂ + ∂ − ∂ 

 
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Effect of GW on free particles
• Replacing ν,ρ=0
• But this term vanishes because for the TT gauge are h00 and h0i chosen zero.
• This as a crucial effect:

23

( )00 0 0 00
1 2
2

i
i ih hΓ = ∂ − ∂

In the TT frame, particles that were at rest before the 
arrival of the wave remain at rest even after the arrival of 

the wave
• That means that the coordinates of the particle don’t change:

• The wave has not effect? Is not possible to detect it?
• No, it is an effect of the (correct) choice of the coordinate system

• The particle remain attached to the initial coordinate position
• But coordinates are merely frame-dependent labels and they do not directly convey  any 

invariant geometrical information about the spacetime
3G+LISA-1



Effect of GW on free particles
• But, let compute the proper distance between two nearby particle, initially 

both at rest
• Let suppose one particle at the origin of the coordinate system and the other 

at x=a, y=z=0
• The proper distance is 

24

( )
1 12 2

0

0
a

xx xxg dx dx g g x aα β
αβ∆ ≡ = ≈ = ⋅∫ ∫

Being: ( ) ( )0 0TT
xx xx xxg x h xη= = + = We obtain:

( )11 0
2

TT
xxh x a ∆ ≈ + = ⋅  



This is a crucial result: the proper distance between two test particle is what the GW 
detectors are measuring

Coordinate distance:
unchangedProper distance:

changing

3G+LISA-1



Ring of test particles: passage of a GW

• If we have a pure “+” polarisation wave, propagating 
along z, the mass distribution  undergoes to a 
deformation described by the upper part of the 
above panel

• In case of a pure “×” polarisation, the deformation is 
described by the lower part of that panel

25

0TT
xxε ≠

0TT
xyε ≠

h+

h×
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GW Detectors



What we have to measure?
• Let suppose to have a pure “+” wave entering in the 

screen
• We have to measure a quadrupolar distance modulation:

Credits: G
.G

em
m

e

A Michelson interferometer seems a “natural” choice 273G+LISA-1
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y

beam
splitter

photodetector

mirror

mirror

𝜔𝜔𝐿𝐿 , 𝑘𝑘𝐿𝐿 =
𝜔𝜔𝐿𝐿

𝑐𝑐
, 𝜆𝜆𝐿𝐿 =

2𝜋𝜋
𝑘𝑘𝐿𝐿

𝐿𝐿𝑥𝑥

𝐿𝐿𝑦𝑦

𝑬𝑬 𝑡𝑡,𝒙𝒙 = 𝐸𝐸0𝑒𝑒−𝑖𝑖𝜔𝜔𝐿𝐿𝑡𝑡+𝑖𝑖𝒌𝒌𝐿𝐿⋅𝒙𝒙
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𝑡𝑡𝑡 = 𝑡𝑡0 + 2𝐿𝐿𝑥𝑥/𝑐𝑐

𝑡𝑡 = 𝑡𝑡0

𝑡𝑡𝑡𝑡 = 𝑡𝑡0 + 2𝐿𝐿𝑦𝑦/𝑐𝑐

𝑬𝑬 𝑡𝑡,𝒙𝒙 = 𝐸𝐸0𝑒𝑒−𝑖𝑖𝜔𝜔𝐿𝐿𝑡𝑡+𝑖𝑖𝒌𝒌𝐿𝐿⋅𝒙𝒙



𝑡𝑡 = 𝑡𝑡0
(𝑥𝑥) + 2𝐿𝐿𝑥𝑥/𝑐𝑐

𝑡𝑡 = 𝑡𝑡0
(𝑦𝑦) + 2𝐿𝐿𝑦𝑦/𝑐𝑐

𝑬𝑬 𝑡𝑡,𝒙𝒙 = 𝐸𝐸0𝑒𝑒−𝑖𝑖𝜔𝜔𝐿𝐿𝑡𝑡+𝑖𝑖𝒌𝒌𝐿𝐿⋅𝒙𝒙
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𝐸𝐸1 𝑡𝑡, 0 =
1
2𝐸𝐸0𝑒𝑒

−𝑖𝑖𝜔𝜔𝐿𝐿𝑡𝑡+2𝑖𝑖𝑘𝑘𝐿𝐿⋅𝐿𝐿𝑥𝑥

𝐸𝐸1 ∝ 𝐸𝐸0 ⟶
1
2
𝐸𝐸0 ⟶−

1
2
𝐸𝐸0 ⟶

1
2
𝐸𝐸0

𝜌𝜌 = −
1
2

𝜏𝜏 =
1
2

𝜌𝜌 = −1
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𝐸𝐸2 𝑡𝑡, 0 = −
1
2𝐸𝐸0𝑒𝑒

−𝑖𝑖𝜔𝜔𝐿𝐿𝑡𝑡+2𝑖𝑖𝑘𝑘𝐿𝐿⋅𝐿𝐿𝑦𝑦

𝐸𝐸2 ∝ 𝐸𝐸0 ⟶
1
2
𝐸𝐸0 ⟶−

1
2
𝐸𝐸0 ⟶−

1
2
𝐸𝐸0

𝜌𝜌 =
1
2

𝜌𝜌 = −1

𝜏𝜏 =
1
2

𝑛𝑛2 < 𝑛𝑛1
𝑛𝑛1

HR coating

Why here ρ here is positive?
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• The total electric field is 𝐸𝐸𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐸𝐸1 + 𝐸𝐸2 ⟶

φ0=
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In the TT gauge the coordinates of the mirrors are not
affected by the passage of the wave

The effect of the GWs is manifested
in the fact that they affect the 
propagation of light

x

y

beam
splitter

photodetector

mirror

mirror

𝜔𝜔𝐿𝐿 , 𝑘𝑘𝐿𝐿 =
𝜔𝜔𝐿𝐿

𝑐𝑐
, 𝜆𝜆𝐿𝐿 =

2𝜋𝜋
𝑘𝑘𝐿𝐿

𝐿𝐿𝑥𝑥

𝐿𝐿𝑦𝑦

𝑬𝑬 𝑡𝑡,𝒙𝒙 = 𝐸𝐸0𝑒𝑒−𝑖𝑖𝜔𝜔𝐿𝐿𝑡𝑡+𝑖𝑖𝒌𝒌𝐿𝐿⋅𝒙𝒙
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• Let’s take a GW with ‘+’ polarization, propagating 
along z

• In the plane of the IFO (z = 0) we have
and the space-time interval is

• Photons travel along null geodesics ds2 = 0
• In the x-arm we have
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• A photon leaves the beam splitter at time t0
It reaches the mirror at the fixed coordinate x = Lx at 
time t1

• Then the photon is reflected back and reaches again 
the beam splitter at time t2
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• Summing we get

• In the integral we can approximate

• Since sin 𝛼𝛼 + 2𝛽𝛽 − sin𝛼𝛼 = 2 sin𝛽𝛽 cos 𝛼𝛼 + 𝛽𝛽 we 
can write
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• In the y-arm the analysis is similar and we get

• We are interested in the light that comes out of the 
IFO at a given time t

• We fix 𝑡𝑡2 ≡ 𝑡𝑡 and compute the corresponding values 
of t0 for the two arms: t0

(x) and t0
(y)

where, at first order in h, we have set  (a = x, y)
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• The light that is at the beam splitter (x = 0) at  t = t0
(x)

has phase exp −𝑖𝑖𝜔𝜔𝐿𝐿𝑡𝑡0
(𝑥𝑥) so

with

• Similarly for the y-arm we have

and
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• In general we build our detector to have 𝐿𝐿𝑥𝑥 ≅ 𝐿𝐿𝑦𝑦 in 
order to cancel common noise in the two arms

• Since we have 

in ∆φx and ∆φy , which are already O(h0), we can 
replace Lx and Ly by L

• In the terms 𝑡𝑡 − 2𝐿𝐿𝑥𝑥
𝑐𝑐

and 𝑡𝑡 − 2𝐿𝐿𝑦𝑦
𝑐𝑐

we need to take into 
account the difference between 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦. 

We write
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• Then

• with 𝜙𝜙0 = 𝑘𝑘𝐿𝐿 𝐿𝐿𝑥𝑥 − 𝐿𝐿𝑦𝑦 and

( ) ( )

( )

0

0

sinc cos

2 sinc 2 cos

L gw gw

gw
L gw

h k L L c t L c

L L h t L c

φ ω ω

π π ω
λ λ

 ∆ = − = 
 

 = ⋅ −    
 

41

• Note the function «sine cardinal»:
sin 2

sinc 2
2

gw

gw

gw

L
L

L

π
λ

π
λ

π
λ

 
     =        

 3G+LISA-1



Blind at some frequencies

• Virgo L=3000m
• First zero at 50kHz

42

( )

sin 2
2

sinc 2 0 , 1,2,...
2

2

gw gw

gwgw

gw

L
L nL n

f n c LL

π
λ λ

π
λ

π
λ

 
    = = = =   =     

 
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Going back to the difference of phase:

( )02 sinc 2 cos gw
L gw

L L h t L cφ π π ω
λ λ

 
 ∆ = ⋅ −    

 

Going back to the difference of phase, considering the quasi static approximation λgw>>L:

( ) ( )102 1.9 10
L

L h t L c h t L cφ π
λ

∆ ≈ ⋅ − = × ⋅ −

Comparing this expression with the difference of phase for arm length difference (slide 11) 
we have:

( ) ( )

0

2

2

x yL

x y

L

L h t L c
L L

h
L L LL

L

φ π
λ

φ π
λ

∆ ≈ ⋅ −  ∆ − ⇒ ≈− = ⋅


( )x yL L h L∆ − ≈ ⋅
We need giant detectors
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• The total electric field at the output is

• The total power 𝑃𝑃~ 𝐸𝐸0 2 at the photodetector is

• We need to maximize ∆φ. The amplitude of ∆φ depends on L trough

• The optimal arm length is given by 

adjustable parameter(dark fringe)
GWs
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• In terms of 𝑓𝑓𝑔𝑔𝑔𝑔 = 𝜔𝜔𝑔𝑔𝑔𝑔/(2𝜋𝜋) this gives

• Quite difficult to realise on Earth … we need a trick! (on space we need different 
solutions)

45

delay line Fabry-Perot
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Fabry-Perot

• Each mirror is has deposited an high reflectivity coating (HR) having an amplitude 
reflectivity coefficient r1,2.

• For each of the two substrates (plus coatings) is defined an amplitude 
transmission coefficient t1,2 and absorption a1,2. We have:

• A Fabry-Perot cavity is realized with (at least) two mirrors:

M2

M1

12
2,1

2
2,1

2
2,1 =++ atr Neglecting losses: 12

2,1
2
2,1 =+ tr

• Let suppose to imping a laser light (plane wave E0ei(kx-ωt))

laser

• The first mirror reflects a fraction –E0r1 of the impinging electric field

0E

10rE−

L
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… Fabry-Perot (2)

• A fraction E0t1 of the impinging beam enters in the cavity

M2
M1

laser
10rE−

10tE

• Let follow the beam …

L

0E ikLettE −
210

kLiertE 2
2

2
10

−
kLierrttE 3

21210
−

kLierrtE 42
21

2
10

−

kLierrttE 52
2

2
1210

−

• Summing up all the components, we compute the cavity amplitude transmission 
and reflection coefficients: 

( )

( )

2 1 2
1 2 1 2 2

00 1 2
2

2 2 2 1 2
1 2 1 2 1 2

00 1 2

1

1
1

ikL
nikL inkLt

c ikL
n

i kL
ni kL inkLr

c ikL
n

E t t et t t e r r e
E r r e
E t t er r t r e r r e r
E r r e

−∞
− −

−
=

−∞
− −

−
=

= = =
−

= = − + = − +
−

∑

∑
3G+LISA-1 47



FP - Resonance condition
• The field in the cavity (at x=0) is

48

( ) ( ) 2 1
0 1 1 2 02

0 1 2

0
1

ni t inkL i t
cav ikL

n

tE E e t r r e E e
r r e

ω ω
∞

− − −
−

=

= =
−∑

• The field in the cavity is maximum when

22 2 2
2

kL L n L nπ λπ
λ

≡ = ⇒ = Resonance condition

• At the resonance, also the other fields are quite interesting:
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The power is stored 
in the cavity near 
resonant condition: 
photons are 
bouncing from one 
mirror to the other

Cavity outside 
the resonance is 
essentially 
reflecting
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We are interested to 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

: we are blind far the resonance, but 
extremely more sensitive (with respect to a Michelson) around 
the resonance

∆φ

∆x

2

2 2

Mic

FP

reson

x

x

φ π
λ

φ π
π λ

∂
=

∂
∂

=
∂



Where  is named Finesse and its is 
defined through the transmitted power
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Free spectral range

FWHM

Finesse

Storage time
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Response to the GW passage
• We seen that the FP amplifies the response in ∆φ with respect to a 

Michelson:
• Its response to a GW is roughly corresponding to the response of a 

Michelson having the arms 2/π longer
• This is true at the first approximation, but we need to consider the storage 

time and the low pass filtering behaviour of the cavity:

52

0 2

2

12
1

x Lreson
gw

p

h k L
f

f

φ
π

∆ ≈

+



where
1

4 4p
s

cf
Lπτ

= ≈

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FP

Mich

r1 = 0.94; r2 = 1; p = 0
ℱ ~ 50
λL = 1.064 µm

LFP = LMich = 3000 m
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r1 = 0.94; r2 = 1; p = 0
ℱ ~ 50
λL = 1.064 µm

LFP = 3000 m
LMich = 2ℱ

𝜋𝜋
LFP ~ 100 km

FP

Mich
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Building Advanced Virgo

55

Dark fringe … all the power goes back to the input port

Gaussian beams

( ) ( ) ( ) ( )
( ) ( ) ( )tkxixR

zyik
nmi

nmmn eee
xw
z

xw
y

xw
wEtzyxE ωϕψψ −−

+
−

++⋅















= 210

0

22

22,,,
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Building Advanced Virgo
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Free falling masses
• We worked until now in the hypothesis to have free falling masses

• The mirrors should be subjected only to gravitational forces, in order to move on 
geodesics …. But is it true?

• How is it possible to realise free falling mirror on the Earth?
• Mirror suspended through a pendulum:

• For small oscillations, in the horizontal direction, the mirror is (in principle) free
• Obviously vertically is constrained by the suspension to “avoid a true free falling” damage

• But we need to suppress (in the detection frequency range) all the spurious 
forces acting on the mirrors
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• Seismic, Newtonian, 
Optical read-out, 
thermal noises are 
(arbitrarily) called 
fundamental noises

“Fundamental” noises

3G+LISA-1 58



Noise budget

• But, in effect, we are fighting 
against a plethora of noises 
of “technical” origin and the 
long periods of 
commissioning in each 
detector are mainly 
addressed to the reduction 
of the noises limiting the 
observation sensitivity
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Building Advanced Virgo

603G+LISA-1



Jumping in Space (LISA)
• In space, the length limitations (due, for example, to the curvature of the 

Earth) are naturally solved:
• LISA project, 2.5 × 106km arm length
• 50 × 106km away from Earth
• Each vertex is an active transponder:

Δ𝐿𝐿 ≈ ℎ � 𝐿𝐿

• A 1064 nm stable laser transmits few 
watt from each vertex

• Due to beam divergence ~100 pW
arrive to the next satellite, where fresh 
power is emitted by a new laser, phase-
locked with the incoming beam

• Combining “offline” the 3 independent arms it is possible to build-up three 
interferometric signals: 

• 2 Michelson Interferometers (→2 polarisations)
• 1 Sagnac Interferometer (null stream)
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LISA Pathfinder
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Sensitivity 

TerrestrialSpace-basedPulsar-timing

http://gwplotter.com/
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The GW spectrum

10-9 Hz 10-4 Hz 100 Hz 103 Hz

Cosmic Strings

Supermassive BH Binaries

BH and NS Binaries

Binaries coalescences

Extreme Mass Ratio
Inspirals

Supernovae

Spinning NS

10-16 Hz
Pulsar timing Space detectors Ground interferometers

Relic radiation
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em Observatories

106Hz

1018HzCredit: https://imagine.gsfc.nasa.gov 3G+LISA-1 65



GW detectors and sources

Black Holes: 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ≈ 4400𝐻𝐻𝐻𝐻 × 𝑀𝑀𝑆𝑆
𝑀𝑀

Terrestrial: 𝑓𝑓 ∈]1,𝑓𝑓𝑓𝑓𝑓𝑓 × 103]𝐻𝐻𝐻𝐻 → 𝑀𝑀
𝑀𝑀𝑆𝑆

∈ 𝑁𝑁𝑁𝑁, 4 × 103

LISA: 𝑓𝑓 ∈ 10−4, 10−2 𝐻𝐻𝐻𝐻 → 𝑀𝑀
𝑀𝑀𝑆𝑆

∈ 105, 107

3G+LISA-1
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Emission of GW
• Let restart from the linearized theory. The equation of field in this case is

4

16 Gh T T
cµν µν µν
π κ= − = where 4

16 G
c
πκ ≡

• 𝑇𝑇𝜇𝜇𝜇𝜇 is the energy-momentum tensor, it respects flat space conservation energy 
condition 𝜕𝜕𝜇𝜇𝑇𝑇𝜇𝜇𝜇𝜇 = 0 and we are in the Lorentz gauge 𝜕𝜕𝜇𝜇 �ℎ𝜇𝜇𝜇𝜇 = 0. Let suppose to be 
in a flat space approximation, far from the source that is generating GW, and having 
slow variations v/c<<1: 

x′
x

xx ′−


• The equation of field can be solved using the retarded potentials like in EM:

( ) ( ) 3,
,

4
T t x x x

h t x d x
x x

µν
µν κ

π

′ ′− −
′= −

′−∫
  


 

• We already encountered the multi-pole series to solve 1/ 𝑥⃗𝑥 − ⃗́𝑥𝑥
• Introducing again the quadrupole moment 

( ) ( )∫ ′′′−′′=
V

k
l

lkkl xdxrxxQ 323 ρδ
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Emission of GW
• and arresting the series to the quadrupole term we obtain:

( ) ( ) ( )4

1 1 2 1,
8 3 3

TT TT TT
kl kl klquad

Gh t x Q t r c Q t r c
r r c

κ
π

= − − = −
  

1/r 1.6×10-44 m-1kg-1s2

• The amplitude of the generate GW decrease linearly with the distance of the 
source (remember, GW detectors reveal the amplitude)

• Only sources having masses accelerated with (at least) a quadrupole moment non-
null generate GW

• The very small coefficient requires large (astronomical) masses and huge accelerations 
• Why not monopole emission? 

• Why not dipole emission? 

→ forbidden by mass conservation principle

→ forbidden by momentum and angular momentum conservation
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Luminosity

• The energy emitted (luminosity) by the accelerated masses is:

545
kl kldE G Q Q

dt c
≡ − =  
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Quadrupolar radiation from a binary mass system 
in circular orbit
• Let suppose to have a system of two point-like masses, having 

mass m1 and m2, orbiting at frequency ω

z

R

rι

• If we define ι the inclination angle of the orbit wrt the sight direction and 𝜇𝜇 =
⁄𝑚𝑚1𝑚𝑚2 𝑚𝑚1 + 𝑚𝑚2 the reduced mass the amplitudes of the emitted waves are (first 

term PN approximation – series development in terms of 𝑣𝑣
𝑐𝑐

)
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ℎ+ 𝑡𝑡 =
4
𝑟𝑟

𝐺𝐺𝑀𝑀𝑐𝑐
𝑐𝑐2

5
3 𝜋𝜋𝑓𝑓𝑔𝑔𝑔𝑔(𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟)

𝑐𝑐

2
3 1 + cos2 𝑖𝑖

2 cos 𝜙𝜙(𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟)

ℎ× 𝑡𝑡 =
4
𝑟𝑟

𝐺𝐺𝑀𝑀𝑐𝑐
𝑐𝑐2

5
3 𝜋𝜋𝑓𝑓𝑔𝑔𝑔𝑔(𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟)

𝑐𝑐

2
3

cos 𝑖𝑖 sin 𝜙𝜙(𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟)

𝑓𝑓𝑔𝑔𝑔𝑔 𝜏𝜏0 =
1
𝜋𝜋
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1
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3
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5
8
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2
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3
5
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1
5

Chirp mass:

( )
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1 2

2
6 16 21

1.4 1.4 2 10

10MPc 10 10 3 10 1.5 10
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m m M kg
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R km

Θ

−

= = = ⋅ ⋅
  = = ⋅ ⋅ ⋅ ⇒ ≈ ×  

 = 
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Chirping waveform: Standard sirens!

Close to merger, the 
quasi-circular motion 

assumption is no 
longer valid

𝑚𝑚1 = 𝑚𝑚2 = 1.5 𝑀𝑀⊙~3 × 1030 𝐾𝐾𝐾𝐾

0.1 s 71

3G+LISA-1

• The frequency sweep univocally identifies the (chirp) mass
• The amplitude defines the luminosity distance:

• Standard candles sirens!
• In effect is more complex:

• Chirp mass identification is ambiguous because of the signal red-shift
• Amplitude measurement is entangled with orbit plane orientation
• Merging and ringdown phases need numerical relativity & BH perturbation 

theory (or EOS of NS)



Detector acceptance: antenna pattern

• Interferometric GW aren’t isotropic in their acceptance
• For example if a wave arrives along  the detector plane with 

45 degrees wrt the arms, the detector is blind
• In general the detector (xy) measures a combination of the 

two polarisations according to the formula

h F h F h+ + × ×= +

𝐹𝐹+ 𝜃𝜃,𝜑𝜑 𝐹𝐹× 𝜃𝜃,𝜑𝜑
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Sources of GW

• We seen that to generate a GW we need a system of large masses accelerated  
with a quadrupolar component

• Binary systems:
• Composed by black holes (BH-BH)
• Composed by Neutron Stars (NS-NS)
• Composed by a BH and a NS (BH-NS)

• Isolated NS
• Supernova Explosion (Sne)

• Let see (some of) these sources through the LIGO-Virgo detections and the 
perspectives on the 3rd generation of GW observatories
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