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LECTURE 2 
COSMIC RAY PROPAGATION



BASIC INDICATORS OF DIFFUSIVE TRANSPORT

Measurements of the Boron and sub-iron 
elements in CRs show that CR live for tens of 

million years in the Galaxy 
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BASIC INDICATORS OF DIFFUSIVE TRANSPORT
Garcia-Munoz	et	al.	1977

10Be 

Be comes in three isotopes and 10Be is unstable with a decay time of 15 Myr.  

While in the Lab the three isotopes are roughly equally produced, in the CR we see 
the peak of 10Be being much smaller —> information of decay vs production vs 
confinement



SECONDARY/PRIMARY: B/C

Evidence for CR  
diffusive transport

GRAMMAGE:

primary equilibrium

secondary injection

secondary equilibrium
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SECONDARY/PRIMARY: POSITRON FRACTION 

AMS-02 Coll. 2013

Reacceleration of secondary Pairs 
in old SNRs 
PB 2009, PB & Serpico 2009; Mertsch & 
Sarkar 2009 

Pulsar Wind Nebulae 
Hooper, PB & Serpico (2009); PB & 
Amato 2010 

Dark Matter Annihilation 
Difficult: high annihilation, Cross 
section, leptophilia, Boosting factor 
[Serpico (2012)]



Unexpected Result 
Flux Ratio of Elementary Particles p/p  
is energy independent above 60 GeV 
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SECONDARY/PRIMARY:  ANTIPROTONS

• ANTIPROTONS ARE ALSO 
PRODUCED AS A RESULT OF 
CR INTERACTIONS 

• T H E I R S P E C T R U M I S 
EXPECTED TO BE STEEPER 
THAN THAN OF PARENT 
PROTONS FOR THE SAME 
REASONS  

• AMS-02 DATA SHOW A 
POSSIBLE ANOMALY, BUT 
NOT CLEAR AS YET (cross 
sections, astrophysics, …)

Notice that e+/e-~0.1 
B/C~0.1 
pbar/p~10-4



A TOY MODEL FOR OUR GALAXY

2h

2H

HALO ~ several kpc 

DISC ~ 300 pc

Assumptions of the model: 
1. CR are injected in an  infinitely thin disc 
2. CR diffuse in the whole volume  
3. CR freely escape from a boundary

1 Q(p, z) =
Q0(p)
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A TOY MODEL FOR OUR GALAXY

2h

2H

HALO ~ several kpc 

DISC ~ 300 pc

Assumptions of the model: 
1. CR are injected in an  infinitely thin disc 
2. CR diffuse in the whole volume  
3. CR freely escape from a boundary
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<latexit sha1_base64="CSRqDRv8D3jfPKzJ/Aa/Kpxi1Ks=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJUkLIrgl4KRS89VrAf2C4lm2bb0Gw2JFmhLv0XXjwo4tV/481/Y9ruQVsfDDzem2FmXiA508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NRxoghtkJjHqh1gTTkTtGGY4bQtFcVRwGkrGN1O/dYjVZrF4t6MJfUjPBAsZAQbKz2EpadK7VyeVdxeoeiW3RnQMvEyUoQM9V7hq9uPSRJRYQjHWnc8Vxo/xcowwukk3000lZiM8IB2LBU4otpPZxdP0KlV+iiMlS1h0Ez9PZHiSOtxFNjOCJuhXvSm4n9eJzHhtZ8yIRNDBZkvChOOTIym76M+U5QYPrYEE8XsrYgMscLE2JDyNgRv8eVl0rwoe27Zu7ssVm+yOHJwDCdQAg+uoAo1qEMDCAh4hld4c7Tz4rw7H/PWFSebOYI/cD5/ALP9j50=</latexit><latexit sha1_base64="CSRqDRv8D3jfPKzJ/Aa/Kpxi1Ks=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJUkLIrgl4KRS89VrAf2C4lm2bb0Gw2JFmhLv0XXjwo4tV/481/Y9ruQVsfDDzem2FmXiA508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NRxoghtkJjHqh1gTTkTtGGY4bQtFcVRwGkrGN1O/dYjVZrF4t6MJfUjPBAsZAQbKz2EpadK7VyeVdxeoeiW3RnQMvEyUoQM9V7hq9uPSRJRYQjHWnc8Vxo/xcowwukk3000lZiM8IB2LBU4otpPZxdP0KlV+iiMlS1h0Ez9PZHiSOtxFNjOCJuhXvSm4n9eJzHhtZ8yIRNDBZkvChOOTIym76M+U5QYPrYEE8XsrYgMscLE2JDyNgRv8eVl0rwoe27Zu7ssVm+yOHJwDCdQAg+uoAo1qEMDCAh4hld4c7Tz4rw7H/PWFSebOYI/cD5/ALP9j50=</latexit><latexit sha1_base64="CSRqDRv8D3jfPKzJ/Aa/Kpxi1Ks=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJUkLIrgl4KRS89VrAf2C4lm2bb0Gw2JFmhLv0XXjwo4tV/481/Y9ruQVsfDDzem2FmXiA508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NRxoghtkJjHqh1gTTkTtGGY4bQtFcVRwGkrGN1O/dYjVZrF4t6MJfUjPBAsZAQbKz2EpadK7VyeVdxeoeiW3RnQMvEyUoQM9V7hq9uPSRJRYQjHWnc8Vxo/xcowwukk3000lZiM8IB2LBU4otpPZxdP0KlV+iiMlS1h0Ez9PZHiSOtxFNjOCJuhXvSm4n9eJzHhtZ8yIRNDBZkvChOOTIym76M+U5QYPrYEE8XsrYgMscLE2JDyNgRv8eVl0rwoe27Zu7ssVm+yOHJwDCdQAg+uoAo1qEMDCAh4hld4c7Tz4rw7H/PWFSebOYI/cD5/ALP9j50=</latexit><latexit sha1_base64="CSRqDRv8D3jfPKzJ/Aa/Kpxi1Ks=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJUkLIrgl4KRS89VrAf2C4lm2bb0Gw2JFmhLv0XXjwo4tV/481/Y9ruQVsfDDzem2FmXiA508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NRxoghtkJjHqh1gTTkTtGGY4bQtFcVRwGkrGN1O/dYjVZrF4t6MJfUjPBAsZAQbKz2EpadK7VyeVdxeoeiW3RnQMvEyUoQM9V7hq9uPSRJRYQjHWnc8Vxo/xcowwukk3000lZiM8IB2LBU4otpPZxdP0KlV+iiMlS1h0Ez9PZHiSOtxFNjOCJuhXvSm4n9eJzHhtZ8yIRNDBZkvChOOTIym76M+U5QYPrYEE8XsrYgMscLE2JDyNgRv8eVl0rwoe27Zu7ssVm+yOHJwDCdQAg+uoAo1qEMDCAh4hld4c7Tz4rw7H/PWFSebOYI/cD5/ALP9j50=</latexit>

For z≭0: 

D
@f

@z
= Constant ! f(z) = f0

⇣
1� z

H

⌘

Rd
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A TOY MODEL FOR OUR GALAXY

2h

2H

HALO ~ several kpc 

DISC ~ 300 pc

Assumptions of the model: 
1. CR are injected in an  infinitely thin disc 
2. CR diffuse in the whole volume  
3. CR freely escape from a boundary

1 Q(p, z) =
Q0(p)

⇡R2
d

�(z)
<latexit sha1_base64="dEq7O0LYmr8XS4LSNkpAj6ex2Z0=">AAACE3icbZDLSsNAFIYn9VbrLerSzWARWpGSFEE3QtGNy1bsBZoYJpNJO3SSDDMToQ19Bze+ihsXirh14863cXpZaPWHgY//nMOZ8/ucUaks68vILS2vrK7l1wsbm1vbO+buXksmqcCkiROWiI6PJGE0Jk1FFSMdLgiKfEba/uBqUm/fEyFpEt+qISduhHoxDSlGSlueedwo8ZNR+cIJBcJZw7NKvDzOHE7hjRfcVcfQCQhTqDQqQ88sWhVrKvgX7DkUwVx1z/x0ggSnEYkVZkjKrm1x5WZIKIoZGRecVBKO8AD1SFdjjCIi3Wx60xgeaSeAYSL0ixWcuj8nMhRJOYx83Rkh1ZeLtYn5X62bqvDczWjMU0ViPFsUpgyqBE4CggEVBCs21ICwoPqvEPeRTkfpGAs6BHvx5L/QqlZszY3TYu1yHkceHIBDUAI2OAM1cA3qoAkweABP4AW8Go/Gs/FmvM9ac8Z8Zh/8kvHxDc8WnDg=</latexit><latexit sha1_base64="dEq7O0LYmr8XS4LSNkpAj6ex2Z0=">AAACE3icbZDLSsNAFIYn9VbrLerSzWARWpGSFEE3QtGNy1bsBZoYJpNJO3SSDDMToQ19Bze+ihsXirh14863cXpZaPWHgY//nMOZ8/ucUaks68vILS2vrK7l1wsbm1vbO+buXksmqcCkiROWiI6PJGE0Jk1FFSMdLgiKfEba/uBqUm/fEyFpEt+qISduhHoxDSlGSlueedwo8ZNR+cIJBcJZw7NKvDzOHE7hjRfcVcfQCQhTqDQqQ88sWhVrKvgX7DkUwVx1z/x0ggSnEYkVZkjKrm1x5WZIKIoZGRecVBKO8AD1SFdjjCIi3Wx60xgeaSeAYSL0ixWcuj8nMhRJOYx83Rkh1ZeLtYn5X62bqvDczWjMU0ViPFsUpgyqBE4CggEVBCs21ICwoPqvEPeRTkfpGAs6BHvx5L/QqlZszY3TYu1yHkceHIBDUAI2OAM1cA3qoAkweABP4AW8Go/Gs/FmvM9ac8Z8Zh/8kvHxDc8WnDg=</latexit><latexit sha1_base64="dEq7O0LYmr8XS4LSNkpAj6ex2Z0=">AAACE3icbZDLSsNAFIYn9VbrLerSzWARWpGSFEE3QtGNy1bsBZoYJpNJO3SSDDMToQ19Bze+ihsXirh14863cXpZaPWHgY//nMOZ8/ucUaks68vILS2vrK7l1wsbm1vbO+buXksmqcCkiROWiI6PJGE0Jk1FFSMdLgiKfEba/uBqUm/fEyFpEt+qISduhHoxDSlGSlueedwo8ZNR+cIJBcJZw7NKvDzOHE7hjRfcVcfQCQhTqDQqQ88sWhVrKvgX7DkUwVx1z/x0ggSnEYkVZkjKrm1x5WZIKIoZGRecVBKO8AD1SFdjjCIi3Wx60xgeaSeAYSL0ixWcuj8nMhRJOYx83Rkh1ZeLtYn5X62bqvDczWjMU0ViPFsUpgyqBE4CggEVBCs21ICwoPqvEPeRTkfpGAs6BHvx5L/QqlZszY3TYu1yHkceHIBDUAI2OAM1cA3qoAkweABP4AW8Go/Gs/FmvM9ac8Z8Zh/8kvHxDc8WnDg=</latexit><latexit sha1_base64="dEq7O0LYmr8XS4LSNkpAj6ex2Z0=">AAACE3icbZDLSsNAFIYn9VbrLerSzWARWpGSFEE3QtGNy1bsBZoYJpNJO3SSDDMToQ19Bze+ihsXirh14863cXpZaPWHgY//nMOZ8/ucUaks68vILS2vrK7l1wsbm1vbO+buXksmqcCkiROWiI6PJGE0Jk1FFSMdLgiKfEba/uBqUm/fEyFpEt+qISduhHoxDSlGSlueedwo8ZNR+cIJBcJZw7NKvDzOHE7hjRfcVcfQCQhTqDQqQ88sWhVrKvgX7DkUwVx1z/x0ggSnEYkVZkjKrm1x5WZIKIoZGRecVBKO8AD1SFdjjCIi3Wx60xgeaSeAYSL0ixWcuj8nMhRJOYx83Rkh1ZeLtYn5X62bqvDczWjMU0ViPFsUpgyqBE4CggEVBCs21ICwoPqvEPeRTkfpGAs6BHvx5L/QqlZszY3TYu1yHkceHIBDUAI2OAM1cA3qoAkweABP4AW8Go/Gs/FmvM9ac8Z8Zh/8kvHxDc8WnDg=</latexit>

2 � @

@z


D
@f

@z

�
= Q(p, z)

<latexit sha1_base64="SHNjRqPMSw4Ydm6MPRGBlT5ElVM="></latexit><latexit sha1_base64="SHNjRqPMSw4Ydm6MPRGBlT5ElVM="></latexit><latexit sha1_base64="SHNjRqPMSw4Ydm6MPRGBlT5ElVM="></latexit><latexit sha1_base64="SHNjRqPMSw4Ydm6MPRGBlT5ElVM="></latexit>

3 f(z = H, p) = 0
<latexit sha1_base64="CSRqDRv8D3jfPKzJ/Aa/Kpxi1Ks=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJUkLIrgl4KRS89VrAf2C4lm2bb0Gw2JFmhLv0XXjwo4tV/481/Y9ruQVsfDDzem2FmXiA508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NRxoghtkJjHqh1gTTkTtGGY4bQtFcVRwGkrGN1O/dYjVZrF4t6MJfUjPBAsZAQbKz2EpadK7VyeVdxeoeiW3RnQMvEyUoQM9V7hq9uPSRJRYQjHWnc8Vxo/xcowwukk3000lZiM8IB2LBU4otpPZxdP0KlV+iiMlS1h0Ez9PZHiSOtxFNjOCJuhXvSm4n9eJzHhtZ8yIRNDBZkvChOOTIym76M+U5QYPrYEE8XsrYgMscLE2JDyNgRv8eVl0rwoe27Zu7ssVm+yOHJwDCdQAg+uoAo1qEMDCAh4hld4c7Tz4rw7H/PWFSebOYI/cD5/ALP9j50=</latexit><latexit sha1_base64="CSRqDRv8D3jfPKzJ/Aa/Kpxi1Ks=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJUkLIrgl4KRS89VrAf2C4lm2bb0Gw2JFmhLv0XXjwo4tV/481/Y9ruQVsfDDzem2FmXiA508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NRxoghtkJjHqh1gTTkTtGGY4bQtFcVRwGkrGN1O/dYjVZrF4t6MJfUjPBAsZAQbKz2EpadK7VyeVdxeoeiW3RnQMvEyUoQM9V7hq9uPSRJRYQjHWnc8Vxo/xcowwukk3000lZiM8IB2LBU4otpPZxdP0KlV+iiMlS1h0Ez9PZHiSOtxFNjOCJuhXvSm4n9eJzHhtZ8yIRNDBZkvChOOTIym76M+U5QYPrYEE8XsrYgMscLE2JDyNgRv8eVl0rwoe27Zu7ssVm+yOHJwDCdQAg+uoAo1qEMDCAh4hld4c7Tz4rw7H/PWFSebOYI/cD5/ALP9j50=</latexit><latexit sha1_base64="CSRqDRv8D3jfPKzJ/Aa/Kpxi1Ks=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJUkLIrgl4KRS89VrAf2C4lm2bb0Gw2JFmhLv0XXjwo4tV/481/Y9ruQVsfDDzem2FmXiA508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NRxoghtkJjHqh1gTTkTtGGY4bQtFcVRwGkrGN1O/dYjVZrF4t6MJfUjPBAsZAQbKz2EpadK7VyeVdxeoeiW3RnQMvEyUoQM9V7hq9uPSRJRYQjHWnc8Vxo/xcowwukk3000lZiM8IB2LBU4otpPZxdP0KlV+iiMlS1h0Ez9PZHiSOtxFNjOCJuhXvSm4n9eJzHhtZ8yIRNDBZkvChOOTIym76M+U5QYPrYEE8XsrYgMscLE2JDyNgRv8eVl0rwoe27Zu7ssVm+yOHJwDCdQAg+uoAo1qEMDCAh4hld4c7Tz4rw7H/PWFSebOYI/cD5/ALP9j50=</latexit><latexit sha1_base64="CSRqDRv8D3jfPKzJ/Aa/Kpxi1Ks=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJUkLIrgl4KRS89VrAf2C4lm2bb0Gw2JFmhLv0XXjwo4tV/481/Y9ruQVsfDDzem2FmXiA508Z1v52V1bX1jc3cVn57Z3dvv3Bw2NRxoghtkJjHqh1gTTkTtGGY4bQtFcVRwGkrGN1O/dYjVZrF4t6MJfUjPBAsZAQbKz2EpadK7VyeVdxeoeiW3RnQMvEyUoQM9V7hq9uPSRJRYQjHWnc8Vxo/xcowwukk3000lZiM8IB2LBU4otpPZxdP0KlV+iiMlS1h0Ez9PZHiSOtxFNjOCJuhXvSm4n9eJzHhtZ8yIRNDBZkvChOOTIym76M+U5QYPrYEE8XsrYgMscLE2JDyNgRv8eVl0rwoe27Zu7ssVm+yOHJwDCdQAg+uoAo1qEMDCAh4hld4c7Tz4rw7H/PWFSebOYI/cD5/ALP9j50=</latexit>

For z≭0: 

D
@f

@z
= Constant ! f(z) = f0

⇣
1� z

H

⌘

D
@f

@z
|z=0+ = �f0

H
<latexit sha1_base64="mIkd7yqm4gNUkrIRf/2+eSEOhk8=">AAACI3icbZDLSsNAFIYnXmu9RV26GSyCIJZEBEUoFHXRZQV7gSaGyXTSDp1cmJkIbcy7uPFV3LhQihsXvouTNqC2/jDw8Z9zOHN+N2JUSMP41BYWl5ZXVgtrxfWNza1tfWe3KcKYY9LAIQt520WCMBqQhqSSkXbECfJdRlru4Dqrtx4IFzQM7uQwIraPegH1KEZSWY5+eQMtjyOcWBHikiIGvfSHRyl8dJJRxbg/TivwJG/1HCNNaqmjl4yyMRGcBzOHEshVd/Sx1Q1x7JNAYoaE6JhGJO0k24UZSYtWLEiE8AD1SEdhgHwi7GRyYwoPldOFXsjVCyScuL8nEuQLMfRd1ekj2Reztcz8r9aJpXdhJzSIYkkCPF3kxQzKEGaBwS7lBEs2VIAwp+qvEPeRykGqWIsqBHP25HlonpZNxbdnpepVHkcB7IMDcARMcA6qoAbqoAEweAIv4A28a8/aqzbWPqatC1o+swf+SPv6BnNkpB8=</latexit><latexit sha1_base64="mIkd7yqm4gNUkrIRf/2+eSEOhk8=">AAACI3icbZDLSsNAFIYnXmu9RV26GSyCIJZEBEUoFHXRZQV7gSaGyXTSDp1cmJkIbcy7uPFV3LhQihsXvouTNqC2/jDw8Z9zOHN+N2JUSMP41BYWl5ZXVgtrxfWNza1tfWe3KcKYY9LAIQt520WCMBqQhqSSkXbECfJdRlru4Dqrtx4IFzQM7uQwIraPegH1KEZSWY5+eQMtjyOcWBHikiIGvfSHRyl8dJJRxbg/TivwJG/1HCNNaqmjl4yyMRGcBzOHEshVd/Sx1Q1x7JNAYoaE6JhGJO0k24UZSYtWLEiE8AD1SEdhgHwi7GRyYwoPldOFXsjVCyScuL8nEuQLMfRd1ekj2Reztcz8r9aJpXdhJzSIYkkCPF3kxQzKEGaBwS7lBEs2VIAwp+qvEPeRykGqWIsqBHP25HlonpZNxbdnpepVHkcB7IMDcARMcA6qoAbqoAEweAIv4A28a8/aqzbWPqatC1o+swf+SPv6BnNkpB8=</latexit><latexit sha1_base64="mIkd7yqm4gNUkrIRf/2+eSEOhk8=">AAACI3icbZDLSsNAFIYnXmu9RV26GSyCIJZEBEUoFHXRZQV7gSaGyXTSDp1cmJkIbcy7uPFV3LhQihsXvouTNqC2/jDw8Z9zOHN+N2JUSMP41BYWl5ZXVgtrxfWNza1tfWe3KcKYY9LAIQt520WCMBqQhqSSkXbECfJdRlru4Dqrtx4IFzQM7uQwIraPegH1KEZSWY5+eQMtjyOcWBHikiIGvfSHRyl8dJJRxbg/TivwJG/1HCNNaqmjl4yyMRGcBzOHEshVd/Sx1Q1x7JNAYoaE6JhGJO0k24UZSYtWLEiE8AD1SEdhgHwi7GRyYwoPldOFXsjVCyScuL8nEuQLMfRd1ekj2Reztcz8r9aJpXdhJzSIYkkCPF3kxQzKEGaBwS7lBEs2VIAwp+qvEPeRykGqWIsqBHP25HlonpZNxbdnpepVHkcB7IMDcARMcA6qoAbqoAEweAIv4A28a8/aqzbWPqatC1o+swf+SPv6BnNkpB8=</latexit><latexit sha1_base64="mIkd7yqm4gNUkrIRf/2+eSEOhk8=">AAACI3icbZDLSsNAFIYnXmu9RV26GSyCIJZEBEUoFHXRZQV7gSaGyXTSDp1cmJkIbcy7uPFV3LhQihsXvouTNqC2/jDw8Z9zOHN+N2JUSMP41BYWl5ZXVgtrxfWNza1tfWe3KcKYY9LAIQt520WCMBqQhqSSkXbECfJdRlru4Dqrtx4IFzQM7uQwIraPegH1KEZSWY5+eQMtjyOcWBHikiIGvfSHRyl8dJJRxbg/TivwJG/1HCNNaqmjl4yyMRGcBzOHEshVd/Sx1Q1x7JNAYoaE6JhGJO0k24UZSYtWLEiE8AD1SEdhgHwi7GRyYwoPldOFXsjVCyScuL8nEuQLMfRd1ekj2Reztcz8r9aJpXdhJzSIYkkCPF3kxQzKEGaBwS7lBEs2VIAwp+qvEPeRykGqWIsqBHP25HlonpZNxbdnpepVHkcB7IMDcARMcA6qoAbqoAEweAIv4A28a8/aqzbWPqatC1o+swf+SPv6BnNkpB8=</latexit>
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A TOY MODEL FOR OUR GALAXY

� @

@z


D
@f

@z

�
=

Q0(p)

⇡R2
d

�(z)
<latexit sha1_base64="XXhpQyZQ2cs9UK7JC/fGKhZ9qcc="></latexit><latexit sha1_base64="XXhpQyZQ2cs9UK7JC/fGKhZ9qcc="></latexit><latexit sha1_base64="XXhpQyZQ2cs9UK7JC/fGKhZ9qcc="></latexit><latexit sha1_base64="XXhpQyZQ2cs9UK7JC/fGKhZ9qcc="></latexit>

Let us now integrate the diffusion equation around z=0 

and recalling that 

�2D
@f

@z
|z=0+ =

Q0(p)

⇡R2
d

<latexit sha1_base64="dWW41u5N6G3NdixeL/e1J42PvOE=">AAACL3icbZDLSgMxFIYz9VbrrerSTbAIFbHMFEE3haIiLluxF+hlyKSZNjRzIckI7Thv5MZX6UZEEbe+hZl2QG09EPj4z384Ob/lMyqkrr9qqaXlldW19HpmY3Nreye7u1cXXsAxqWGPebxpIUEYdUlNUslI0+cEORYjDWt4FfcbD4QL6rn3cuSTjoP6LrUpRlJJZvbmtAivYdvmCIdtH3FJEYN29MPjCD6a4bikd0+iUmKsmnreP45NFN6ZvW4xMrM5vaBPCy6CkUAOJFUxs5N2z8OBQ1yJGRKiZei+7ITxUsxIlGkHgvgID1GftBS6yCGiE07vjeCRUnrQ9rh6roRT9fdEiBwhRo6lnA6SAzHfi8X/eq1A2hedkLp+IImLZ4vsgEHpwTg82KOcYMlGChDmVP0V4gFSkUgVcUaFYMyfvAj1YsFQXD3LlS+TONLgAByCPDDAOSiDW1ABNYDBE5iAN/CuPWsv2of2ObOmtGRmH/wp7esbjF+oJw==</latexit><latexit sha1_base64="dWW41u5N6G3NdixeL/e1J42PvOE="></latexit><latexit sha1_base64="dWW41u5N6G3NdixeL/e1J42PvOE="></latexit><latexit sha1_base64="dWW41u5N6G3NdixeL/e1J42PvOE="></latexit>

Rate of  
injection per  
unit volume 

Diffusion  
Time 

Since Q0(p)~p-γ and D(p)~pδ 

f0(p) ~ p-γ-δ

f0(p) =
Q0(p)

2⇡R2
d

H

D
=

Q0(p)

2⇡R2
dH

H
2

D
<latexit sha1_base64="pPwlM0slNd8uLiTvnud2HiUhjy0="></latexit><latexit sha1_base64="pPwlM0slNd8uLiTvnud2HiUhjy0="></latexit><latexit sha1_base64="pPwlM0slNd8uLiTvnud2HiUhjy0="></latexit><latexit sha1_base64="pPwlM0slNd8uLiTvnud2HiUhjy0="></latexit>

8

D
@f

@z
|z=0+ = �D

f0

H
<latexit sha1_base64="8tvwTCtOTMDVkwvZqv/Y56EgvXM=">AAACJXicbZDLSsNAFIYn9VbrLerSzWARBLEkIujCQlEXXVawF2himEwn7dDJhZmJ0Ma8jBtfxY0LiwiufBUnbUVt/WHg4z/ncOb8bsSokIbxoeUWFpeWV/KrhbX1jc0tfXunIcKYY1LHIQt5y0WCMBqQuqSSkVbECfJdRppu/yqrN+8JFzQMbuUgIraPugH1KEZSWY5+cQ0tjyOcWBHikiIGvfSHhyl8cJJh2bg7SsvwGH43e46RJtXU0YtGyRgLzoM5hSKYquboI6sT4tgngcQMCdE2jUjaSbYNM5IWrFiQCOE+6pK2wgD5RNjJ+MoUHiinA72QqxdIOHZ/TyTIF2Lgu6rTR7InZmuZ+V+tHUvv3E5oEMWSBHiyyIsZlCHMIoMdygmWbKAAYU7VXyHuIZWDVMEWVAjm7Mnz0DgpmYpvTouVy2kcebAH9sEhMMEZqIAqqIE6wOARPINXMNKetBftTXuftOa06cwu+CPt8wt7XaSX</latexit><latexit sha1_base64="8tvwTCtOTMDVkwvZqv/Y56EgvXM=">AAACJXicbZDLSsNAFIYn9VbrLerSzWARBLEkIujCQlEXXVawF2himEwn7dDJhZmJ0Ma8jBtfxY0LiwiufBUnbUVt/WHg4z/ncOb8bsSokIbxoeUWFpeWV/KrhbX1jc0tfXunIcKYY1LHIQt5y0WCMBqQuqSSkVbECfJdRppu/yqrN+8JFzQMbuUgIraPugH1KEZSWY5+cQ0tjyOcWBHikiIGvfSHhyl8cJJh2bg7SsvwGH43e46RJtXU0YtGyRgLzoM5hSKYquboI6sT4tgngcQMCdE2jUjaSbYNM5IWrFiQCOE+6pK2wgD5RNjJ+MoUHiinA72QqxdIOHZ/TyTIF2Lgu6rTR7InZmuZ+V+tHUvv3E5oEMWSBHiyyIsZlCHMIoMdygmWbKAAYU7VXyHuIZWDVMEWVAjm7Mnz0DgpmYpvTouVy2kcebAH9sEhMMEZqIAqqIE6wOARPINXMNKetBftTXuftOa06cwu+CPt8wt7XaSX</latexit><latexit sha1_base64="8tvwTCtOTMDVkwvZqv/Y56EgvXM=">AAACJXicbZDLSsNAFIYn9VbrLerSzWARBLEkIujCQlEXXVawF2himEwn7dDJhZmJ0Ma8jBtfxY0LiwiufBUnbUVt/WHg4z/ncOb8bsSokIbxoeUWFpeWV/KrhbX1jc0tfXunIcKYY1LHIQt5y0WCMBqQuqSSkVbECfJdRppu/yqrN+8JFzQMbuUgIraPugH1KEZSWY5+cQ0tjyOcWBHikiIGvfSHhyl8cJJh2bg7SsvwGH43e46RJtXU0YtGyRgLzoM5hSKYquboI6sT4tgngcQMCdE2jUjaSbYNM5IWrFiQCOE+6pK2wgD5RNjJ+MoUHiinA72QqxdIOHZ/TyTIF2Lgu6rTR7InZmuZ+V+tHUvv3E5oEMWSBHiyyIsZlCHMIoMdygmWbKAAYU7VXyHuIZWDVMEWVAjm7Mnz0DgpmYpvTouVy2kcebAH9sEhMMEZqIAqqIE6wOARPINXMNKetBftTXuftOa06cwu+CPt8wt7XaSX</latexit><latexit sha1_base64="8tvwTCtOTMDVkwvZqv/Y56EgvXM=">AAACJXicbZDLSsNAFIYn9VbrLerSzWARBLEkIujCQlEXXVawF2himEwn7dDJhZmJ0Ma8jBtfxY0LiwiufBUnbUVt/WHg4z/ncOb8bsSokIbxoeUWFpeWV/KrhbX1jc0tfXunIcKYY1LHIQt5y0WCMBqQuqSSkVbECfJdRppu/yqrN+8JFzQMbuUgIraPugH1KEZSWY5+cQ0tjyOcWBHikiIGvfSHhyl8cJJh2bg7SsvwGH43e46RJtXU0YtGyRgLzoM5hSKYquboI6sT4tgngcQMCdE2jUjaSbYNM5IWrFiQCOE+6pK2wgD5RNjJ+MoUHiinA72QqxdIOHZ/TyTIF2Lgu6rTR7InZmuZ+V+tHUvv3E5oEMWSBHiyyIsZlCHMIoMdygmWbKAAYU7VXyHuIZWDVMEWVAjm7Mnz0DgpmYpvTouVy2kcebAH9sEhMMEZqIAqqIE6wOARPINXMNKetBftTXuftOa06cwu+CPt8wt7XaSX</latexit>



A TOY MODEL FOR OUR GALAXY: ESCAPE FLUX

WHICH CR FLUX WOULD BE MEASURED BY AN OBSERVER OUTSIDE OUR 
GALAXY? 

WE ALREADY ESTABLISHED THAT  

BUT THIS IS EXACTLY THE FLUX ACROSS A SURFACE IN DIFFUSIVE REGIME: 

THE SPECTRUM OF COSMIC RAYS OBSERVED BY AN OBSERVER OUTSIDE OUR 
GALAXY IS THE SAME AS INJECTED BY SOURCES, NOT THE SAME AS WE 
MEASURE AT THE EARTH!
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MEANING OF FREE ESCAPE BOUNDARY?

The physics of CR transport is as much regulated by diffusion as it is by boundary 
conditions (this is true for toy models as well as it is for GALPROP)

What does “free escape” mean?

Conservation of flux at the boundary implies:

f(z = H, p) = 0
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Beware that despite the great importance of this assumption 
we do not have any handle on what determines the halo size 

or weather the halo size depends on energy 10



A SIMPLE DESCRIPTION OF TRANSPORT OF NUCLEI

3

between z = 0� and z = 0+ one gets:
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where f0(p) is the distribution function of accelerated par-
ticles at the shock location, z = 0. Imposing homogeneity
downstream implies that

⇥
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2
= 0. In the upstream region

(z < 0), equation (1) simplifies to
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�
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which can be easily solved with the boundary condition that
f(z = �1, p) = g(p). The particle distribution function
at the shock, that takes into account both acceleration of
injected particles and reacceleration of seed particles is then
easily derived and reads:
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s⌘ngas
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g(p0), (5)

where we introduced the shock velocity vsh = u1. Here, as
usual, s = 3r/(r � 1) with r = u1/u2 (compression factor
at the shock). We introduced a momentum p0 representing
the minimum momentum of seed particles: such momentum
may or may not be the same as pinj . In any case, for the
spectra of seed particles considered in this manuscript the
choice of p0 has no practical implications, provided is low
enough (below ⇠ GeV), because the integral in equation (5)
is typically dominated by the upper integration limit. For a
strong shock, one has that r ! 4 and s ! 4. It is worth re-
calling that whenever the spectrum of seeds is steeper than
⇠ p

�s, the spectrum of reaccelerated particles asymptoti-
cally approaches ⇠ p

�s. For the shocks we are interested in,
s ⇠ 4. The spectra of seeds we consider (spectra of primary
and secondary nuclei in the Galaxy) are always steeper than
p
�4, at least at energies & 10 GeV/n. This implies that the

second term in equation (5) always returns a contribution
to f0 that is close to ⇠ p

�s. For primary nuclei, this con-
tribution is expected to a↵ect mainly the normalization but
not the spectrum. On the other hand, for secondary nuclei
the first term vanished and the second term again returns
a contribution that is close to ⇠ p

�s. Since the spectrum of
secondary nuclei in the Galaxy at high enough energies is
/ E

���� (where � defines the energy dependence of the dif-
fusion coe�cient), it is clear that the e↵ect of reaccelerated
secondary nuclei is bound to become dominant above some
critical energy, that will be estimated in the next section.

3 GALACTIC TRANSPORT OF COSMIC
RAYS IN THE PRESENCE OF
REACCELERATION

In the assumption that the sources are all located in a thin
disc with half-thickness hd where the gas, with density nd,
is also embedded, the stationary transport equation in one
spatial dimension for nuclei of type ↵ reads:
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where D↵(p) is the di↵usion coe�cient, F↵(p, z) is the par-
ticle distribution function of nuclei of type ↵. The cross sec-
tions �↵ and �↵0!↵ refer to the cross sections for spallation
of the element ↵ and the cross section for spallation of the
nucleus ↵

0 to a nucleus ↵. The source term and the spalla-
tion terms in equation (6) are written in the assumption that
both take place in an infinitely thin region. This assumption
holds for as long as the thickness of the disc is much smaller
than the size of the halo and of the range where spallation
losses become dominant. In other words: hd ⌧ (D(p)⌧sp)

1/2,
where ⌧sp is the time scale for spallation reactions. For the
situations of interest for us this condition is always satisfied.
Notice that in the last term of equation (6) we took into ac-
count that in the spallation reaction a nucleus of type ↵ with
momentum p is produced by a nucleus of type ↵

0 with mo-
mentum p

0, chosen in such a way that p and p
0 correspond to

the same kinetic energy per nucleon, namely p
0 = (A0

/A)p,
where A and A

0 are the two mass numbers.
The injection term in equation (6) can be easily con-

nected with the distribution function f0 of accelerated par-
ticles in §2:

q0,↵(p) =
f0,↵(p)VSNRSN

⇡R
2
d
2hd

, (7)

where we have implicitly assumed that the sites where CR
acceleration takes place are the shocks of supernova rem-
nants and SNe explode at a rate RSN . Here VSN is the total
volume of a SNR filled with energetic particles and Rd is
the radius of the disc of the Galaxy. For simplicity here we
assumed that the injection is homogeneous across the disc of
the Galaxy. The volume VSN is a parameter of the problem:
it is clear that this setup is not necessarily very realistic but
it is not easy to go beyond it, since in principle one should
follow the time dependence of the acceleration process and
of the SN evolution, that are both rather di�cult to model.
For the purpose of illustrating the importance of reaccelera-
tion, the parameter VSN is meaningful because it regulates
the probability for a CR particle to re-cross a SN shock and
be re-energized.

It is useful, following Jones et al. (2001), to introduce,
for each nucleus of type ↵, the flux as a function of the
kinetic energy per nucleon Ek: I(Ek)dEk = p

2
v(p)F (p)dp,

where v(p) is the velocity of the nucleus. It can be easily
shown that:

I↵(Ek) = Ap
2
F↵(p). (8)

Using this transformation in equation (6), we obtain the
following equation for I↵(Ek):
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where we used explicitly the fact that spallation reactions
conserve kinetic energy per nucleon. The injection term
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which can be easily solved with the boundary condition that
f(z = �1, p) = g(p). The particle distribution function
at the shock, that takes into account both acceleration of
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where we introduced the shock velocity vsh = u1. Here, as
usual, s = 3r/(r � 1) with r = u1/u2 (compression factor
at the shock). We introduced a momentum p0 representing
the minimum momentum of seed particles: such momentum
may or may not be the same as pinj . In any case, for the
spectra of seed particles considered in this manuscript the
choice of p0 has no practical implications, provided is low
enough (below ⇠ GeV), because the integral in equation (5)
is typically dominated by the upper integration limit. For a
strong shock, one has that r ! 4 and s ! 4. It is worth re-
calling that whenever the spectrum of seeds is steeper than
⇠ p

�s, the spectrum of reaccelerated particles asymptoti-
cally approaches ⇠ p

�s. For the shocks we are interested in,
s ⇠ 4. The spectra of seeds we consider (spectra of primary
and secondary nuclei in the Galaxy) are always steeper than
p
�4, at least at energies & 10 GeV/n. This implies that the

second term in equation (5) always returns a contribution
to f0 that is close to ⇠ p

�s. For primary nuclei, this con-
tribution is expected to a↵ect mainly the normalization but
not the spectrum. On the other hand, for secondary nuclei
the first term vanished and the second term again returns
a contribution that is close to ⇠ p

�s. Since the spectrum of
secondary nuclei in the Galaxy at high enough energies is
/ E

���� (where � defines the energy dependence of the dif-
fusion coe�cient), it is clear that the e↵ect of reaccelerated
secondary nuclei is bound to become dominant above some
critical energy, that will be estimated in the next section.

3 GALACTIC TRANSPORT OF COSMIC
RAYS IN THE PRESENCE OF
REACCELERATION

In the assumption that the sources are all located in a thin
disc with half-thickness hd where the gas, with density nd,
is also embedded, the stationary transport equation in one
spatial dimension for nuclei of type ↵ reads:
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where D↵(p) is the di↵usion coe�cient, F↵(p, z) is the par-
ticle distribution function of nuclei of type ↵. The cross sec-
tions �↵ and �↵0!↵ refer to the cross sections for spallation
of the element ↵ and the cross section for spallation of the
nucleus ↵

0 to a nucleus ↵. The source term and the spalla-
tion terms in equation (6) are written in the assumption that
both take place in an infinitely thin region. This assumption
holds for as long as the thickness of the disc is much smaller
than the size of the halo and of the range where spallation
losses become dominant. In other words: hd ⌧ (D(p)⌧sp)

1/2,
where ⌧sp is the time scale for spallation reactions. For the
situations of interest for us this condition is always satisfied.
Notice that in the last term of equation (6) we took into ac-
count that in the spallation reaction a nucleus of type ↵ with
momentum p is produced by a nucleus of type ↵

0 with mo-
mentum p

0, chosen in such a way that p and p
0 correspond to

the same kinetic energy per nucleon, namely p
0 = (A0

/A)p,
where A and A

0 are the two mass numbers.
The injection term in equation (6) can be easily con-

nected with the distribution function f0 of accelerated par-
ticles in §2:
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where we have implicitly assumed that the sites where CR
acceleration takes place are the shocks of supernova rem-
nants and SNe explode at a rate RSN . Here VSN is the total
volume of a SNR filled with energetic particles and Rd is
the radius of the disc of the Galaxy. For simplicity here we
assumed that the injection is homogeneous across the disc of
the Galaxy. The volume VSN is a parameter of the problem:
it is clear that this setup is not necessarily very realistic but
it is not easy to go beyond it, since in principle one should
follow the time dependence of the acceleration process and
of the SN evolution, that are both rather di�cult to model.
For the purpose of illustrating the importance of reaccelera-
tion, the parameter VSN is meaningful because it regulates
the probability for a CR particle to re-cross a SN shock and
be re-energized.

It is useful, following Jones et al. (2001), to introduce,
for each nucleus of type ↵, the flux as a function of the
kinetic energy per nucleon Ek: I(Ek)dEk = p

2
v(p)F (p)dp,

where v(p) is the velocity of the nucleus. It can be easily
shown that:

I↵(Ek) = Ap
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F↵(p). (8)

Using this transformation in equation (6), we obtain the
following equation for I↵(Ek):
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where we introduced the shock velocity vsh = u1. Here, as
usual, s = 3r/(r � 1) with r = u1/u2 (compression factor
at the shock). We introduced a momentum p0 representing
the minimum momentum of seed particles: such momentum
may or may not be the same as pinj . In any case, for the
spectra of seed particles considered in this manuscript the
choice of p0 has no practical implications, provided is low
enough (below ⇠ GeV), because the integral in equation (5)
is typically dominated by the upper integration limit. For a
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tribution is expected to a↵ect mainly the normalization but
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a contribution that is close to ⇠ p

�s. Since the spectrum of
secondary nuclei in the Galaxy at high enough energies is
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���� (where � defines the energy dependence of the dif-
fusion coe�cient), it is clear that the e↵ect of reaccelerated
secondary nuclei is bound to become dominant above some
critical energy, that will be estimated in the next section.
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where D↵(p) is the di↵usion coe�cient, F↵(p, z) is the par-
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where we have implicitly assumed that the sites where CR
acceleration takes place are the shocks of supernova rem-
nants and SNe explode at a rate RSN . Here VSN is the total
volume of a SNR filled with energetic particles and Rd is
the radius of the disc of the Galaxy. For simplicity here we
assumed that the injection is homogeneous across the disc of
the Galaxy. The volume VSN is a parameter of the problem:
it is clear that this setup is not necessarily very realistic but
it is not easy to go beyond it, since in principle one should
follow the time dependence of the acceleration process and
of the SN evolution, that are both rather di�cult to model.
For the purpose of illustrating the importance of reaccelera-
tion, the parameter VSN is meaningful because it regulates
the probability for a CR particle to re-cross a SN shock and
be re-energized.

It is useful, following Jones et al. (2001), to introduce,
for each nucleus of type ↵, the flux as a function of the
kinetic energy per nucleon Ek: I(Ek)dEk = p
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v(p)F (p)dp,

where v(p) is the velocity of the nucleus. It can be easily
shown that:
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f(z = �1, p) = g(p). The particle distribution function
at the shock, that takes into account both acceleration of
injected particles and reacceleration of seed particles is then
easily derived and reads:

f0(p) =
s⌘ngas

4⇡p3
inj

✓
p

pinj

◆�s

+

+ s

Z
p

p0

dp
0

p0

✓
p
0

p

◆s

g(p0), (5)

where we introduced the shock velocity vsh = u1. Here, as
usual, s = 3r/(r � 1) with r = u1/u2 (compression factor
at the shock). We introduced a momentum p0 representing
the minimum momentum of seed particles: such momentum
may or may not be the same as pinj . In any case, for the
spectra of seed particles considered in this manuscript the
choice of p0 has no practical implications, provided is low
enough (below ⇠ GeV), because the integral in equation (5)
is typically dominated by the upper integration limit. For a
strong shock, one has that r ! 4 and s ! 4. It is worth re-
calling that whenever the spectrum of seeds is steeper than
⇠ p

�s, the spectrum of reaccelerated particles asymptoti-
cally approaches ⇠ p

�s. For the shocks we are interested in,
s ⇠ 4. The spectra of seeds we consider (spectra of primary
and secondary nuclei in the Galaxy) are always steeper than
p
�4, at least at energies & 10 GeV/n. This implies that the

second term in equation (5) always returns a contribution
to f0 that is close to ⇠ p

�s. For primary nuclei, this con-
tribution is expected to a↵ect mainly the normalization but
not the spectrum. On the other hand, for secondary nuclei
the first term vanished and the second term again returns
a contribution that is close to ⇠ p

�s. Since the spectrum of
secondary nuclei in the Galaxy at high enough energies is
/ E

���� (where � defines the energy dependence of the dif-
fusion coe�cient), it is clear that the e↵ect of reaccelerated
secondary nuclei is bound to become dominant above some
critical energy, that will be estimated in the next section.
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In the assumption that the sources are all located in a thin
disc with half-thickness hd where the gas, with density nd,
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where D↵(p) is the di↵usion coe�cient, F↵(p, z) is the par-
ticle distribution function of nuclei of type ↵. The cross sec-
tions �↵ and �↵0!↵ refer to the cross sections for spallation
of the element ↵ and the cross section for spallation of the
nucleus ↵

0 to a nucleus ↵. The source term and the spalla-
tion terms in equation (6) are written in the assumption that
both take place in an infinitely thin region. This assumption
holds for as long as the thickness of the disc is much smaller
than the size of the halo and of the range where spallation
losses become dominant. In other words: hd ⌧ (D(p)⌧sp)

1/2,
where ⌧sp is the time scale for spallation reactions. For the
situations of interest for us this condition is always satisfied.
Notice that in the last term of equation (6) we took into ac-
count that in the spallation reaction a nucleus of type ↵ with
momentum p is produced by a nucleus of type ↵

0 with mo-
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0, chosen in such a way that p and p
0 correspond to

the same kinetic energy per nucleon, namely p
0 = (A0

/A)p,
where A and A
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where we have implicitly assumed that the sites where CR
acceleration takes place are the shocks of supernova rem-
nants and SNe explode at a rate RSN . Here VSN is the total
volume of a SNR filled with energetic particles and Rd is
the radius of the disc of the Galaxy. For simplicity here we
assumed that the injection is homogeneous across the disc of
the Galaxy. The volume VSN is a parameter of the problem:
it is clear that this setup is not necessarily very realistic but
it is not easy to go beyond it, since in principle one should
follow the time dependence of the acceleration process and
of the SN evolution, that are both rather di�cult to model.
For the purpose of illustrating the importance of reaccelera-
tion, the parameter VSN is meaningful because it regulates
the probability for a CR particle to re-cross a SN shock and
be re-energized.

It is useful, following Jones et al. (2001), to introduce,
for each nucleus of type ↵, the flux as a function of the
kinetic energy per nucleon Ek: I(Ek)dEk = p

2
v(p)F (p)dp,

where v(p) is the velocity of the nucleus. It can be easily
shown that:

I↵(Ek) = Ap
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F↵(p). (8)

Using this transformation in equation (6), we obtain the
following equation for I↵(Ek):
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the probability for a CR particle to re-cross a SN shock and
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For nuclei of mass A, it is customary to introduce the flux as a function of the kinetic 
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where f0(p) is the distribution function of accelerated par-
ticles at the shock location, z = 0. Imposing homogeneity
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which can be easily solved with the boundary condition that
f(z = �1, p) = g(p). The particle distribution function
at the shock, that takes into account both acceleration of
injected particles and reacceleration of seed particles is then
easily derived and reads:
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where we introduced the shock velocity vsh = u1. Here, as
usual, s = 3r/(r � 1) with r = u1/u2 (compression factor
at the shock). We introduced a momentum p0 representing
the minimum momentum of seed particles: such momentum
may or may not be the same as pinj . In any case, for the
spectra of seed particles considered in this manuscript the
choice of p0 has no practical implications, provided is low
enough (below ⇠ GeV), because the integral in equation (5)
is typically dominated by the upper integration limit. For a
strong shock, one has that r ! 4 and s ! 4. It is worth re-
calling that whenever the spectrum of seeds is steeper than
⇠ p

�s, the spectrum of reaccelerated particles asymptoti-
cally approaches ⇠ p

�s. For the shocks we are interested in,
s ⇠ 4. The spectra of seeds we consider (spectra of primary
and secondary nuclei in the Galaxy) are always steeper than
p
�4, at least at energies & 10 GeV/n. This implies that the

second term in equation (5) always returns a contribution
to f0 that is close to ⇠ p

�s. For primary nuclei, this con-
tribution is expected to a↵ect mainly the normalization but
not the spectrum. On the other hand, for secondary nuclei
the first term vanished and the second term again returns
a contribution that is close to ⇠ p

�s. Since the spectrum of
secondary nuclei in the Galaxy at high enough energies is
/ E

���� (where � defines the energy dependence of the dif-
fusion coe�cient), it is clear that the e↵ect of reaccelerated
secondary nuclei is bound to become dominant above some
critical energy, that will be estimated in the next section.

3 GALACTIC TRANSPORT OF COSMIC
RAYS IN THE PRESENCE OF
REACCELERATION

In the assumption that the sources are all located in a thin
disc with half-thickness hd where the gas, with density nd,
is also embedded, the stationary transport equation in one
spatial dimension for nuclei of type ↵ reads:
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where D↵(p) is the di↵usion coe�cient, F↵(p, z) is the par-
ticle distribution function of nuclei of type ↵. The cross sec-
tions �↵ and �↵0!↵ refer to the cross sections for spallation
of the element ↵ and the cross section for spallation of the
nucleus ↵

0 to a nucleus ↵. The source term and the spalla-
tion terms in equation (6) are written in the assumption that
both take place in an infinitely thin region. This assumption
holds for as long as the thickness of the disc is much smaller
than the size of the halo and of the range where spallation
losses become dominant. In other words: hd ⌧ (D(p)⌧sp)

1/2,
where ⌧sp is the time scale for spallation reactions. For the
situations of interest for us this condition is always satisfied.
Notice that in the last term of equation (6) we took into ac-
count that in the spallation reaction a nucleus of type ↵ with
momentum p is produced by a nucleus of type ↵

0 with mo-
mentum p

0, chosen in such a way that p and p
0 correspond to

the same kinetic energy per nucleon, namely p
0 = (A0

/A)p,
where A and A

0 are the two mass numbers.
The injection term in equation (6) can be easily con-

nected with the distribution function f0 of accelerated par-
ticles in §2:

q0,↵(p) =
f0,↵(p)VSNRSN

⇡R
2
d
2hd
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where we have implicitly assumed that the sites where CR
acceleration takes place are the shocks of supernova rem-
nants and SNe explode at a rate RSN . Here VSN is the total
volume of a SNR filled with energetic particles and Rd is
the radius of the disc of the Galaxy. For simplicity here we
assumed that the injection is homogeneous across the disc of
the Galaxy. The volume VSN is a parameter of the problem:
it is clear that this setup is not necessarily very realistic but
it is not easy to go beyond it, since in principle one should
follow the time dependence of the acceleration process and
of the SN evolution, that are both rather di�cult to model.
For the purpose of illustrating the importance of reaccelera-
tion, the parameter VSN is meaningful because it regulates
the probability for a CR particle to re-cross a SN shock and
be re-energized.

It is useful, following Jones et al. (2001), to introduce,
for each nucleus of type ↵, the flux as a function of the
kinetic energy per nucleon Ek: I(Ek)dEk = p

2
v(p)F (p)dp,

where v(p) is the velocity of the nucleus. It can be easily
shown that:

I↵(Ek) = Ap
2
F↵(p). (8)

Using this transformation in equation (6), we obtain the
following equation for I↵(Ek):
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where we used explicitly the fact that spallation reactions
conserve kinetic energy per nucleon. The injection term
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usual, s = 3r/(r � 1) with r = u1/u2 (compression factor
at the shock). We introduced a momentum p0 representing
the minimum momentum of seed particles: such momentum
may or may not be the same as pinj . In any case, for the
spectra of seed particles considered in this manuscript the
choice of p0 has no practical implications, provided is low
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acceleration takes place are the shocks of supernova rem-
nants and SNe explode at a rate RSN . Here VSN is the total
volume of a SNR filled with energetic particles and Rd is
the radius of the disc of the Galaxy. For simplicity here we
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it is not easy to go beyond it, since in principle one should
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For the purpose of illustrating the importance of reaccelera-
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where f0(p) is the distribution function of accelerated par-
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which can be easily solved with the boundary condition that
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where we introduced the shock velocity vsh = u1. Here, as
usual, s = 3r/(r � 1) with r = u1/u2 (compression factor
at the shock). We introduced a momentum p0 representing
the minimum momentum of seed particles: such momentum
may or may not be the same as pinj . In any case, for the
spectra of seed particles considered in this manuscript the
choice of p0 has no practical implications, provided is low
enough (below ⇠ GeV), because the integral in equation (5)
is typically dominated by the upper integration limit. For a
strong shock, one has that r ! 4 and s ! 4. It is worth re-
calling that whenever the spectrum of seeds is steeper than
⇠ p

�s, the spectrum of reaccelerated particles asymptoti-
cally approaches ⇠ p

�s. For the shocks we are interested in,
s ⇠ 4. The spectra of seeds we consider (spectra of primary
and secondary nuclei in the Galaxy) are always steeper than
p
�4, at least at energies & 10 GeV/n. This implies that the

second term in equation (5) always returns a contribution
to f0 that is close to ⇠ p

�s. For primary nuclei, this con-
tribution is expected to a↵ect mainly the normalization but
not the spectrum. On the other hand, for secondary nuclei
the first term vanished and the second term again returns
a contribution that is close to ⇠ p

�s. Since the spectrum of
secondary nuclei in the Galaxy at high enough energies is
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���� (where � defines the energy dependence of the dif-
fusion coe�cient), it is clear that the e↵ect of reaccelerated
secondary nuclei is bound to become dominant above some
critical energy, that will be estimated in the next section.
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ticle distribution function of nuclei of type ↵. The cross sec-
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of the element ↵ and the cross section for spallation of the
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0 to a nucleus ↵. The source term and the spalla-
tion terms in equation (6) are written in the assumption that
both take place in an infinitely thin region. This assumption
holds for as long as the thickness of the disc is much smaller
than the size of the halo and of the range where spallation
losses become dominant. In other words: hd ⌧ (D(p)⌧sp)
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where ⌧sp is the time scale for spallation reactions. For the
situations of interest for us this condition is always satisfied.
Notice that in the last term of equation (6) we took into ac-
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where we have implicitly assumed that the sites where CR
acceleration takes place are the shocks of supernova rem-
nants and SNe explode at a rate RSN . Here VSN is the total
volume of a SNR filled with energetic particles and Rd is
the radius of the disc of the Galaxy. For simplicity here we
assumed that the injection is homogeneous across the disc of
the Galaxy. The volume VSN is a parameter of the problem:
it is clear that this setup is not necessarily very realistic but
it is not easy to go beyond it, since in principle one should
follow the time dependence of the acceleration process and
of the SN evolution, that are both rather di�cult to model.
For the purpose of illustrating the importance of reaccelera-
tion, the parameter VSN is meaningful because it regulates
the probability for a CR particle to re-cross a SN shock and
be re-energized.

It is useful, following Jones et al. (2001), to introduce,
for each nucleus of type ↵, the flux as a function of the
kinetic energy per nucleon Ek: I(Ek)dEk = p
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where v(p) is the velocity of the nucleus. It can be easily
shown that:
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where f0(p) is the distribution function of accelerated par-
ticles at the shock location, z = 0. Imposing homogeneity
downstream implies that
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which can be easily solved with the boundary condition that
f(z = �1, p) = g(p). The particle distribution function
at the shock, that takes into account both acceleration of
injected particles and reacceleration of seed particles is then
easily derived and reads:
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where we introduced the shock velocity vsh = u1. Here, as
usual, s = 3r/(r � 1) with r = u1/u2 (compression factor
at the shock). We introduced a momentum p0 representing
the minimum momentum of seed particles: such momentum
may or may not be the same as pinj . In any case, for the
spectra of seed particles considered in this manuscript the
choice of p0 has no practical implications, provided is low
enough (below ⇠ GeV), because the integral in equation (5)
is typically dominated by the upper integration limit. For a
strong shock, one has that r ! 4 and s ! 4. It is worth re-
calling that whenever the spectrum of seeds is steeper than
⇠ p

�s, the spectrum of reaccelerated particles asymptoti-
cally approaches ⇠ p

�s. For the shocks we are interested in,
s ⇠ 4. The spectra of seeds we consider (spectra of primary
and secondary nuclei in the Galaxy) are always steeper than
p
�4, at least at energies & 10 GeV/n. This implies that the

second term in equation (5) always returns a contribution
to f0 that is close to ⇠ p

�s. For primary nuclei, this con-
tribution is expected to a↵ect mainly the normalization but
not the spectrum. On the other hand, for secondary nuclei
the first term vanished and the second term again returns
a contribution that is close to ⇠ p

�s. Since the spectrum of
secondary nuclei in the Galaxy at high enough energies is
/ E

���� (where � defines the energy dependence of the dif-
fusion coe�cient), it is clear that the e↵ect of reaccelerated
secondary nuclei is bound to become dominant above some
critical energy, that will be estimated in the next section.

3 GALACTIC TRANSPORT OF COSMIC
RAYS IN THE PRESENCE OF
REACCELERATION

In the assumption that the sources are all located in a thin
disc with half-thickness hd where the gas, with density nd,
is also embedded, the stationary transport equation in one
spatial dimension for nuclei of type ↵ reads:
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where D↵(p) is the di↵usion coe�cient, F↵(p, z) is the par-
ticle distribution function of nuclei of type ↵. The cross sec-
tions �↵ and �↵0!↵ refer to the cross sections for spallation
of the element ↵ and the cross section for spallation of the
nucleus ↵

0 to a nucleus ↵. The source term and the spalla-
tion terms in equation (6) are written in the assumption that
both take place in an infinitely thin region. This assumption
holds for as long as the thickness of the disc is much smaller
than the size of the halo and of the range where spallation
losses become dominant. In other words: hd ⌧ (D(p)⌧sp)

1/2,
where ⌧sp is the time scale for spallation reactions. For the
situations of interest for us this condition is always satisfied.
Notice that in the last term of equation (6) we took into ac-
count that in the spallation reaction a nucleus of type ↵ with
momentum p is produced by a nucleus of type ↵

0 with mo-
mentum p

0, chosen in such a way that p and p
0 correspond to

the same kinetic energy per nucleon, namely p
0 = (A0

/A)p,
where A and A

0 are the two mass numbers.
The injection term in equation (6) can be easily con-

nected with the distribution function f0 of accelerated par-
ticles in §2:
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f0,↵(p)VSNRSN
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where we have implicitly assumed that the sites where CR
acceleration takes place are the shocks of supernova rem-
nants and SNe explode at a rate RSN . Here VSN is the total
volume of a SNR filled with energetic particles and Rd is
the radius of the disc of the Galaxy. For simplicity here we
assumed that the injection is homogeneous across the disc of
the Galaxy. The volume VSN is a parameter of the problem:
it is clear that this setup is not necessarily very realistic but
it is not easy to go beyond it, since in principle one should
follow the time dependence of the acceleration process and
of the SN evolution, that are both rather di�cult to model.
For the purpose of illustrating the importance of reaccelera-
tion, the parameter VSN is meaningful because it regulates
the probability for a CR particle to re-cross a SN shock and
be re-energized.

It is useful, following Jones et al. (2001), to introduce,
for each nucleus of type ↵, the flux as a function of the
kinetic energy per nucleon Ek: I(Ek)dEk = p

2
v(p)F (p)dp,

where v(p) is the velocity of the nucleus. It can be easily
shown that:

I↵(Ek) = Ap
2
F↵(p). (8)

Using this transformation in equation (6), we obtain the
following equation for I↵(Ek):
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where we used explicitly the fact that spallation reactions
conserve kinetic energy per nucleon. The injection term
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where we introduced the shock velocity vsh = u1. Here, as
usual, s = 3r/(r � 1) with r = u1/u2 (compression factor
at the shock). We introduced a momentum p0 representing
the minimum momentum of seed particles: such momentum
may or may not be the same as pinj . In any case, for the
spectra of seed particles considered in this manuscript the
choice of p0 has no practical implications, provided is low
enough (below ⇠ GeV), because the integral in equation (5)
is typically dominated by the upper integration limit. For a
strong shock, one has that r ! 4 and s ! 4. It is worth re-
calling that whenever the spectrum of seeds is steeper than
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�s, the spectrum of reaccelerated particles asymptoti-
cally approaches ⇠ p

�s. For the shocks we are interested in,
s ⇠ 4. The spectra of seeds we consider (spectra of primary
and secondary nuclei in the Galaxy) are always steeper than
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�4, at least at energies & 10 GeV/n. This implies that the

second term in equation (5) always returns a contribution
to f0 that is close to ⇠ p

�s. For primary nuclei, this con-
tribution is expected to a↵ect mainly the normalization but
not the spectrum. On the other hand, for secondary nuclei
the first term vanished and the second term again returns
a contribution that is close to ⇠ p

�s. Since the spectrum of
secondary nuclei in the Galaxy at high enough energies is
/ E

���� (where � defines the energy dependence of the dif-
fusion coe�cient), it is clear that the e↵ect of reaccelerated
secondary nuclei is bound to become dominant above some
critical energy, that will be estimated in the next section.
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In the assumption that the sources are all located in a thin
disc with half-thickness hd where the gas, with density nd,
is also embedded, the stationary transport equation in one
spatial dimension for nuclei of type ↵ reads:
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where D↵(p) is the di↵usion coe�cient, F↵(p, z) is the par-
ticle distribution function of nuclei of type ↵. The cross sec-
tions �↵ and �↵0!↵ refer to the cross sections for spallation
of the element ↵ and the cross section for spallation of the
nucleus ↵

0 to a nucleus ↵. The source term and the spalla-
tion terms in equation (6) are written in the assumption that
both take place in an infinitely thin region. This assumption
holds for as long as the thickness of the disc is much smaller
than the size of the halo and of the range where spallation
losses become dominant. In other words: hd ⌧ (D(p)⌧sp)
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where ⌧sp is the time scale for spallation reactions. For the
situations of interest for us this condition is always satisfied.
Notice that in the last term of equation (6) we took into ac-
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where we have implicitly assumed that the sites where CR
acceleration takes place are the shocks of supernova rem-
nants and SNe explode at a rate RSN . Here VSN is the total
volume of a SNR filled with energetic particles and Rd is
the radius of the disc of the Galaxy. For simplicity here we
assumed that the injection is homogeneous across the disc of
the Galaxy. The volume VSN is a parameter of the problem:
it is clear that this setup is not necessarily very realistic but
it is not easy to go beyond it, since in principle one should
follow the time dependence of the acceleration process and
of the SN evolution, that are both rather di�cult to model.
For the purpose of illustrating the importance of reaccelera-
tion, the parameter VSN is meaningful because it regulates
the probability for a CR particle to re-cross a SN shock and
be re-energized.

It is useful, following Jones et al. (2001), to introduce,
for each nucleus of type ↵, the flux as a function of the
kinetic energy per nucleon Ek: I(Ek)dEk = p
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v(p)F (p)dp,

where v(p) is the velocity of the nucleus. It can be easily
shown that:

I↵(Ek) = Ap
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Using this transformation in equation (6), we obtain the
following equation for I↵(Ek):
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where we used explicitly the fact that spallation reactions
conserve kinetic energy per nucleon. The injection term
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which can be easily solved with the boundary condition that
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where we introduced the shock velocity vsh = u1. Here, as
usual, s = 3r/(r � 1) with r = u1/u2 (compression factor
at the shock). We introduced a momentum p0 representing
the minimum momentum of seed particles: such momentum
may or may not be the same as pinj . In any case, for the
spectra of seed particles considered in this manuscript the
choice of p0 has no practical implications, provided is low
enough (below ⇠ GeV), because the integral in equation (5)
is typically dominated by the upper integration limit. For a
strong shock, one has that r ! 4 and s ! 4. It is worth re-
calling that whenever the spectrum of seeds is steeper than
⇠ p

�s, the spectrum of reaccelerated particles asymptoti-
cally approaches ⇠ p

�s. For the shocks we are interested in,
s ⇠ 4. The spectra of seeds we consider (spectra of primary
and secondary nuclei in the Galaxy) are always steeper than
p
�4, at least at energies & 10 GeV/n. This implies that the

second term in equation (5) always returns a contribution
to f0 that is close to ⇠ p

�s. For primary nuclei, this con-
tribution is expected to a↵ect mainly the normalization but
not the spectrum. On the other hand, for secondary nuclei
the first term vanished and the second term again returns
a contribution that is close to ⇠ p

�s. Since the spectrum of
secondary nuclei in the Galaxy at high enough energies is
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���� (where � defines the energy dependence of the dif-
fusion coe�cient), it is clear that the e↵ect of reaccelerated
secondary nuclei is bound to become dominant above some
critical energy, that will be estimated in the next section.
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In the assumption that the sources are all located in a thin
disc with half-thickness hd where the gas, with density nd,
is also embedded, the stationary transport equation in one
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where D↵(p) is the di↵usion coe�cient, F↵(p, z) is the par-
ticle distribution function of nuclei of type ↵. The cross sec-
tions �↵ and �↵0!↵ refer to the cross sections for spallation
of the element ↵ and the cross section for spallation of the
nucleus ↵

0 to a nucleus ↵. The source term and the spalla-
tion terms in equation (6) are written in the assumption that
both take place in an infinitely thin region. This assumption
holds for as long as the thickness of the disc is much smaller
than the size of the halo and of the range where spallation
losses become dominant. In other words: hd ⌧ (D(p)⌧sp)
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where ⌧sp is the time scale for spallation reactions. For the
situations of interest for us this condition is always satisfied.
Notice that in the last term of equation (6) we took into ac-
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where we have implicitly assumed that the sites where CR
acceleration takes place are the shocks of supernova rem-
nants and SNe explode at a rate RSN . Here VSN is the total
volume of a SNR filled with energetic particles and Rd is
the radius of the disc of the Galaxy. For simplicity here we
assumed that the injection is homogeneous across the disc of
the Galaxy. The volume VSN is a parameter of the problem:
it is clear that this setup is not necessarily very realistic but
it is not easy to go beyond it, since in principle one should
follow the time dependence of the acceleration process and
of the SN evolution, that are both rather di�cult to model.
For the purpose of illustrating the importance of reaccelera-
tion, the parameter VSN is meaningful because it regulates
the probability for a CR particle to re-cross a SN shock and
be re-energized.

It is useful, following Jones et al. (2001), to introduce,
for each nucleus of type ↵, the flux as a function of the
kinetic energy per nucleon Ek: I(Ek)dEk = p
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where v(p) is the velocity of the nucleus. It can be easily
shown that:

I↵(Ek) = Ap
2
F↵(p). (8)

Using this transformation in equation (6), we obtain the
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where we used explicitly the fact that spallation reactions
conserve kinetic energy per nucleon. The injection term
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q0,↵(p) is calculated at p = A
p

E
2
k
+ 2mpEk and, based on

the discussion in §2, is made, in general, of two contributions:
nuclei of type ↵ freshly accelerated at the shock and nuclei
of type ↵ already present in the environment and eventu-
ally reaccelerated. For secondary nuclei, such as boron and
lithium, only the latter contribution to injection is present.
In the following we discuss the case of primary and secondary
nuclei separately.

3.1 The case of primary nuclei

For primary nuclei, such as carbon and oxygen, the contribu-
tion coming from spallation of heavier elements is negligible
and one can write equation (9) as
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In order to simplify the notation, we introduce the quantity
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of a typical SNR to the volume of the Galactic disc (typically
�V ⇠ 10�8). From equations (5) and (7) follows that

Ap
2
q0,↵(p) = s�V RSN⇥

⇥
"
K A

✓
p

pinj

◆2�s

+

Z
p

p0

dp
0

p0

✓
p
0

p

◆s�2

I↵(E
0
k, z = 0)

#
,

(11)

where K =
⌘ngas

4⇡pinj
and the momentum is related to

the kinetic energy per nucleon through the relation p =
A
p

E
2
k
+ 2mpEk. The important thing to notice is that the

function that we wish to solve equation (10) for also enters
the injection term (reacceleration). More precisely the reac-
celeration term is related to the value of the flux I↵(Ek, z)
in the disc (z = 0). Hence equation (10) is best solved by
iterations.

For z 6= 0 the equation is trivial and under the boundary
condition that I↵(Ek, z = ±H) = 0 one finds
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where I↵,0(Ek) = I↵(Ek, z = 0). On the other hand, in-
tegrating equation (10) between z = 0� and z = 0+, one
gets:
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From equation (12) one sees that
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hence equation (13) leads to:
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where we introduced the grammage:

X(Ek) = nd

hd
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as well as the critical grammage Xcr,↵ = m/�↵, where m is
the mean mass of the interstellar medium gas that acts as
target for spallation (we assume m = 1.4mp). The quantity
ndhd/H that appears in the grammage plays the role of
mean density traversed by CRs during propagation in the
disc and halo of the Galaxy. The index (i) in equation 14
labels the iteration cycle.

One can estimate the e↵ect of reacceleration on the
spectrum of primary nuclei by calculating the result of the
first iteration in equation (14), namely by taking
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and replacing it in the integral of equation 14, to get:
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where, for simplicity, we assumed that, at the energies we are
interested in, the role of spallation is weak, namelyX(Ek) ⌧
Xcr.

We assume, as it is often done, that the di↵usion coe�-
cient is in the form D↵ = D0(p/p⇤)

�, with � = 0 for p < p⇤,
with p⇤ typically in the range of 10 GeV/c. For p � p⇤ one
finds that the term in parenthesis is
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A SN at the beginning of the Sedov phase has a radius of
roughly RSN ⇠ 2 pc. For H ⇠ 4 kpc, RSN = 1/30 yr�1,
Rd = 10 kpc and D0 = 2 ⇥ 1028 cm2

/s, one has that the
second term in equation 18 is 4⇥ 10�3. In other words, for
a young SNR, the role of CRs reaccelerated from the di↵use
background is expected to be totally negligible. However,
since the volume of a SNR scales as R3

SN , a radius of a SN of
10 pc, more suitable for an aged SNR, well inside the Sedov
phase, would make this correction of order unity. At high
enough energy (p > p⇤ ⇠ 10 GeV/c) the correction due to
shock reacceleration becomes independent of energy and one
can consider its e↵ect as a correction of order unity to the
overall normalization of the flux of primary nuclei. For this
reason, we do not explicitly include reacceleration of primary
nuclei and reabsorb its e↵ect on the overall normalization of
the primary spectra.

Thoudam & Hörandel (2014) investigated a substan-
tially di↵erent case, namely the possibility that a population
of very weak (typical Mach numbers⇠ 1.5) supernova shocks
may reaccelerate CRs. When the slope s is the reaccelera-
tion term is larger than the slope of the Galactic CR spec-
trum (say ⇠ 4.7), the reacceleration term does not change
the spectrum but only the normalizaion of the spectrum.

MNRAS 000, 1–?? (2017)

4

q0,↵(p) is calculated at p = A
p

E
2
k
+ 2mpEk and, based on

the discussion in §2, is made, in general, of two contributions:
nuclei of type ↵ freshly accelerated at the shock and nuclei
of type ↵ already present in the environment and eventu-
ally reaccelerated. For secondary nuclei, such as boron and
lithium, only the latter contribution to injection is present.
In the following we discuss the case of primary and secondary
nuclei separately.

3.1 The case of primary nuclei

For primary nuclei, such as carbon and oxygen, the contribu-
tion coming from spallation of heavier elements is negligible
and one can write equation (9) as
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In order to simplify the notation, we introduce the quantity
�V = VSN/⇡R

2
d2hd, which represents the ratio of volumes

of a typical SNR to the volume of the Galactic disc (typically
�V ⇠ 10�8). From equations (5) and (7) follows that
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where K =
⌘ngas

4⇡pinj
and the momentum is related to

the kinetic energy per nucleon through the relation p =
A
p

E
2
k
+ 2mpEk. The important thing to notice is that the

function that we wish to solve equation (10) for also enters
the injection term (reacceleration). More precisely the reac-
celeration term is related to the value of the flux I↵(Ek, z)
in the disc (z = 0). Hence equation (10) is best solved by
iterations.

For z 6= 0 the equation is trivial and under the boundary
condition that I↵(Ek, z = ±H) = 0 one finds

I↵(z, p) = I↵,0(Ek)
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where I↵,0(Ek) = I↵(Ek, z = 0). On the other hand, in-
tegrating equation (10) between z = 0� and z = 0+, one
gets:
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From equation (12) one sees that
h
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hence equation (13) leads to:
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where we introduced the grammage:
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hd

H
mv

H
2

D↵

, (15)

as well as the critical grammage Xcr,↵ = m/�↵, where m is
the mean mass of the interstellar medium gas that acts as
target for spallation (we assume m = 1.4mp). The quantity
ndhd/H that appears in the grammage plays the role of
mean density traversed by CRs during propagation in the
disc and halo of the Galaxy. The index (i) in equation 14
labels the iteration cycle.

One can estimate the e↵ect of reacceleration on the
spectrum of primary nuclei by calculating the result of the
first iteration in equation (14), namely by taking
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and replacing it in the integral of equation 14, to get:
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where, for simplicity, we assumed that, at the energies we are
interested in, the role of spallation is weak, namelyX(Ek) ⌧
Xcr.

We assume, as it is often done, that the di↵usion coe�-
cient is in the form D↵ = D0(p/p⇤)

�, with � = 0 for p < p⇤,
with p⇤ typically in the range of 10 GeV/c. For p � p⇤ one
finds that the term in parenthesis is
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A SN at the beginning of the Sedov phase has a radius of
roughly RSN ⇠ 2 pc. For H ⇠ 4 kpc, RSN = 1/30 yr�1,
Rd = 10 kpc and D0 = 2 ⇥ 1028 cm2

/s, one has that the
second term in equation 18 is 4⇥ 10�3. In other words, for
a young SNR, the role of CRs reaccelerated from the di↵use
background is expected to be totally negligible. However,
since the volume of a SNR scales as R3

SN , a radius of a SN of
10 pc, more suitable for an aged SNR, well inside the Sedov
phase, would make this correction of order unity. At high
enough energy (p > p⇤ ⇠ 10 GeV/c) the correction due to
shock reacceleration becomes independent of energy and one
can consider its e↵ect as a correction of order unity to the
overall normalization of the flux of primary nuclei. For this
reason, we do not explicitly include reacceleration of primary
nuclei and reabsorb its e↵ect on the overall normalization of
the primary spectra.

Thoudam & Hörandel (2014) investigated a substan-
tially di↵erent case, namely the possibility that a population
of very weak (typical Mach numbers⇠ 1.5) supernova shocks
may reaccelerate CRs. When the slope s is the reaccelera-
tion term is larger than the slope of the Galactic CR spec-
trum (say ⇠ 4.7), the reacceleration term does not change
the spectrum but only the normalizaion of the spectrum.
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Formally similar to the equation for protons but with spallation taken into account 

Technically the equation is solved in the same way:  
1) consider z>0 (or z<0) and then  
2) integrate around z=0 between 0- and 0+
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For X<<Xα the equilibrium spectrum is the standard Ek-γ-δ 

For X>>Xα the equilibrium spectrum reproduces the injection spectrum Ek-γ



SECONDARY NUCLEI - CASE OF B/C

5

After transport in the Galaxy, according with Thoudam &
Hörandel (2014), the reaccelerated component may become
dominant at low energy. However, in order for this e↵ect to
be present the weak shocks must 1) have s ⇠ 6 (instead
of the standard s = 4 for strong shocks) and 2) yet be
able to accelerate particles to maximum energies in excess of
⇠ TeV . Their result depends critically on the size of these
weak shocks, assumed to be ⇠ 100 pc. For instance the e↵ect
disappears if a size of 50 pc is assumed. It should be noted
that from observations it seems that supernova shocks stop
being particle accelerators (their radio emission disappears)
when their velocity drops below ⇠ 300 km/s (Bandiera &
Petruk 2010) (much higher than the weak shocks invoked
by Thoudam & Hörandel (2014)). For this reason here we
no longer consider this possibility in the following and we
focus instead on reacceleration at the same shocks that are
believed to be responsible for the acceleration of the bulk of
CRs.

3.2 The case of secondary nuclei

The role of reacceleration is much more prominent on sec-
ondary products of hadronic interactions than on primary
nuclei. In this section we illustrate this e↵ect on secondary
nuclei such as boron and lithium. For the sake of simplicity
we limit ourselves to the production of these secondary prod-
ucts in spallation reactions initiated by carbon and oxygen
nuclei, whose fluxes will be denoted as IC(Ek) and IOx(Ek).
Secondary nuclei are not accelerated from the thermal pool
at supernova shocks, hence the direct injection term in equa-
tion (9) vanishes. The transport equation for boron nuclei
can be written as follows:
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where all fluxes are calculated at the same kinetic energy per
nucleon Ek. The flux IB inside the integral is calculated at
kinetic energy per nucleon E

0
k corresponding to the momen-

tum p
0. The quantity �B is the cross section for spallation of

boron nuclei, assumed here to be independent of energy for
simplicity, while �CB and �OxB are the cross sections of pro-
duction of boron from spallation of carbon and oxygen nuclei
respectively. In the following we adopt a simplified structure
for these cross sections: we parametrize the cross section for
spallation of a nucleus of mass A as �A = 45A0.7 mb (Letaw
et al. 1984) and we write the cross section for production of
a nucleus A

0 as �AA0 = �AbAA0 , where bAA0 is the proba-
bility that spallation of the nucleus A leads to production
of the nucleus of mass A

0. For production of boron one has
bCB = 0.28 and bOxB = 0.11 (Berezinsky et al. 1990).

Since all terms of production and destruction of boron
are localized at z = 0 (Galactic disc), the spatial dependence
of the solution is still in the same form as in equation (12),
hence after integration between z = 0� and z = 0+ equation

(19) leads to the following expression for the flux of boron:
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In addition to the grammage (equation 15), here we intro-
duced the critical grammages Xcr,B = m/�B , Xcr,CB =
m/�CB and Xcr,OxB = m/�OxB . In the absence of reaccel-
eration one can see from equation (20) that the B/C ratio
reads:
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=
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+
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Xcr,B

. (21)

In the assumption that the spectra of carbon and oxygen
nuclei are the same at high energy, the ratio scales as ⇠
X(Ek) provided spallation does not change appreciably the
spectrum of any of the species involved, which is expected
to be the case at high energies.

The physical meaning of the reacceleration term is easy
to understand: in the absence of this term the high energy
spectrum of boron is IB,0 / E

�s�2�
k

where � refers to the
slope of the di↵usion coe�cient. Replacing such trend in the
reacceleration term, one can easily see that the spectrum
resulting from reacceleration at an individual SNR is E

�s

k

and after propagation becomes E�s��

k
. It follows that there

is always a critical energy above which the contribution of
reacceleration dominates upon the standard boron flux. In
fact, as we discuss below, this contribution is likely to be-
come important (yet not dominant) even below such critical
energy.

As we discuss later, recent observations show a rather
intriguing situation for lithium nuclei. Hence we also apply
the calculations above to the case of lithium as secondary
nucleus. The solution of the transport equation is very sim-
ilar to the one for boron nuclei:
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(22)

where we again limit ourselves to the contribution of car-
bon and oxygen as primaries, and we take bCLi ⇡ 0.11 and
bOxLi ⇡ 0.08. As discussed in the previous section, equations
(20) and (22) can be solved by iterations, although it is not
the only way.

4 COMPARISON OF B/C AND LITHIUM
FLUXES WITH AMS-02 DATA

The spectra of primary nuclei (carbon and oxygen in our
case) are calculated using equation (14) but neglecting the
role of reacceleration, for the reasons discussed in §3.1. The
di↵usion coe�cient is assumed, as usual, to be only function
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After transport in the Galaxy, according with Thoudam &
Hörandel (2014), the reaccelerated component may become
dominant at low energy. However, in order for this e↵ect to
be present the weak shocks must 1) have s ⇠ 6 (instead
of the standard s = 4 for strong shocks) and 2) yet be
able to accelerate particles to maximum energies in excess of
⇠ TeV . Their result depends critically on the size of these
weak shocks, assumed to be ⇠ 100 pc. For instance the e↵ect
disappears if a size of 50 pc is assumed. It should be noted
that from observations it seems that supernova shocks stop
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focus instead on reacceleration at the same shocks that are
believed to be responsible for the acceleration of the bulk of
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3.2 The case of secondary nuclei

The role of reacceleration is much more prominent on sec-
ondary products of hadronic interactions than on primary
nuclei. In this section we illustrate this e↵ect on secondary
nuclei such as boron and lithium. For the sake of simplicity
we limit ourselves to the production of these secondary prod-
ucts in spallation reactions initiated by carbon and oxygen
nuclei, whose fluxes will be denoted as IC(Ek) and IOx(Ek).
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at supernova shocks, hence the direct injection term in equa-
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where all fluxes are calculated at the same kinetic energy per
nucleon Ek. The flux IB inside the integral is calculated at
kinetic energy per nucleon E

0
k corresponding to the momen-

tum p
0. The quantity �B is the cross section for spallation of

boron nuclei, assumed here to be independent of energy for
simplicity, while �CB and �OxB are the cross sections of pro-
duction of boron from spallation of carbon and oxygen nuclei
respectively. In the following we adopt a simplified structure
for these cross sections: we parametrize the cross section for
spallation of a nucleus of mass A as �A = 45A0.7 mb (Letaw
et al. 1984) and we write the cross section for production of
a nucleus A

0 as �AA0 = �AbAA0 , where bAA0 is the proba-
bility that spallation of the nucleus A leads to production
of the nucleus of mass A

0. For production of boron one has
bCB = 0.28 and bOxB = 0.11 (Berezinsky et al. 1990).

Since all terms of production and destruction of boron
are localized at z = 0 (Galactic disc), the spatial dependence
of the solution is still in the same form as in equation (12),
hence after integration between z = 0� and z = 0+ equation

(19) leads to the following expression for the flux of boron:
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In addition to the grammage (equation 15), here we intro-
duced the critical grammages Xcr,B = m/�B , Xcr,CB =
m/�CB and Xcr,OxB = m/�OxB . In the absence of reaccel-
eration one can see from equation (20) that the B/C ratio
reads:
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In the assumption that the spectra of carbon and oxygen
nuclei are the same at high energy, the ratio scales as ⇠
X(Ek) provided spallation does not change appreciably the
spectrum of any of the species involved, which is expected
to be the case at high energies.

The physical meaning of the reacceleration term is easy
to understand: in the absence of this term the high energy
spectrum of boron is IB,0 / E
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where � refers to the
slope of the di↵usion coe�cient. Replacing such trend in the
reacceleration term, one can easily see that the spectrum
resulting from reacceleration at an individual SNR is E

�s

k

and after propagation becomes E�s��

k
. It follows that there

is always a critical energy above which the contribution of
reacceleration dominates upon the standard boron flux. In
fact, as we discuss below, this contribution is likely to be-
come important (yet not dominant) even below such critical
energy.

As we discuss later, recent observations show a rather
intriguing situation for lithium nuclei. Hence we also apply
the calculations above to the case of lithium as secondary
nucleus. The solution of the transport equation is very sim-
ilar to the one for boron nuclei:
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where we again limit ourselves to the contribution of car-
bon and oxygen as primaries, and we take bCLi ⇡ 0.11 and
bOxLi ⇡ 0.08. As discussed in the previous section, equations
(20) and (22) can be solved by iterations, although it is not
the only way.

4 COMPARISON OF B/C AND LITHIUM
FLUXES WITH AMS-02 DATA

The spectra of primary nuclei (carbon and oxygen in our
case) are calculated using equation (14) but neglecting the
role of reacceleration, for the reasons discussed in §3.1. The
di↵usion coe�cient is assumed, as usual, to be only function
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After transport in the Galaxy, according with Thoudam &
Hörandel (2014), the reaccelerated component may become
dominant at low energy. However, in order for this e↵ect to
be present the weak shocks must 1) have s ⇠ 6 (instead
of the standard s = 4 for strong shocks) and 2) yet be
able to accelerate particles to maximum energies in excess of
⇠ TeV . Their result depends critically on the size of these
weak shocks, assumed to be ⇠ 100 pc. For instance the e↵ect
disappears if a size of 50 pc is assumed. It should be noted
that from observations it seems that supernova shocks stop
being particle accelerators (their radio emission disappears)
when their velocity drops below ⇠ 300 km/s (Bandiera &
Petruk 2010) (much higher than the weak shocks invoked
by Thoudam & Hörandel (2014)). For this reason here we
no longer consider this possibility in the following and we
focus instead on reacceleration at the same shocks that are
believed to be responsible for the acceleration of the bulk of
CRs.

3.2 The case of secondary nuclei

The role of reacceleration is much more prominent on sec-
ondary products of hadronic interactions than on primary
nuclei. In this section we illustrate this e↵ect on secondary
nuclei such as boron and lithium. For the sake of simplicity
we limit ourselves to the production of these secondary prod-
ucts in spallation reactions initiated by carbon and oxygen
nuclei, whose fluxes will be denoted as IC(Ek) and IOx(Ek).
Secondary nuclei are not accelerated from the thermal pool
at supernova shocks, hence the direct injection term in equa-
tion (9) vanishes. The transport equation for boron nuclei
can be written as follows:
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where all fluxes are calculated at the same kinetic energy per
nucleon Ek. The flux IB inside the integral is calculated at
kinetic energy per nucleon E
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k corresponding to the momen-

tum p
0. The quantity �B is the cross section for spallation of

boron nuclei, assumed here to be independent of energy for
simplicity, while �CB and �OxB are the cross sections of pro-
duction of boron from spallation of carbon and oxygen nuclei
respectively. In the following we adopt a simplified structure
for these cross sections: we parametrize the cross section for
spallation of a nucleus of mass A as �A = 45A0.7 mb (Letaw
et al. 1984) and we write the cross section for production of
a nucleus A

0 as �AA0 = �AbAA0 , where bAA0 is the proba-
bility that spallation of the nucleus A leads to production
of the nucleus of mass A

0. For production of boron one has
bCB = 0.28 and bOxB = 0.11 (Berezinsky et al. 1990).

Since all terms of production and destruction of boron
are localized at z = 0 (Galactic disc), the spatial dependence
of the solution is still in the same form as in equation (12),
hence after integration between z = 0� and z = 0+ equation

(19) leads to the following expression for the flux of boron:
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In addition to the grammage (equation 15), here we intro-
duced the critical grammages Xcr,B = m/�B , Xcr,CB =
m/�CB and Xcr,OxB = m/�OxB . In the absence of reaccel-
eration one can see from equation (20) that the B/C ratio
reads:
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In the assumption that the spectra of carbon and oxygen
nuclei are the same at high energy, the ratio scales as ⇠
X(Ek) provided spallation does not change appreciably the
spectrum of any of the species involved, which is expected
to be the case at high energies.

The physical meaning of the reacceleration term is easy
to understand: in the absence of this term the high energy
spectrum of boron is IB,0 / E
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where � refers to the
slope of the di↵usion coe�cient. Replacing such trend in the
reacceleration term, one can easily see that the spectrum
resulting from reacceleration at an individual SNR is E
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and after propagation becomes E�s��

k
. It follows that there

is always a critical energy above which the contribution of
reacceleration dominates upon the standard boron flux. In
fact, as we discuss below, this contribution is likely to be-
come important (yet not dominant) even below such critical
energy.

As we discuss later, recent observations show a rather
intriguing situation for lithium nuclei. Hence we also apply
the calculations above to the case of lithium as secondary
nucleus. The solution of the transport equation is very sim-
ilar to the one for boron nuclei:
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(22)

where we again limit ourselves to the contribution of car-
bon and oxygen as primaries, and we take bCLi ⇡ 0.11 and
bOxLi ⇡ 0.08. As discussed in the previous section, equations
(20) and (22) can be solved by iterations, although it is not
the only way.

4 COMPARISON OF B/C AND LITHIUM
FLUXES WITH AMS-02 DATA

The spectra of primary nuclei (carbon and oxygen in our
case) are calculated using equation (14) but neglecting the
role of reacceleration, for the reasons discussed in §3.1. The
di↵usion coe�cient is assumed, as usual, to be only function
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Following the same strategy as in the previous cases one obtains easily: 

which reflects in the following B/C ratio: 

AT E>100 GeV THE B/C RATIO SCALES AS X(EK) NAMELY AS 1/Dα NAMELY WE 
CAN MEASURE THE SLOPE OF D(E) FROM THE ENERGY DEPENDENCE OF B/C

5

After transport in the Galaxy, according with Thoudam &
Hörandel (2014), the reaccelerated component may become
dominant at low energy. However, in order for this e↵ect to
be present the weak shocks must 1) have s ⇠ 6 (instead
of the standard s = 4 for strong shocks) and 2) yet be
able to accelerate particles to maximum energies in excess of
⇠ TeV . Their result depends critically on the size of these
weak shocks, assumed to be ⇠ 100 pc. For instance the e↵ect
disappears if a size of 50 pc is assumed. It should be noted
that from observations it seems that supernova shocks stop
being particle accelerators (their radio emission disappears)
when their velocity drops below ⇠ 300 km/s (Bandiera &
Petruk 2010) (much higher than the weak shocks invoked
by Thoudam & Hörandel (2014)). For this reason here we
no longer consider this possibility in the following and we
focus instead on reacceleration at the same shocks that are
believed to be responsible for the acceleration of the bulk of
CRs.

3.2 The case of secondary nuclei

The role of reacceleration is much more prominent on sec-
ondary products of hadronic interactions than on primary
nuclei. In this section we illustrate this e↵ect on secondary
nuclei such as boron and lithium. For the sake of simplicity
we limit ourselves to the production of these secondary prod-
ucts in spallation reactions initiated by carbon and oxygen
nuclei, whose fluxes will be denoted as IC(Ek) and IOx(Ek).
Secondary nuclei are not accelerated from the thermal pool
at supernova shocks, hence the direct injection term in equa-
tion (9) vanishes. The transport equation for boron nuclei
can be written as follows:
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where all fluxes are calculated at the same kinetic energy per
nucleon Ek. The flux IB inside the integral is calculated at
kinetic energy per nucleon E

0
k corresponding to the momen-

tum p
0. The quantity �B is the cross section for spallation of

boron nuclei, assumed here to be independent of energy for
simplicity, while �CB and �OxB are the cross sections of pro-
duction of boron from spallation of carbon and oxygen nuclei
respectively. In the following we adopt a simplified structure
for these cross sections: we parametrize the cross section for
spallation of a nucleus of mass A as �A = 45A0.7 mb (Letaw
et al. 1984) and we write the cross section for production of
a nucleus A

0 as �AA0 = �AbAA0 , where bAA0 is the proba-
bility that spallation of the nucleus A leads to production
of the nucleus of mass A

0. For production of boron one has
bCB = 0.28 and bOxB = 0.11 (Berezinsky et al. 1990).

Since all terms of production and destruction of boron
are localized at z = 0 (Galactic disc), the spatial dependence
of the solution is still in the same form as in equation (12),
hence after integration between z = 0� and z = 0+ equation

(19) leads to the following expression for the flux of boron:
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In addition to the grammage (equation 15), here we intro-
duced the critical grammages Xcr,B = m/�B , Xcr,CB =
m/�CB and Xcr,OxB = m/�OxB . In the absence of reaccel-
eration one can see from equation (20) that the B/C ratio
reads:
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In the assumption that the spectra of carbon and oxygen
nuclei are the same at high energy, the ratio scales as ⇠
X(Ek) provided spallation does not change appreciably the
spectrum of any of the species involved, which is expected
to be the case at high energies.

The physical meaning of the reacceleration term is easy
to understand: in the absence of this term the high energy
spectrum of boron is IB,0 / E
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where � refers to the
slope of the di↵usion coe�cient. Replacing such trend in the
reacceleration term, one can easily see that the spectrum
resulting from reacceleration at an individual SNR is E
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and after propagation becomes E�s��

k
. It follows that there

is always a critical energy above which the contribution of
reacceleration dominates upon the standard boron flux. In
fact, as we discuss below, this contribution is likely to be-
come important (yet not dominant) even below such critical
energy.

As we discuss later, recent observations show a rather
intriguing situation for lithium nuclei. Hence we also apply
the calculations above to the case of lithium as secondary
nucleus. The solution of the transport equation is very sim-
ilar to the one for boron nuclei:
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where we again limit ourselves to the contribution of car-
bon and oxygen as primaries, and we take bCLi ⇡ 0.11 and
bOxLi ⇡ 0.08. As discussed in the previous section, equations
(20) and (22) can be solved by iterations, although it is not
the only way.

4 COMPARISON OF B/C AND LITHIUM
FLUXES WITH AMS-02 DATA

The spectra of primary nuclei (carbon and oxygen in our
case) are calculated using equation (14) but neglecting the
role of reacceleration, for the reasons discussed in §3.1. The
di↵usion coe�cient is assumed, as usual, to be only function
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1968), while the dashed lines are the spectra in the ISM. The
data points are the spectra measured by the Voyager (empty cir-
cles) (Stone et al. 2013), AMS-02 (filled circles) (Aguilar et al.
2015), PAMELA (empty squares) (Adriani 2011) and CREAM
(filled squares) (Yoon et al. 2011). Figs. 1 and 2 show several
interesting aspects: 1) both the spectra of protons and helium nu-
clei show a pronounced change of slope at few hundred GeV/n,
where self-generation of waves becomes less important than pre-
existing turbulence (in fact, the change of slope takes place in
rigidity). 2) We confirm that injecting He with a slightly harder
spectrum with respect to protons (p−4.15 versus p−4.2) improves
the fit to the data. 3) The spectra calculated to optimise the fit to
the AMS-02 and PAMELA data is in excellent agreement with
the Voyager data (see dashed lines). This is all but trivial: in our
model, at sufficiently low energies (below ∼ 10 GeV/n), particle
transport is dominated by advection (at the Alfén speed) with
self-generated waves rather than diffusion. This reflects into a
weak energy dependence of the propagated spectra that is ex-
actly what Voyager measured (see also (Potgieter 2013)). 4) At
low energies, the agreement of the predicted spectra with those
measured by Voyager is actually better than the agreement with
the modulated spectra, as observed with AMS–02; this suggests
that probably the prescriptions used to describe solar modula-
tion are somewhat oversimplified, either when applied to data
collected over extended periods of time, when the effective solar
potential may change appreciably, or because of intrinsic limita-
tions of the force-field approximation.

For each heavier nucleus, we assume the same injected spec-
tral shape in rigidity as for helium, keeping as only free param-
eter the normalization, chosen to match the data. In Fig. 3 we il-
lustrate the prediction for Carbon nuclei (which is also a needed
ingredient to compute the B/C ratio), compared with data by
PAMELA and CREAM, as well as preliminary data by AMS-
02. The free normalization is chosen to match more closely the
AMS-02 data. Clearly, the phenomenon of transition from self-
generated to pre-existing waves manifests itself in the transport
of all nuclei, hence we should expect a spectral break at the
same rigidity as for helium and protons. This prediction appears
currently in agreement with Carbon spectrum observations, al-
though it is hard to judge to what extent a break is present in
AMS-02 data alone, giving the growing error bars and the lim-
ited dynamical range at high energy. Note that a break would
appear more prominent if one were to combine PAMELA and
CREAM data, which do seem to differ from AMS-02 data in the
10 to ∼ 200 GeV/n range beyond the reported errors. Definitely,
the forthcoming AMS-02 publication of nuclear fluxes should
help in clarifying the situation.

In Fig. 4 we show the calculated B/C ratio (solid black line)
as compared with data from CREAM (blue squares), PAMELA
(green squares), and the still preliminary ones from AMS-02
(black circles). Even if the injected Carbon flux is normalized
to the preliminary Carbon data reported by AMS-02, the B/C
ratio is still in satisfactory agreement with both PAMELA and
CREAM data, as for our previous result (Aloisio 2013). The
B/C ratio also fits the AMS data up to ∼ 100GeV/n. At higher
energy, the AMS-02 analysis seems to suggest a B/C ratio some-
what higher than our prediction. While its significance is uncer-
tain, given the preliminary nature of AMS data, if this “excess”
is interpreted as physical, it would suggest the presence of an
additional contribution to the grammage traversed by CRs. The
most straightforward possibility to account for such a grammage
is that it may be due to the matter traversed by CRs while es-
caping the source, for instance a SNR. The grammage due to
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Fig. 3. Spectrum of C nuclei as measured by CREAM (blue squares),
PAMELA (green empty squares), and according to preliminary mea-
surements of AMS-02 (black circles), compared with the prediction of
our calculations (lines). The solid line is the flux at the Earth after the
correction due to solar modulation, while the dashed line is the spectrum
in the ISM.
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Fig. 4. B/C ratio as measured by CREAM (blue squares), PAMELA
(green empty squares), and according to preliminary measurements of
AMS-02 (black circles). The black/bottom solid line is the prediction of
our model, while the red/top line has been obtained by adding a source
grammage of 0.15 g cm−2, close to that given by Eq. (10).

confinement inside a SNR can be easily estimated as

XSNR ≈ 1.4rsmpnISMcTSNR ≈ 0.17 g cm−2
nISM
cm−3

TSNR
2 × 104yr

, (10)

where nISM is the density of the interstellar gas upstream of a
SNR shock and rs = 4 is the compression factor at the shock
and TSNR is the duration of the SNR event (or better, the lifetime
“useful” to confine particles up to E ∼TeV/n), assumed here to
be of order twenty thousand years. The factor 1.4 in Eq. (10) has
been introduced to account for the presence of elements heavier
than hydrogen in the target. While Eq. (10) is only a rough es-
timate of the grammage at the source, in that several (in general
energy dependent) factors may affect such an estimate, at least
it provides us with a reasonable benchmark value. The solid red
curve in Fig. 4 shows the result of adding the grammage accu-
mulated by CRs inside the source to the one due to propagation
in the Galaxy. It is clear that by eye it fits better the AMS-02
data at high rigidity, while being also compatible with the older
CREAM data. The forthcoming publication by AMS-02 of the
fluxes of nuclei and secondary to primary ratios should hope-
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1968), while the dashed lines are the spectra in the ISM. The
data points are the spectra measured by the Voyager (empty cir-
cles) (Stone et al. 2013), AMS-02 (filled circles) (Aguilar et al.
2015), PAMELA (empty squares) (Adriani 2011) and CREAM
(filled squares) (Yoon et al. 2011). Figs. 1 and 2 show several
interesting aspects: 1) both the spectra of protons and helium nu-
clei show a pronounced change of slope at few hundred GeV/n,
where self-generation of waves becomes less important than pre-
existing turbulence (in fact, the change of slope takes place in
rigidity). 2) We confirm that injecting He with a slightly harder
spectrum with respect to protons (p−4.15 versus p−4.2) improves
the fit to the data. 3) The spectra calculated to optimise the fit to
the AMS-02 and PAMELA data is in excellent agreement with
the Voyager data (see dashed lines). This is all but trivial: in our
model, at sufficiently low energies (below ∼ 10 GeV/n), particle
transport is dominated by advection (at the Alfén speed) with
self-generated waves rather than diffusion. This reflects into a
weak energy dependence of the propagated spectra that is ex-
actly what Voyager measured (see also (Potgieter 2013)). 4) At
low energies, the agreement of the predicted spectra with those
measured by Voyager is actually better than the agreement with
the modulated spectra, as observed with AMS–02; this suggests
that probably the prescriptions used to describe solar modula-
tion are somewhat oversimplified, either when applied to data
collected over extended periods of time, when the effective solar
potential may change appreciably, or because of intrinsic limita-
tions of the force-field approximation.

For each heavier nucleus, we assume the same injected spec-
tral shape in rigidity as for helium, keeping as only free param-
eter the normalization, chosen to match the data. In Fig. 3 we il-
lustrate the prediction for Carbon nuclei (which is also a needed
ingredient to compute the B/C ratio), compared with data by
PAMELA and CREAM, as well as preliminary data by AMS-
02. The free normalization is chosen to match more closely the
AMS-02 data. Clearly, the phenomenon of transition from self-
generated to pre-existing waves manifests itself in the transport
of all nuclei, hence we should expect a spectral break at the
same rigidity as for helium and protons. This prediction appears
currently in agreement with Carbon spectrum observations, al-
though it is hard to judge to what extent a break is present in
AMS-02 data alone, giving the growing error bars and the lim-
ited dynamical range at high energy. Note that a break would
appear more prominent if one were to combine PAMELA and
CREAM data, which do seem to differ from AMS-02 data in the
10 to ∼ 200 GeV/n range beyond the reported errors. Definitely,
the forthcoming AMS-02 publication of nuclear fluxes should
help in clarifying the situation.

In Fig. 4 we show the calculated B/C ratio (solid black line)
as compared with data from CREAM (blue squares), PAMELA
(green squares), and the still preliminary ones from AMS-02
(black circles). Even if the injected Carbon flux is normalized
to the preliminary Carbon data reported by AMS-02, the B/C
ratio is still in satisfactory agreement with both PAMELA and
CREAM data, as for our previous result (Aloisio 2013). The
B/C ratio also fits the AMS data up to ∼ 100GeV/n. At higher
energy, the AMS-02 analysis seems to suggest a B/C ratio some-
what higher than our prediction. While its significance is uncer-
tain, given the preliminary nature of AMS data, if this “excess”
is interpreted as physical, it would suggest the presence of an
additional contribution to the grammage traversed by CRs. The
most straightforward possibility to account for such a grammage
is that it may be due to the matter traversed by CRs while es-
caping the source, for instance a SNR. The grammage due to
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Fig. 3. Spectrum of C nuclei as measured by CREAM (blue squares),
PAMELA (green empty squares), and according to preliminary mea-
surements of AMS-02 (black circles), compared with the prediction of
our calculations (lines). The solid line is the flux at the Earth after the
correction due to solar modulation, while the dashed line is the spectrum
in the ISM.
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Fig. 4. B/C ratio as measured by CREAM (blue squares), PAMELA
(green empty squares), and according to preliminary measurements of
AMS-02 (black circles). The black/bottom solid line is the prediction of
our model, while the red/top line has been obtained by adding a source
grammage of 0.15 g cm−2, close to that given by Eq. (10).

confinement inside a SNR can be easily estimated as

XSNR ≈ 1.4rsmpnISMcTSNR ≈ 0.17 g cm−2
nISM
cm−3

TSNR
2 × 104yr

, (10)

where nISM is the density of the interstellar gas upstream of a
SNR shock and rs = 4 is the compression factor at the shock
and TSNR is the duration of the SNR event (or better, the lifetime
“useful” to confine particles up to E ∼TeV/n), assumed here to
be of order twenty thousand years. The factor 1.4 in Eq. (10) has
been introduced to account for the presence of elements heavier
than hydrogen in the target. While Eq. (10) is only a rough es-
timate of the grammage at the source, in that several (in general
energy dependent) factors may affect such an estimate, at least
it provides us with a reasonable benchmark value. The solid red
curve in Fig. 4 shows the result of adding the grammage accu-
mulated by CRs inside the source to the one due to propagation
in the Galaxy. It is clear that by eye it fits better the AMS-02
data at high rigidity, while being also compatible with the older
CREAM data. The forthcoming publication by AMS-02 of the
fluxes of nuclei and secondary to primary ratios should hope-
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A simple instance… the grammage accumulated by CR while trapped downstream of a 
supernova shock can be estimated as:
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thin disc, with a surface density is µ = 2.3 mg/cm
2
[45].

The weighted slab technique has been generalized here to

include two important effects: 1) the decay of unstable

nuclei; 2) the contribution to stable nuclei (such as
10
B)

from the decay of unstable isotopes (such as
10
Be).

The adoption of the weighted slab model is justified

for the description of the decay of
10
Be if such decays

take place outside the thickness h of the disc. It is easy

to check what are the constraints that this condition im-

poses on the energy per nucleon of the decaying nucleus.

The relevant time scales for CR transport in the disc are

the diffusion time scale h
2
/D(R) and the advection time

scale h/vA, where vA is the Alfvén speed. In order for

the model to be applicable we require that the decay of
10
Be takes place in the halo

γτd ≫ Min

!
h
2

2D
,
h

vA

"
,

where τd = t1/2/ ln 2 ∼ 2 Myr is the time scale for the

radioactive decay of
10
Be, γ is the Lorentz factor and

D(R) is the rigidity-dependent diffusion coefficient. As

in [44], we assume a diffusion coefficient that is spatially

constant and only dependent upon particles rigidity R:

D(R) = 2vAH + βD0
(R/GV)

δ

[1 + (R/Rb)
∆δ/s]s

, (1)

where D0 and δ are parameters that are fitted to the

data, mainly the B/C and B/O ratios as functions of

energy. The other parameters s, ∆δ and Rb are fixed

from observations of primary nuclei [44]: s = 0.1, ∆δ =

0.2, Rb = 312 GV. The functional form in Eq. (1), also

used in Ref. [44], is inspired to (but not limited to) the

models in which the diffusion coefficient is self-generated

by propagating CRs [8–10]. The plateau at low energies,

where advection dominates transport, was found in self-

generated models in Ref. [46].

Rather than determining vA from physical quantities,

some of which are very poorly known in the halo, we fit

the value of vA to the existing data on the fluxes of both

primary and secondary nuclei.

In Fig. 1 we illustrate the limits of validity of the as-

sumption of
10
Be decay outside the thin disc. The de-

pendence of the results on the size H of the halo is due

to the fact that the secondary-to-primary ratios approx-

imately fix the ratio of the normalization of the diffusion
coefficient and the halo size H. This implies that larger

halos require correspondingly larger diffusion coefficients.

From Fig. 1 it is clear that for H ≳ 2 kpc the Lorentz

boosted decay time is appreciably longer than the diffu-
sion time of the same nuclei in the Galactic disc. Even

for H ∼ 1 kpc, this condition is well satisfied for rigidity

≳ few GV. The advection time is irrelevant for transport

on spatial scales h ∼ 150 pc, being always much longer

than the diffusion timescale for values of vA ∼ 10 km/s.

It might be argued that the validity of the assumption

of
10
Be decay in the halo also depends upon the ansatz

that the diffusion coefficient in the disc is the same as

FIG. 1. Diffusion time scale in the disk h (solid orange lines)
and in the halo H (dashed orange lines) for three different
values of the halo size. We also show the Lorentz boosted
decay time of 10Be (blue solid line) and the advection time
scale to exit the disc (green dotted line).

in the halo. This is partially true. On the other hand,

if to consider the microphysics of particle transport, the

Galactic disc is a rather hostile environment for CR scat-

tering, because of severe ion-neutral damping of Alfvén

waves for CR energies below ∼ 100 GeV [see 17, and ref-

erences therein for a recent review]. This would imply

an even larger diffusion coefficient in the disc, thereby

making the condition of
10
Be decay in the halo easier to

fulfil.

The decay time of
10
Be becomes longer than the escape

time from the Galactic halo for rigidity above 10-100 GV,

depending on the size H of the halo, which is exactly the

reason why the measurement of the flux of this isotope

is sensitive to the parameter H.

The transport equation describing the propagation of

both stable and unstable nuclei in the context of the mod-

ified weighted slab approach reads:
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(2)

where fa(p, z) is the distribution function of specie a in

TWO MAJOR CHANGES:  
1) 10Be decays on a time scale γτd that at some high E becomes longer than H2/D(E) 
2) 10Be decays mainly into 10B so that it changes the abundance of stable elements
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thin disc, with a surface density is µ = 2.3 mg/cm
2
[45].

The weighted slab technique has been generalized here to

include two important effects: 1) the decay of unstable

nuclei; 2) the contribution to stable nuclei (such as
10
B)

from the decay of unstable isotopes (such as
10
Be).

The adoption of the weighted slab model is justified

for the description of the decay of
10
Be if such decays

take place outside the thickness h of the disc. It is easy

to check what are the constraints that this condition im-

poses on the energy per nucleon of the decaying nucleus.

The relevant time scales for CR transport in the disc are

the diffusion time scale h
2
/D(R) and the advection time

scale h/vA, where vA is the Alfvén speed. In order for

the model to be applicable we require that the decay of
10
Be takes place in the halo

γτd ≫ Min
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where τd = t1/2/ ln 2 ∼ 2 Myr is the time scale for the

radioactive decay of
10
Be, γ is the Lorentz factor and

D(R) is the rigidity-dependent diffusion coefficient. As

in [44], we assume a diffusion coefficient that is spatially

constant and only dependent upon particles rigidity R:

D(R) = 2vAH + βD0
(R/GV)

δ

[1 + (R/Rb)
∆δ/s]s

, (1)

where D0 and δ are parameters that are fitted to the

data, mainly the B/C and B/O ratios as functions of

energy. The other parameters s, ∆δ and Rb are fixed

from observations of primary nuclei [44]: s = 0.1, ∆δ =

0.2, Rb = 312 GV. The functional form in Eq. (1), also

used in Ref. [44], is inspired to (but not limited to) the

models in which the diffusion coefficient is self-generated

by propagating CRs [8–10]. The plateau at low energies,

where advection dominates transport, was found in self-

generated models in Ref. [46].

Rather than determining vA from physical quantities,

some of which are very poorly known in the halo, we fit

the value of vA to the existing data on the fluxes of both

primary and secondary nuclei.

In Fig. 1 we illustrate the limits of validity of the as-

sumption of
10
Be decay outside the thin disc. The de-

pendence of the results on the size H of the halo is due

to the fact that the secondary-to-primary ratios approx-

imately fix the ratio of the normalization of the diffusion
coefficient and the halo size H. This implies that larger

halos require correspondingly larger diffusion coefficients.

From Fig. 1 it is clear that for H ≳ 2 kpc the Lorentz

boosted decay time is appreciably longer than the diffu-
sion time of the same nuclei in the Galactic disc. Even

for H ∼ 1 kpc, this condition is well satisfied for rigidity

≳ few GV. The advection time is irrelevant for transport

on spatial scales h ∼ 150 pc, being always much longer

than the diffusion timescale for values of vA ∼ 10 km/s.

It might be argued that the validity of the assumption

of
10
Be decay in the halo also depends upon the ansatz

that the diffusion coefficient in the disc is the same as

FIG. 1. Diffusion time scale in the disk h (solid orange lines)
and in the halo H (dashed orange lines) for three different
values of the halo size. We also show the Lorentz boosted
decay time of 10Be (blue solid line) and the advection time
scale to exit the disc (green dotted line).

in the halo. This is partially true. On the other hand,

if to consider the microphysics of particle transport, the

Galactic disc is a rather hostile environment for CR scat-

tering, because of severe ion-neutral damping of Alfvén

waves for CR energies below ∼ 100 GeV [see 17, and ref-

erences therein for a recent review]. This would imply

an even larger diffusion coefficient in the disc, thereby

making the condition of
10
Be decay in the halo easier to

fulfil.

The decay time of
10
Be becomes longer than the escape

time from the Galactic halo for rigidity above 10-100 GV,

depending on the size H of the halo, which is exactly the

reason why the measurement of the flux of this isotope

is sensitive to the parameter H.

The transport equation describing the propagation of

both stable and unstable nuclei in the context of the mod-

ified weighted slab approach reads:

− ∂
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(2)

where fa(p, z) is the distribution function of specie a in
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FIG. 3. Ratio of Boron over Carbon fluxes (left) and Beryllium over Carbon fluxes (right). The data points are the results of
measurements by AMS-02 [5] and the error bars are computed with statistical and systematic errors summed in quadrature.
The curves illustrate our best-fit results for different values of the halo size H. The bottom panels show the corresponding
residuals with the same color code.

radioactive CR and performing the integral. The final

expression can be explicitly written and reads:

Da

∂fa
∂z

6666
0+

= − fa,0(p)vA

evAH/Da − 1
+

fb,0(p)vA

!
∆b coth

$
vAH∆b

2Da

%
− coth

$
vAH

2Da

%"
. (19)

The second term ∝ fb,0 represents an effective injection
due to the decay of the species b. This term disappears

when τd,b → ∞ since ∆b → 1.

When Eq. (19) is plugged into Eq. (8) we get a formal

solution for fa,0(p) identical to Eq. (12) but with a differ-
ent injection term, which is now the sum of the secondary

source term and the source term due to the Be decay, i.e.

Q0,a(p) = 2hq0,a(p)+2fb,0(p)vA

!
∆b coth

$
vAH∆b

2Da

%
−

coth

$
vAH

2Da

%"
≡ 2hq0,a(p) + 2q̃b→a(p) (20)

III. RESULTS

A. Secondary over primary ratios

In this section we present our results obtained through

a single multi-variate fitting procedure to compare AMS-

02 experimental data with theoretical spectra computed

as discussed in the previous sections. For each value of

the halo half-thicknessH we minimise the χ2
with respect

to the AMS-02 data on Be/C, B/C, Be/O and B/O [6]

and C, N, O [4, 50], the latter data limited to rigidities

larger than 10 GV, so as to make the results only weakly

dependent upon the uncertainties typical of the low en-

ergies.

The set of parameters varied along the minimising pro-

cedure are: solar modulation potential φ, advection ve-

locity vA, diffusion coefficient constants D0 and δ, injec-
tion power law index γinj (assumed to be the same for

all the primary species) and injection efficiency +a, the
latter quantity being species dependent.

As in [44], the spallation network is computed starting

from iron (Z = 26) all the way down to Lithium. The

injection efficiency for nuclei heavier than oxygen, where

AMS-02 data are not yet available, are fitted against the

high-energy CREAM data [51].

The combined fit of the ratios Be/C, B/C, Be/O and

B/O constrains δ ∼ 0.54, for any value of H in the range

1− 20 kpc. Coherently, the injected slope is fitted to be

γinj ∼ 4.3, the ratio D0/H is ∼ 0.44 (in units of 10
28

cm
2

s
−1

kpc
−1

), φ = 0.68 GV and vA ∼ 5 km/s. We notice

therefore that the typical dependence of the B/C ratio

with respect to the quantity D0/H is maintained also

if the radioactive decay of
10
Be is taken into account,

although the χ2
associated with different values of H is

not the same. In particular, the χ2
appears to be higher

for smaller values of H.

In Fig. 3 we show the comparison of our best-fit results

7

FIG. 4. Left Panel: Ratio of Beryllium over Boron fluxes. The dotted line shows the case without decay for 10Be while the
other lines refer to different values of H, as labelled. Right Panel: ∆χ2 ≡ χ2 − χ2

min computed on the Be/B data as a function
of the halo size H. We show both the case where only the statistical errors are used (solid orange) and the case with the total
errors (solid blue). The best-fit reduced χ2’s are ∼3 and ∼0.85 in the two cases. The allowed maximum χ2 at 3σ
and 5σ are also indicated with dotted lines.

with the AMS-02 data on the ratios B/C (left panel) and

Be/C (right panel) for different values of H as labeled. In

these plots we show the total experimental uncertainty,

obtained summing in quadrature the statistical and sys-

tematic errors as published by the AMS-02 Collaboration

[4–6]. As expected, for low values of H, say ∼ 1 kpc, the

effect of
10
Be decay is weak, thereby leading to overes-

timating the Be/C ratio and underestimating the B/C

ratio.

In Fig. 3, as in the forthcomings figures, we plot also

the residual respect to experimental data, defined as the

”distance” between the theoretical expectation and data

divided by the total experimental error. As follows from

Fig. 3, the residual is always confined within 3σ, confirm-

ing a good accuracy of our fitting procedure.

The residuals clearly shows a preference for relatively

large values of the halo size, H ∼ 6 kpc. A similar con-

clusion can be drawn by considering the Be/O and B/O

ratios, not shown here. A quantitative assessment of the

significance of these fits will be discussed in Section III B

using the Beryllium over Boron ratio.

B. Beryllium over Boron ratio

In order to calculate the Be/B ratio, we solve the trans-

port equations for all isotopes of both beryllium (
7
Be,

9
Be and

10
Be) and boron (

10
B and

11
B). As we discuss

below, this ratio is more sensitive to the value of H with

respect to the secondary to primary ratios.

If all isotopes of Be were stable, the Be/B ratio at

rigidities above ∼ 10 GV would be a slowly decreasing

function of energy, up to about ∼ 200 GV, where the

spallation time of Be becomes appreciably longer than

the escape time from the Galaxy. The slight decrease re-

flects the fact that the total inelastic cross section scales

as ∝ A
0.7

and boron (denominator) is slightly heavier

than beryllium. At higher rigidity, since the production

cross sections are basically independent of energy [44],

the Be/B ratio is expected to be constant. Moreover, the

spallation of Boron increases the amount of Beryllium

(numerator) at the same energy per nucleon. This be-

haviour is shown as a black dotted line in the left panel

of Fig. 4. At rigidities ≲ 10 GV the spallation cross sec-

tion acquires a small energy dependence which reflects in

the small increase with rigidity visible in the figure.

The AMS-02 data clearly show that the Be/B ratio

increases with rigidity at least up to ∼ 100 GV. The

simplest explanation of such a trend is based on the decay

of
10
Be at low rigidity, where decays occur faster than

escape. The coloured solid lines in the left panel of Fig. 4

show the results of our calculations for the best-fit to the

secondary-over-primary ratios for different values of H as

found in the previous Section.

The residuals are also shown in the bottom part of the

left panel of Fig. 4. In the right panel of the same Figure

we plot as a function of H the ∆χ2 (defined as the dif-
ference between the χ2

(H) and its minimum χ2
min)

THE DECAY OF 10Be SHOWS A PREFERENCE FOR RELATIVELY LARGE HALO SIZES 
H>6 kpc
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NON LINEAR GALACTIC TRANSPORT 
I. SELF-GENERATED WAVES VS PRE-EXISTING 

Waves can cascade down from large scales (e.g. SNe) and be injected on 
resonant scales through streaming instability 

The combination of  the two phenomena leads to different energy scalings of  
D(p) and hence of  anisotropy [PB, Amato & Serpico 2012, Aloisio & PB 2014, Aloisio, PB 
& Serpico 2015] — This phenomenon reflects in spectral breaks 
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injected on a scale lc ∼ 50 − 100 pc, for instance by super-
nova explosions. This means that qW(k) ∝ δ(k − 1/lc). The
level of pre-existing turbulence is normalized to the total power
ηB = δB2/B20 =

∫

dkW(k). Strictly speaking the wave number
that appears in this formalism is the one in the direction parallel
to that of the ordered magnetic field. In a more realistic situation
in which most power is on large spatial scales, the role of the
ordered field is probably played by the local magnetic field on
the largest scale.

The term ΓCRW in Eq. (6) describes the generation of wave
power through CR induced streaming instability, with a growth
rate (Skilling 1975):

Γcr(k) =
16π2

3
vA

kW(k)B20

∑

α

[

p4v(p)
∂ fα
∂z

]

p=ZαeB0/kc
, (7)

where α is the index labeling nuclei of different types. All nu-
clei, including all stable isotopes for a given value of charge,
are included in the calculations. As discussed in much previous
literature, this is very important to compute properly the diffu-
sion coefficient and thus for a meaningful comparison with the
flux spectra and secondary to primary ratios, notably B/C. The
growth rate, written as in Eq. (7), refers to waves with wave num-
ber k along the ordered magnetic field. It is basically impossible
to generalize the growth rate to a more realistic field geometry
by operating in the context of quasi-linear theory, therefore we
will use here this expression but keeping in mind its limitations.

The solution of Eq. (6) can be written in an implicit form

W(k) =
⎡

⎢

⎢

⎢

⎢

⎢

⎣

W1+α2
0

(

k
k0

)1−α1
+

+
1 + α2
CKvA

∫ ∞

k

dk′

k′α2

∫ k′

k0
dk̃ΓCR(k̃)W(k̃)

]

1
1+α2

, (8)

being k0 = 1/lc. In the present paper we assume a Kolmogorov
phenomenology for the cascading turbulence, so that α1 = 7/2
and α2 = 1/2, and an unperturbed magnetic field B0 = 1µG.
The two terms in Eq. (8) refer respectively to the pre-existing
magnetic turbulence and the CR induced turbulence. In the limit
in which there are no CRs (or CRs do not play an appreciable
role) one finds the standard Kolmogorov wave spectrum

W(k) = W0

(

k
k0

)−s

s =
α1 − 1
α2 + 1

=
5
3

(9)

normalized, as discussed above, to the total power W0 = (s −
1)lcηB.

The equations for the waves and for CR transport are solved
together in an iterative way, so as to return the spectra of par-
ticles and the diffusion coefficient for each nuclear species and
the associated grammage. The procedure is started by choosing
guess injection factors for each type of nuclei, and a guess for
the diffusion coefficient, which is assumed to coincide with the
one predicted by quasi-linear theory in the presence of a back-
ground turbulence. The first iteration returns the spectra of each
nuclear specie and a spectrum of waves, that can be used now
to calculate the diffusion coefficient self-consistently. The pro-
cedure is repeated until convergence, which is typically reached
in a few steps, and the resulting fluxes and ratios are compared
with available data. This allows us to renormalize the injection
rates and restart the whole procedure, which is repeated until a
satisfactory fit is achieved. Since the fluxes of individual nuclei
affect the grammage through the rate of excitation of stream-
ing instability and viceversa the grammage affects the fluxes, the
procedure is all but trivial.
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Fig. 1. Spectrum of protons measured by Voyager (blue empty cir-
cles), AMS-02 (black filled circles) (Aguilar et al. 2015), PAMELA
(green empty squares) (Adriani 2011) and CREAM (blue filled squares)
(Yoon et al. 2011), compared with the prediction of our calculations
(lines). The solid line is the flux at the Earth after the correction due to
solar modulation, while the dashed line is the spectrum in the ISM.
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Fig. 2. Spectrum of He nuclei according to preliminary measurements
of AMS-02 (black filled circles), as measured by Voyager (blue empty
circles), PAMELA (green empty squares) and CREAM (blue filled
squares), compared with the prediction of our calculations (lines). The
solid line is the flux at the Earth after the correction due to solar modu-
lation, while the dashed line is the spectrum in the ISM.

3. Results

The main evidence for a transition from self-generated waves to
pre-existing turbulence can be searched for in the spectra of the
light elements, protons and helium nuclei. A spectral break was
in fact found by the PAMELA experiment (Adriani 2011) in both
spectra and later confirmed by AMS-02, although at the time
of writing this paper only the results of AMS on protons have
been published (Aguilar et al. 2015), while a preliminary version
of the spectrum of helium has been presented (AMS-02 2015).
The spectra of both elements were also measured by the Voyager
(Stone et al. 2013) outside the heliosphere, so as to make this
the first measurement in human history of the CR spectra in the
interstellar medium. This is a very important results in that it
also allows us to refine our understanding of the effects of solar
modulation (Potgieter 2013).

The spectrum of protons and helium nuclei as calculated
in this paper is shown in Figs. 1 and 2, respectively: the solid
lines indicate the spectra at the Earth, namely after solar mod-
ulation modelled using the force-free approximation (Gleeson
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injected on a scale lc ∼ 50 − 100 pc, for instance by super-
nova explosions. This means that qW(k) ∝ δ(k − 1/lc). The
level of pre-existing turbulence is normalized to the total power
ηB = δB2/B20 =

∫

dkW(k). Strictly speaking the wave number
that appears in this formalism is the one in the direction parallel
to that of the ordered magnetic field. In a more realistic situation
in which most power is on large spatial scales, the role of the
ordered field is probably played by the local magnetic field on
the largest scale.

The term ΓCRW in Eq. (6) describes the generation of wave
power through CR induced streaming instability, with a growth
rate (Skilling 1975):

Γcr(k) =
16π2
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∂ fα
∂z

]

p=ZαeB0/kc
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where α is the index labeling nuclei of different types. All nu-
clei, including all stable isotopes for a given value of charge,
are included in the calculations. As discussed in much previous
literature, this is very important to compute properly the diffu-
sion coefficient and thus for a meaningful comparison with the
flux spectra and secondary to primary ratios, notably B/C. The
growth rate, written as in Eq. (7), refers to waves with wave num-
ber k along the ordered magnetic field. It is basically impossible
to generalize the growth rate to a more realistic field geometry
by operating in the context of quasi-linear theory, therefore we
will use here this expression but keeping in mind its limitations.

The solution of Eq. (6) can be written in an implicit form
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1
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, (8)

being k0 = 1/lc. In the present paper we assume a Kolmogorov
phenomenology for the cascading turbulence, so that α1 = 7/2
and α2 = 1/2, and an unperturbed magnetic field B0 = 1µG.
The two terms in Eq. (8) refer respectively to the pre-existing
magnetic turbulence and the CR induced turbulence. In the limit
in which there are no CRs (or CRs do not play an appreciable
role) one finds the standard Kolmogorov wave spectrum

W(k) = W0

(

k
k0

)−s

s =
α1 − 1
α2 + 1

=
5
3

(9)

normalized, as discussed above, to the total power W0 = (s −
1)lcηB.

The equations for the waves and for CR transport are solved
together in an iterative way, so as to return the spectra of par-
ticles and the diffusion coefficient for each nuclear species and
the associated grammage. The procedure is started by choosing
guess injection factors for each type of nuclei, and a guess for
the diffusion coefficient, which is assumed to coincide with the
one predicted by quasi-linear theory in the presence of a back-
ground turbulence. The first iteration returns the spectra of each
nuclear specie and a spectrum of waves, that can be used now
to calculate the diffusion coefficient self-consistently. The pro-
cedure is repeated until convergence, which is typically reached
in a few steps, and the resulting fluxes and ratios are compared
with available data. This allows us to renormalize the injection
rates and restart the whole procedure, which is repeated until a
satisfactory fit is achieved. Since the fluxes of individual nuclei
affect the grammage through the rate of excitation of stream-
ing instability and viceversa the grammage affects the fluxes, the
procedure is all but trivial.
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Fig. 1. Spectrum of protons measured by Voyager (blue empty cir-
cles), AMS-02 (black filled circles) (Aguilar et al. 2015), PAMELA
(green empty squares) (Adriani 2011) and CREAM (blue filled squares)
(Yoon et al. 2011), compared with the prediction of our calculations
(lines). The solid line is the flux at the Earth after the correction due to
solar modulation, while the dashed line is the spectrum in the ISM.
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Fig. 2. Spectrum of He nuclei according to preliminary measurements
of AMS-02 (black filled circles), as measured by Voyager (blue empty
circles), PAMELA (green empty squares) and CREAM (blue filled
squares), compared with the prediction of our calculations (lines). The
solid line is the flux at the Earth after the correction due to solar modu-
lation, while the dashed line is the spectrum in the ISM.

3. Results

The main evidence for a transition from self-generated waves to
pre-existing turbulence can be searched for in the spectra of the
light elements, protons and helium nuclei. A spectral break was
in fact found by the PAMELA experiment (Adriani 2011) in both
spectra and later confirmed by AMS-02, although at the time
of writing this paper only the results of AMS on protons have
been published (Aguilar et al. 2015), while a preliminary version
of the spectrum of helium has been presented (AMS-02 2015).
The spectra of both elements were also measured by the Voyager
(Stone et al. 2013) outside the heliosphere, so as to make this
the first measurement in human history of the CR spectra in the
interstellar medium. This is a very important results in that it
also allows us to refine our understanding of the effects of solar
modulation (Potgieter 2013).

The spectrum of protons and helium nuclei as calculated
in this paper is shown in Figs. 1 and 2, respectively: the solid
lines indicate the spectra at the Earth, namely after solar mod-
ulation modelled using the force-free approximation (Gleeson
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1968), while the dashed lines are the spectra in the ISM. The
data points are the spectra measured by the Voyager (empty cir-
cles) (Stone et al. 2013), AMS-02 (filled circles) (Aguilar et al.
2015), PAMELA (empty squares) (Adriani 2011) and CREAM
(filled squares) (Yoon et al. 2011). Figs. 1 and 2 show several
interesting aspects: 1) both the spectra of protons and helium nu-
clei show a pronounced change of slope at few hundred GeV/n,
where self-generation of waves becomes less important than pre-
existing turbulence (in fact, the change of slope takes place in
rigidity). 2) We confirm that injecting He with a slightly harder
spectrum with respect to protons (p−4.15 versus p−4.2) improves
the fit to the data. 3) The spectra calculated to optimise the fit to
the AMS-02 and PAMELA data is in excellent agreement with
the Voyager data (see dashed lines). This is all but trivial: in our
model, at sufficiently low energies (below ∼ 10 GeV/n), particle
transport is dominated by advection (at the Alfén speed) with
self-generated waves rather than diffusion. This reflects into a
weak energy dependence of the propagated spectra that is ex-
actly what Voyager measured (see also (Potgieter 2013)). 4) At
low energies, the agreement of the predicted spectra with those
measured by Voyager is actually better than the agreement with
the modulated spectra, as observed with AMS–02; this suggests
that probably the prescriptions used to describe solar modula-
tion are somewhat oversimplified, either when applied to data
collected over extended periods of time, when the effective solar
potential may change appreciably, or because of intrinsic limita-
tions of the force-field approximation.

For each heavier nucleus, we assume the same injected spec-
tral shape in rigidity as for helium, keeping as only free param-
eter the normalization, chosen to match the data. In Fig. 3 we il-
lustrate the prediction for Carbon nuclei (which is also a needed
ingredient to compute the B/C ratio), compared with data by
PAMELA and CREAM, as well as preliminary data by AMS-
02. The free normalization is chosen to match more closely the
AMS-02 data. Clearly, the phenomenon of transition from self-
generated to pre-existing waves manifests itself in the transport
of all nuclei, hence we should expect a spectral break at the
same rigidity as for helium and protons. This prediction appears
currently in agreement with Carbon spectrum observations, al-
though it is hard to judge to what extent a break is present in
AMS-02 data alone, giving the growing error bars and the lim-
ited dynamical range at high energy. Note that a break would
appear more prominent if one were to combine PAMELA and
CREAM data, which do seem to differ from AMS-02 data in the
10 to ∼ 200 GeV/n range beyond the reported errors. Definitely,
the forthcoming AMS-02 publication of nuclear fluxes should
help in clarifying the situation.

In Fig. 4 we show the calculated B/C ratio (solid black line)
as compared with data from CREAM (blue squares), PAMELA
(green squares), and the still preliminary ones from AMS-02
(black circles). Even if the injected Carbon flux is normalized
to the preliminary Carbon data reported by AMS-02, the B/C
ratio is still in satisfactory agreement with both PAMELA and
CREAM data, as for our previous result (Aloisio 2013). The
B/C ratio also fits the AMS data up to ∼ 100GeV/n. At higher
energy, the AMS-02 analysis seems to suggest a B/C ratio some-
what higher than our prediction. While its significance is uncer-
tain, given the preliminary nature of AMS data, if this “excess”
is interpreted as physical, it would suggest the presence of an
additional contribution to the grammage traversed by CRs. The
most straightforward possibility to account for such a grammage
is that it may be due to the matter traversed by CRs while es-
caping the source, for instance a SNR. The grammage due to
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Fig. 3. Spectrum of C nuclei as measured by CREAM (blue squares),
PAMELA (green empty squares), and according to preliminary mea-
surements of AMS-02 (black circles), compared with the prediction of
our calculations (lines). The solid line is the flux at the Earth after the
correction due to solar modulation, while the dashed line is the spectrum
in the ISM.
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Fig. 4. B/C ratio as measured by CREAM (blue squares), PAMELA
(green empty squares), and according to preliminary measurements of
AMS-02 (black circles). The black/bottom solid line is the prediction of
our model, while the red/top line has been obtained by adding a source
grammage of 0.15 g cm−2, close to that given by Eq. (10).

confinement inside a SNR can be easily estimated as

XSNR ≈ 1.4rsmpnISMcTSNR ≈ 0.17 g cm−2
nISM
cm−3

TSNR
2 × 104yr

, (10)

where nISM is the density of the interstellar gas upstream of a
SNR shock and rs = 4 is the compression factor at the shock
and TSNR is the duration of the SNR event (or better, the lifetime
“useful” to confine particles up to E ∼TeV/n), assumed here to
be of order twenty thousand years. The factor 1.4 in Eq. (10) has
been introduced to account for the presence of elements heavier
than hydrogen in the target. While Eq. (10) is only a rough es-
timate of the grammage at the source, in that several (in general
energy dependent) factors may affect such an estimate, at least
it provides us with a reasonable benchmark value. The solid red
curve in Fig. 4 shows the result of adding the grammage accu-
mulated by CRs inside the source to the one due to propagation
in the Galaxy. It is clear that by eye it fits better the AMS-02
data at high rigidity, while being also compatible with the older
CREAM data. The forthcoming publication by AMS-02 of the
fluxes of nuclei and secondary to primary ratios should hope-
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1968), while the dashed lines are the spectra in the ISM. The
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where nISM is the density of the interstellar gas upstream of a
SNR shock and rs = 4 is the compression factor at the shock
and TSNR is the duration of the SNR event (or better, the lifetime
“useful” to confine particles up to E ∼TeV/n), assumed here to
be of order twenty thousand years. The factor 1.4 in Eq. (10) has
been introduced to account for the presence of elements heavier
than hydrogen in the target. While Eq. (10) is only a rough es-
timate of the grammage at the source, in that several (in general
energy dependent) factors may affect such an estimate, at least
it provides us with a reasonable benchmark value. The solid red
curve in Fig. 4 shows the result of adding the grammage accu-
mulated by CRs inside the source to the one due to propagation
in the Galaxy. It is clear that by eye it fits better the AMS-02
data at high rigidity, while being also compatible with the older
CREAM data. The forthcoming publication by AMS-02 of the
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The hardening of  the spectra also corresponds to a flattening of  the anisotropy at high energy 

No discrete sources were introduced here, hence only the regular trend of  the anisotropy is 
shown, the wild fluctuations may be responsible for dips and bumps



A GENERAL TREND? 

The spectra of oxygen, carbon and nitrogen do not follow the traditional 
single power law.   
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The spectra of protons, helium and lithium do not follow the traditional 
single power law.   
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A change of slope around 300 GV seems to be visible in measurements of the fluxes 
of both primary and secondary nuclei 

Whether this happens because of a break in the injection spectra or in the diffusion 
coefficient could be understood from quantitative assessment of the slopes below 
and above the break for primaries and secondaries
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GRAMMAGE ACCUMULATED NEAR THE SOURCES

NEAR THE SOURCES THE DENSITY OF CR AND THE GRADIENTS ARE LARGE 
ENOUGH THAT INSTABILITIES ARE EXCITED AND MAY CONFINE CR CLOSE TO 
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ACCOUNTING FOR THIS PROBLEM REQUIRES SOLVING A TIME DEPENDENT 
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GALACTIC DISC 
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NEAR SOURCE TRANSPORT

The gradients in the particle distribution around a source are very large and 
can lead to excitation of  fast streaming instability

CR diffusion 
near the source

2Lc
In the absence of  non-linear effects 
the CR density inside Lc remain > 
than the Galactic average for a time 

After that, propagation becomes 3D 
and the density drops rapidly

2

bility), that in turn slow down the CR propagation in the
near-source region. Within a distance of about 1-2 Lc,
with Lc = 50�150 pc [3], the problem can be well approx-
imated as one dimensional (see also [4, 5, 7]). We show
that for particle energies up to a few TeV, the grammage
accumulated by CRs within such distances, as due to
non-linear di↵usive transport in the dense Galactic disc
(nd ⇠ 1 cm�3), may become comparable with the global
grammage expected in the standard picture of propaga-
tion throughout the whole Galaxy, as deduced from the
measurement of the B/C ratio. The implications of this
finding for our understanding of the origin of CRs will be
discussed.

Calculations – As a benchmark for the Galac-
tic di↵usion coe�cient we adopt the functional form

Dg(E) = 3.6 ⇥ 1028E1/3
GeV cm2

/s, as derived in
Ref. [8] from a leaky-box fit to GALPROP [9] (see
http://galprop.stanford.edu) results for a Kolmogorov
turbulence spectrum (here, for simplicity, we restrict our-
selves to the relativistic regime). The scenario we have
in mind is as follows: a supernova (SN) explodes in the
Galactic disc, where the magnetic field is assumed to have
a well established direction on a scale Lc ⇠ 50� 150 pc.
In fact the magnetic field direction will not experience
dramatic changes even on scales somewhat larger than
Lc if the turbulence level is low, �B/B < 1. Describ-
ing the particle transport as di↵usive on scales . Lc

can only be done for particles with a mean free path
3Dg(p)/c << Lc. This condition is easily seen to be
satisfied up to at least ⇠ 105 � 106 GeV for the stan-
dard Galactic di↵usion coe�cient Dg: we will only be
concerned with particles well below this energy. After a

time ⇠ L
2
c/Dg(E) ⇠ 9 ⇥ 104E�1/3

GeV years, particles start
di↵using out of the region where the magnetic field can
be assumed to have a given orientation and the problem
should be treated as 3-dimensional di↵usion. In such
a phase, within a distance from the source

p
Dg(E)ts,

the CR density due to the source itself remains larger
than the mean galactic density for a time ts that we
can estimate by equating the individual source contri-
bution, N(E)/(4⇡Dg(E)t)3/2, to the average Galactic
density, N(E)RH/(2⇡R2

dDg(E)), with N(E) the aver-
age spectrum that a source of CRs injects in the Galaxy,
R the SN rate, Rd and H the size of the galactic disc
and halo respectively. For typical values of the parame-
ters, R = 1/30 yr�1, Rd = 30 kpc (from [8]) and H = 4

kpc, one finds ts ⇠ 2 ⇥ 104E�1/3
GeV yr, which indicates

that the density of locally accelerated CRs quickly drops
to the galactic average as soon as propagation becomes
3-dimensional. Hence we formulate our problem start-
ing from the solution of the one-dimensional transport
equation,
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in a box of size 2Lc with the boundary condition that

f(p, |z| = Lc, t) = fg(p). We have in mind a situation
in which di↵usion is due to self-generated waves moving
away from the source at the Alfvén speed vA (advection
term in Eq. 1).
Injection is assumed to be constant in time from t = 0

to a time TSN , which characterizes the duration of the re-
lease phase of CRs into the ISM. Since we are interested
in CRs with energies below ⇠ 100 TeV or so (for higher
energies the density of particles close to the source is too
small to lead to e↵ective growth of the streaming instabil-
ity), the escape of CRs is expected to occur at the time

of shock dissipation. The function q0(p) = A

⇣
p

mpc
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mimics injection at a strong SNR shock, with the nor-
malisation constant A = ⇠CRESN/⇡R

2
SNTSNI, and I =R1

0 dp4⇡p2 (p/mpc)
�4

✏(p), where ✏(p) is the kinetic en-
ergy of a particle with momentum p. The normalization
is such that a fraction ⇠CR of the kinetic energy ESN

of the SNR shock is converted into CRs. The radius of
the SNR at the time of escape of CRs is chosen to be
RSN ⇡ 20 pc, of order the size of the slowly varying
radius of a SNR during the Sedov phase in the ISM. In-
tegrating Eq. 1 in a neighbourhood of z = 0 one finds:
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which is an additional boundary condition on Eq. 1.
The di↵usion coe�cient in Eq. 1 is self-generated by

CRs leaving the source:

D(p, z, t) =
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rL(p)v(p)
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F(k, z, t)
|k=1/rL(p), (3)

where the spectrum of the self-generated waves F(k, z, t)
satisfies the di↵erential equation:
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because of CR driven streaming instability [11], and are
damped because of ion-neutral damping (IND) at rate
�IN [? ] and non-linear Landau damping (NLLD) [10].
We use the following rate of NLLD:

�NL = (2cK)�3/2
kvAF1/2

cK ⇡ 3.6. (6)

In Eq. 4, �D = �IN + �NL. The relative importance
of IND and NLLD depends on the presence of neutral
atoms in the region surrounding the SN. Below we con-
sider three cases: 1) No neutrals and gas density 1 cm�3;
2) Neutral density nn = 0.05 cm�3 and ion density
ni = 1 cm�3; 3) rarefied totally ionized medium with
density ni = 0.01 cm�3. In order to avoid artificial di-
vergences in the di↵usion coe�cient we assume that there

In the presence of  non-linear effects waves are excited and damped:
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tegrating Eq. 1 in a neighbourhood of z = 0 one finds:
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because of CR driven streaming instability [11], and are
damped because of ion-neutral damping (IND) at rate
�IN [? ] and non-linear Landau damping (NLLD) [10].
We use the following rate of NLLD:

�NL = (2cK)�3/2
kvAF1/2

cK ⇡ 3.6. (6)

In Eq. 4, �D = �IN + �NL. The relative importance
of IND and NLLD depends on the presence of neutral
atoms in the region surrounding the SN. Below we con-
sider three cases: 1) No neutrals and gas density 1 cm�3;
2) Neutral density nn = 0.05 cm�3 and ion density
ni = 1 cm�3; 3) rarefied totally ionized medium with
density ni = 0.01 cm�3. In order to avoid artificial di-
vergences in the di↵usion coe�cient we assume that there
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bility), that in turn slow down the CR propagation in the
near-source region. Within a distance of about 1-2 Lc,
with Lc = 50�150 pc [3], the problem can be well approx-
imated as one dimensional (see also [4, 5, 7]). We show
that for particle energies up to a few TeV, the grammage
accumulated by CRs within such distances, as due to
non-linear di↵usive transport in the dense Galactic disc
(nd ⇠ 1 cm�3), may become comparable with the global
grammage expected in the standard picture of propaga-
tion throughout the whole Galaxy, as deduced from the
measurement of the B/C ratio. The implications of this
finding for our understanding of the origin of CRs will be
discussed.

Calculations – As a benchmark for the Galac-
tic di↵usion coe�cient we adopt the functional form

Dg(E) = 3.6 ⇥ 1028E1/3
GeV cm2

/s, as derived in
Ref. [8] from a leaky-box fit to GALPROP [9] (see
http://galprop.stanford.edu) results for a Kolmogorov
turbulence spectrum (here, for simplicity, we restrict our-
selves to the relativistic regime). The scenario we have
in mind is as follows: a supernova (SN) explodes in the
Galactic disc, where the magnetic field is assumed to have
a well established direction on a scale Lc ⇠ 50� 150 pc.
In fact the magnetic field direction will not experience
dramatic changes even on scales somewhat larger than
Lc if the turbulence level is low, �B/B < 1. Describ-
ing the particle transport as di↵usive on scales . Lc

can only be done for particles with a mean free path
3Dg(p)/c << Lc. This condition is easily seen to be
satisfied up to at least ⇠ 105 � 106 GeV for the stan-
dard Galactic di↵usion coe�cient Dg: we will only be
concerned with particles well below this energy. After a

time ⇠ L
2
c/Dg(E) ⇠ 9 ⇥ 104E�1/3

GeV years, particles start
di↵using out of the region where the magnetic field can
be assumed to have a given orientation and the problem
should be treated as 3-dimensional di↵usion. In such
a phase, within a distance from the source

p
Dg(E)ts,

the CR density due to the source itself remains larger
than the mean galactic density for a time ts that we
can estimate by equating the individual source contri-
bution, N(E)/(4⇡Dg(E)t)3/2, to the average Galactic
density, N(E)RH/(2⇡R2

dDg(E)), with N(E) the aver-
age spectrum that a source of CRs injects in the Galaxy,
R the SN rate, Rd and H the size of the galactic disc
and halo respectively. For typical values of the parame-
ters, R = 1/30 yr�1, Rd = 30 kpc (from [8]) and H = 4

kpc, one finds ts ⇠ 2 ⇥ 104E�1/3
GeV yr, which indicates

that the density of locally accelerated CRs quickly drops
to the galactic average as soon as propagation becomes
3-dimensional. Hence we formulate our problem start-
ing from the solution of the one-dimensional transport
equation,
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RSN ⇡ 20 pc, of order the size of the slowly varying
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tegrating Eq. 1 in a neighbourhood of z = 0 one finds:
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�IN [? ] and non-linear Landau damping (NLLD) [10].
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of IND and NLLD depends on the presence of neutral
atoms in the region surrounding the SN. Below we con-
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because of CR driven streaming instability [11], and are
damped because of ion-neutral damping (IND) at rate
�IN [? ] and non-linear Landau damping (NLLD) [10].
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In Eq. 4, �D = �IN + �NL. The relative importance
of IND and NLLD depends on the presence of neutral
atoms in the region surrounding the SN. Below we con-
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ni = 1 cm�3; 3) rarefied totally ionized medium with
density ni = 0.01 cm�3. In order to avoid artificial di-
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bility), that in turn slow down the CR propagation in the
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imated as one dimensional (see also [4, 5, 7]). We show
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accumulated by CRs within such distances, as due to
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(nd ⇠ 1 cm�3), may become comparable with the global
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tion throughout the whole Galaxy, as deduced from the
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turbulence spectrum (here, for simplicity, we restrict our-
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Galactic disc, where the magnetic field is assumed to have
a well established direction on a scale Lc ⇠ 50� 150 pc.
In fact the magnetic field direction will not experience
dramatic changes even on scales somewhat larger than
Lc if the turbulence level is low, �B/B < 1. Describ-
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can only be done for particles with a mean free path
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R the SN rate, Rd and H the size of the galactic disc
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that the density of locally accelerated CRs quickly drops
to the galactic average as soon as propagation becomes
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bility), that in turn slow down the CR propagation in the
near-source region. Within a distance of about 1-2 Lc,
with Lc = 50�150 pc [3], the problem can be well approx-
imated as one dimensional (see also [4, 5, 7]). We show
that for particle energies up to a few TeV, the grammage
accumulated by CRs within such distances, as due to
non-linear di↵usive transport in the dense Galactic disc
(nd ⇠ 1 cm�3), may become comparable with the global
grammage expected in the standard picture of propaga-
tion throughout the whole Galaxy, as deduced from the
measurement of the B/C ratio. The implications of this
finding for our understanding of the origin of CRs will be
discussed.

Calculations – As a benchmark for the Galac-
tic di↵usion coe�cient we adopt the functional form

Dg(E) = 3.6 ⇥ 1028E1/3
GeV cm2

/s, as derived in
Ref. [8] from a leaky-box fit to GALPROP [9] (see
http://galprop.stanford.edu) results for a Kolmogorov
turbulence spectrum (here, for simplicity, we restrict our-
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time ⇠ L
2
c/Dg(E) ⇠ 9 ⇥ 104E�1/3

GeV years, particles start
di↵using out of the region where the magnetic field can
be assumed to have a given orientation and the problem
should be treated as 3-dimensional di↵usion. In such
a phase, within a distance from the source

p
Dg(E)ts,

the CR density due to the source itself remains larger
than the mean galactic density for a time ts that we
can estimate by equating the individual source contri-
bution, N(E)/(4⇡Dg(E)t)3/2, to the average Galactic
density, N(E)RH/(2⇡R2

dDg(E)), with N(E) the aver-
age spectrum that a source of CRs injects in the Galaxy,
R the SN rate, Rd and H the size of the galactic disc
and halo respectively. For typical values of the parame-
ters, R = 1/30 yr�1, Rd = 30 kpc (from [8]) and H = 4

kpc, one finds ts ⇠ 2 ⇥ 104E�1/3
GeV yr, which indicates

that the density of locally accelerated CRs quickly drops
to the galactic average as soon as propagation becomes
3-dimensional. Hence we formulate our problem start-
ing from the solution of the one-dimensional transport
equation,
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(1)
in a box of size 2Lc with the boundary condition that

f(p, |z| = Lc, t) = fg(p). We have in mind a situation
in which di↵usion is due to self-generated waves moving
away from the source at the Alfvén speed vA (advection
term in Eq. 1).
Injection is assumed to be constant in time from t = 0

to a time TSN , which characterizes the duration of the re-
lease phase of CRs into the ISM. Since we are interested
in CRs with energies below ⇠ 100 TeV or so (for higher
energies the density of particles close to the source is too
small to lead to e↵ective growth of the streaming instabil-
ity), the escape of CRs is expected to occur at the time

of shock dissipation. The function q0(p) = A

⇣
p

mpc

⌘�4

mimics injection at a strong SNR shock, with the nor-
malisation constant A = ⇠CRESN/⇡R

2
SNTSNI, and I =R1

0 dp4⇡p2 (p/mpc)
�4

✏(p), where ✏(p) is the kinetic en-
ergy of a particle with momentum p. The normalization
is such that a fraction ⇠CR of the kinetic energy ESN

of the SNR shock is converted into CRs. The radius of
the SNR at the time of escape of CRs is chosen to be
RSN ⇡ 20 pc, of order the size of the slowly varying
radius of a SNR during the Sedov phase in the ISM. In-
tegrating Eq. 1 in a neighbourhood of z = 0 one finds:
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, (2)

which is an additional boundary condition on Eq. 1.
The di↵usion coe�cient in Eq. 1 is self-generated by

CRs leaving the source:

D(p, z, t) =
1

3
rL(p)v(p)

1

F(k, z, t)
|k=1/rL(p), (3)

where the spectrum of the self-generated waves F(k, z, t)
satisfies the di↵erential equation:
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because of CR driven streaming instability [11], and are
damped because of ion-neutral damping (IND) at rate
�IN [? ] and non-linear Landau damping (NLLD) [10].
We use the following rate of NLLD:

�NL = (2cK)�3/2
kvAF1/2

cK ⇡ 3.6. (6)

In Eq. 4, �D = �IN + �NL. The relative importance
of IND and NLLD depends on the presence of neutral
atoms in the region surrounding the SN. Below we con-
sider three cases: 1) No neutrals and gas density 1 cm�3;
2) Neutral density nn = 0.05 cm�3 and ion density
ni = 1 cm�3; 3) rarefied totally ionized medium with
density ni = 0.01 cm�3. In order to avoid artificial di-
vergences in the di↵usion coe�cient we assume that there
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GRAMMAGE ACCUMULATED NEAR THE SOURCES4

parable with the one accumulated inside the source.
As pointed out above, following [19], it seems plausi-

ble that most of the neutral gas in the warm-hot phase
is made of helium, whose charge exchange cross section
with ionized hydrogen is very small. Ref. [19] suggests
an upper bound to the density of neutral hydrogen of
⇠ 0.03cm�3. This case is accounted for as Case (3)
above.

Case (4) corresponds to a small grammage (due to the
low gas density) but it is important to realize that in
fact Cases (1) and (4) correspond to roughly the same
propagation time in the near-source region. This might
have important observational consequences in the case in
which a dense target for pp collisions, such as a molec-
ular cloud, is present in a region where the gas density
(outside the cloud) is very low and IND is absent: the
long escape times and the correspondingly enhanced CR
density will reflect in enhanced gamma-ray emission.

The time needed for CR escape from the region of size
Lc = 100 pc around a source is shown in Fig. 2 for the
four cases of interest, compared with the di↵usion time
in the same region estimated by using the Galactic dif-
fusion coe�cient Dg (dotted line). This plot shows once
more that the escape time is weekly dependent upon the
density of ions provided there is no appreciable IND. The
small di↵erence between the two cases (dash-dotted and
dashed lines) is to be attributed to the weak advection
with Alfvén waves, since the waves’ velocity is somewhat
di↵erent in the two cases.

In the absence of neutrals, the near-source grammage
increases with increasing Lc and with increasing CR ac-

celeration e�ciency ⇠CR, proportional to ⇠ L
2/3
c and

/ ⇠
2/3
CR respectively. It is interesting to notice that these

trends are the same shown by the self-similar solution
obtained in Ref. [6] for a similar problem, though with
di↵erent boundary conditions and under the assumption
of impulsive CR release by the source. In the cases in
which neutral atoms are absent, for particles with ener-
gies up to ⇠ 1 TeV, the grammage decreases with energy
in roughly the same way as the observed grammage [11],
as a result of the dependence of the NLD rate on k in
Eq. 6.

The enhanced grammage illustrated in Fig. 1 is the re-
sult of streaming instability excited by CRs leaving the
source. This e↵ect is particularly important for parti-
cles with energy . 10 TeV, because of the large density
of particles at such energies, that reflects into a corre-
spondingly high growth rate of the instability (see Eq. 4).
In Fig. 3 we show the power spectrum F(k) at z = 50
pc for a case with Lc = 100 pc. On the top x-axis we
show the momentum of particles that can resonate with
waves of given wavenumber k (bottom x-axis). The solid
(dashed) line refers to case (1) at time t = 104 (t = 105)
years. In Case (2), the presence of neutrals decreases
the level of self-generated waves (see dotted line, com-
puted at t = 104 years), which however remains appre-
ciably higher than the Galactic turbulence level F0(k),
also shown in Fig. 3 as a thick dot-dashed curve. Parti-
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FIG. 1: Grammage accumulated by CRs in the near-source
region for Lc = 100 pc in the three cases: (1) nn = 0,
ni = 0.45cm�3; (2) ni = 0.45cm�3 and nn = 0.05cm�3;
(3) nn = 0, ni = 0.01cm�3, as labelled. The thin dotted
(red) line corresponds to case (2) but with slope of the injec-
tion spectrum 4.2. The thick dashed line (labelled as XPSS09)
shows the grammage inferred from the measured B/C ratio
[11], while the thick solid line (labelled as XAB13) shows the
results of the non-linear propagation of Ref. [8]. The hori-
zontal (thick dotted) line (labelled as XABS15) is the source
grammage, as estimated in Ref. [21].
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FIG. 2: Escape time of CRs from the near-source region for
Lc = 100 pc in the three cases: (1) nn = 0, ni = 0.45cm�3;
(2) ni = 0.45cm�3 and nn = 0.05cm�3; (3) nn = 0, ni =
0.01cm�3. The dotted line refers to the escape time calculated
using the Galactic di↵usion coe�cient Dg.

cles di↵using away from the source keep pumping waves
into the environment for about 105 years. At later times,
higher energy particles start escaping the near-source re-
gion, the gradients diminish and F(k) approaches again
F0(k), starting from low values of k.
The e↵ect of particle self-confinement is illustrated in

Fig. 4, where we show the density of particles (or more
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gion, the gradients diminish and F(k) approaches again
F0(k), starting from low values of k.
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THE NON LINEAR EFFECTS INDUCED BY CR CAN LEAD TO AN ENHANCED CONFINEMENT 
TIME CLOSE TO THE SOURCE IF MEDIUM IONIZED 

IF NEUTRALS PRESENT, ION-NEUTRAL DAMPING LIMITS THIS PHENOMENON
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fact, in the traditional ”leaky-box” model the CR spectrum
at the disk and spectrum spatial dependence are given by

f0(p) =
Q0(p)

2⇡Rd
2

H

H
2

D
(2)

and

f (z,p) = f0(p)
✓
1 � z

H

◆
, (3)

where Q0 is the injection spectrum, D the di↵usion coe�-
cient (assumed to be spatially constant) and Rd the galactic
disk radius. H is the location of the free escape boundary,
an artificial boundary where the CR distribution function
is set to zero in order to guarantee the stationarity of the
propagation problem, and is usually taken to be of order ' 4
kpc. Instead in this approach H is replaced by s

⇤(p), which
is momentum-dependent and does not need to be artificially
imposed but derives self-consistently from the solution of the
transport problem. The CR distribution function at the disk
thus becomes

f0(p) ' Q(p)
2⇡Rd

2
s⇤(p)

s
⇤2(p)

D
. (4)

3 A SEMI-ANALYTICAL APPROACH TO
CR-DRIVEN WINDS

In this paper we make use of the results mentioned in
Sec. 2, in particular of the hydrodynamic model developed
in Breitschwerdt (1991), however our approach is by no
mean similar. In fact here for the first time an attempt
is made to solving self consistently the coupled system of
the hydrodynamic equations for CR-driven winds and of
the CR transport equation. The solution of the coupled
problem is found by mean of a semi-analytical method
which, once the input parameters of the problem have been
assigned (gas density, gas pressure and magnetic field at the
wind base and the CR injection spectrum), computes the
CR spectrum, the CR di↵usion coe�cient and the profiles
of the hydrodynamic quantities, such as the wind velocity,
as functions of the distance from the galactic disk. Note
that the galactic gravitational potential, as well as the CR
source distribution, depend on the galactocentric distance
R0, so that the result of the computation, and even the
possibility itself to have a wind, depend on the position in
the Galaxy. In our approach both the di↵usion coe�cient
and the advection velocity appearing in the CR transport
equation are output of the calculation and are determined
by CRs themselves.

The three-dimensional dynamical equations involved in
the problem are the hydrodynamic equations for the thermal
gas and for the CRs (which describe the total mass, momen-

tum and energy conservation (see Sec. 4 and appendix A)):

~r · (⇢~u) = 0, (5)

⇢(~u · ~r)~u = �~r(Pg + Pc ) � ⇢~r�, (6)

~u · ~rPg =
�gPg

⇢
~u · ~r⇢ � (�g � 1) ~vA · ~rPc , (7)
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= �(~u + ~vA) · ~rPc , (8)
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266664(~u + ~vA)

�cPc

�c � 1
� D~rPc

�c � 1

377775 = (~u + ~vA) · ~rPc , (9)

~r · ~B = 0 (10)

and the CR transport equation (see Sec. 5)

~r ·
f
D~r f

g
� (~u + ~vA) · ~r f + ~r · (~u + ~vA)

1
3
@ f

@ ln p
+Q = 0. (11)

⇢(z), ~u(z), Pg (z) are the gas density, velocity and pressure.

f (z,p), D(z,p), Pc (z) and D(z) are the CR distribution func-
tion, di↵usion coe�cient, pressure and averaged di↵usion co-
e�cient. Finally ~B(z) and ~vA (z) are the magnetic field and
the Alfvén velocity, while �(R0, z) is the gravitational po-
tential of the Galaxy (see Sec. 3.1) and Q(R0, z,p) the CR
injection spectrum.
In our computation we assume the same one dimensional
model as in Breitschwerdt (1991) and use the same flow ge-
ometry (see Fig. 1). In addition, we assume that only Alfvén
waves generated by CR-streaming instability are present and
that their generation is locally balanced by nonlinear Lan-
dau damping. The coupling between CRs and ISM, guar-
anteed by Alfvén waves, is not assumed to be ideal so that
the CR di↵usion terms are kept in the hydrodynamic equa-
tions (in contrast to what has been done in Breitschwerdt
(1991), in which di↵usion is neglected). The assumption of
local damping of the Alfvén waves means, from the point
of view of the hydrodynamic equations, that the waves are
generated and damped immediately, so that any e↵ect of
wave dynamics can be neglected and the energy fed by CRs
to the waves simply results in gas heating. For that reason
the wave pressure is not taken into account in the hydro-
dynamic equations. On the other hand, it has been shown
in Everett (2008) that the assumption of immediate damp-
ing of waves in the hydrodynamic equations is well justified
when we compare the damping time-scale of waves in the
ISM due to non-linear Landau damping (order of years) to
the typical advection time-scale (order of 106yr for typical
wind velocities).
The CR di↵usion coe�cient appearing in the transport equa-
tion is assumed to be self-generated and is given by

D(z,p) =
1
3
v(p)rL (z,p)

F
�����kres=1/rL

. (12)

where F is the equilibrium wave spectrum

F (z,p) = 2ck

26666664
p

4v(p)
���� @ f@z

���� 16⇡2

3 rL (z,p)

B2(z)

37777775

2/3

. (13)

resulting from equating the growth rate of waves due to CR
streaming instability (Eq. 14) and damping rate due to non-
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of view of the hydrodynamic equations, that the waves are
generated and damped immediately, so that any e↵ect of
wave dynamics can be neglected and the energy fed by CRs
to the waves simply results in gas heating. For that reason
the wave pressure is not taken into account in the hydro-
dynamic equations. On the other hand, it has been shown
in Everett (2008) that the assumption of immediate damp-
ing of waves in the hydrodynamic equations is well justified
when we compare the damping time-scale of waves in the
ISM due to non-linear Landau damping (order of years) to
the typical advection time-scale (order of 106yr for typical
wind velocities).
The CR di↵usion coe�cient appearing in the transport equa-
tion is assumed to be self-generated and is given by

D(z,p) =
1
3
v(p)rL (z,p)

F
�����kres=1/rL

. (12)

where F is the equilibrium wave spectrum

F (z,p) = 2ck

26666664
p

4v(p)
���� @ f@z

���� 16⇡2

3 rL (z,p)

B2(z)

37777775

2/3

. (13)

resulting from equating the growth rate of waves due to CR
streaming instability (Eq. 14) and damping rate due to non-
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Diffusion determined by self-generation at 
CR gradients balanced by local damping 
of  the same waves 

No pre-established diffusion coefficient and 
no pre-fixed halo size
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STANDARD CASE                          CR-INDUCED WIND WITH SELF-GENERATION

No effective halo size H

Aside from math, the Physics of  the problem can be understood easily, though it turns out 
to be unrealistic: There is a critical distance above (and below) the disc (which depends on 
particle energy) where diffusion turns into advection:

Ptuskin et al. 1997

At high energy, the critical scale becomes larger than the location where the geometry to he wind 
becomes spherical, and a steepening of  the spectrum may be expected
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The procedure reaches convergence when, for a given
iteration j, f j(z, p) and f j−1(z, p) are close to each other
within a desired precision. Note that the advection velocity
U(z) is computed from the hydrodynamic equations and is
fixed while iterating upon the distribution function f j .

5 RESULTS

In this section we illustrate some selected cases of CR in-
duced winds, aimed at addressing different issues that arise
in this type of problem. The first case is what we will re-
fer to as our reference case, namely a case that illustrates
the most basic characteristics of a CR induced wind, with
a minimal number of physical parameters introduced. The
wind is launched very close to the disc of the Galaxy, and
we consider the specific situation expected at the solar ra-
dius, namely at the Galactocentric distance R = R⊙ = 8.5
kpc, where the Sun is located. This information is crucial in
that it determines the gravitational potential that the wind
has to fight against. The second model considered below is
that in which a wind is launched at some distance from the
Galactic disc, while particle transport in the near-disc region
is assigned. This latter situation is physically motivated by
the fact that ion-neutral damping is expected to damp any
type of self-generated turbulence within ∼ 0.5− 1 kpc from
the disc, because of the presence of a substantial amount
of neutral hydrogen. We will show that the consequences of
this setup for the spectrum of CRs observed at the Earth
are very prominent.

5.1 Reference case

Our reference case corresponds to launching a CR-induced
wind at a Galactocentric distance R = R⊙ = 8.5 kpc. The
base of the wind is assumed to be at the edge of the Galactic
disc, z0 = 100 pc, where we assumed that the ionized gas
has a density n0 = 0.003 cm−3 and the magnetic field is
B0 = 1.5µG (to be interpreted as the component of the field
along the z direction). The CR pressure at z0 is taken to
equal the observed CR pressure, Pc0 = 6 × 10−13 erg/cm3.
We solve simultaneously the hydrodynamical equations for
the wind and the transport equation for CRs, with self-
generated diffusion and advection taken into account. In or-
der to get the desired CR pressure at the Sun’s location (see
above) we are bound to take

ξCR

0.1
RSN

1/30 yr−1
≈ 1.8,

for an injection spectrum with slope γ = 4.3. The density
of plasma in the wind and the temperature of the wind are
shown in Fig. 5. The temperature of the wind is maintained
by the continuous damping of wave energy into thermal en-
ergy of the gas. In Fig. 6 we show the wind velocity u(z)
(green dashed line), the Alfvén speed vA(z) (blue dotted
line) and the sound speed c∗(z) as functions of the distance
from the Galactic disc. The wind is launched with a speed
of 41 km s−1 and asymptotically reaches a speed of 353 km
s−1, while it becomes supersonic at ∼ 15 kpc.

For the sake of future discussion it is important to notice
here that the CR advection velocity at the base of the wind
is dominated by the Alfvén speed and that the latter is non
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Density (10-3 cm-3)
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Figure 5. Density (red solid line) in units of 10−3 cm−3 and
temperature (greed dashed line) in units of 106 K for the wind
solution in the reference case.
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Figure 6. Wind velocity (red solid line), Alfvén velocity (green
dashed line) and sound speed (blue dotted line) as a function of
the height z above the disc, for the reference case.

zero at the base of the wind (because of a finite density and
magnetic field).

The pressure of CRs as a function of the distance z from
the disc is shown in Fig. 7, together with the gas pressure
and the CR pressure as derived from the kinetic calcula-
tion: the fact that the latter is basically overlapped to the
Pc(z) as derived from hydrodynamics shows that the system
of equations (hydro plus kinetic) reached convergence (with
accuracy of ∼ 0.1% at heights z close to the base of the
wind and ∼ 10−20% at z close to the outer edge of the box
used for numerical computation; here all quantities, with the
exception of the wind velocity, are bound to vanish).

The spectrum of CRs as a function of particle momen-
tum is reported in Fig. 8 for several distances from the
Galactic plane. The most striking feature of the spectrum at
the disc is the pronounced spectral hardness: the spectrum
that should be measured at the Earth location at momenta
below ∼ 1 TeV/c is roughly ∝ p−4.4, only slightly steeper
than the injection spectrum (Q(p) ∝ p−4.3). This finding
reflects the fact that the Alfvén speed at the base of the
wind is very large and dominates CR advection up to high
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Figure 7. CR pressure (red solid line) and gas pressure (blue
dotted line) in the reference case. The green dashed line shows
the CR pressure as obtained from the solution of the transport
equation. The same calculation also returns the wave pressure
Pw(z) (pink dotted line) that is assumed to vanish in the hydro-
dynamical equation.
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Figure 8. CR spectrum, f(p) × p4.7, in the reference case, at
different locations in the wind: base of the wind (red solid line),
z = 10 kpc (green dashed line), z = 50 kpc (blue short-dashed
line) and z = 100 kpc (pink dotted line).

energies. One could argue that a larger value of the den-
sity at the base of the wind would make the Alfvén speed
smaller, but in that case two problems appear: 1) it may
become harder if not impossible to launch the wind because
of excessive baryonic load. In other words, for a given CR
pressure at the base, there may be cases in which the wind
is not launched. 2) When the wind is in fact launched, its
initial velocity may easily be super-Alfvenic, so that again
advection dominates up to relatively high energies.

This result on the spectrum of Galactic CRs appears
to be at odds with previous results by Ptuskin et al. (1997),
where a toy model for the velocity scaling with z provided
different results, of apparently easy interpretation. Since the
argument of Ptuskin et al. (1997) is rather simple, we report
it here and we explain why this simple approach does not
apply to realistic cases of CR-driven winds. The basic as-
sumption of Ptuskin et al. (1997) is that the advection ve-

locity (dominated by the Alfvén speed) scales approximately
linear with z, vA ∼ ηz. Now, it is easy to imagine that while
the advection velocity increases with z, it reaches a critical
distance, s∗, for which advection dominates upon diffusion.
This happens when

s2∗
D(p)

≈
s∗

vA(s∗)
⇒ s∗(p) ∝ D(p)1/2, (42)

where we used the assumption of linear relation vA ∼ ηz.
Now, when diffusion dominates, namely when z ! s∗(p),
one can neglect the advection terms and make the approx-
imate statement (as in the standard diffusion model), that
D(p) ∂f∂z |z=0 ≈ −Q0(p)/2 ∝ p−γ . Now, using equations (21)
and (18) one can easily show that D(p) ∝ p2γ−7 (for a p−4

injection one gets a linear scaling of the diffusion coefficient
with momentum). The quantity s∗(p) plays the role of the
size of the diffusion volume and one can show that, similar
to a leaky box-like model, the equilibrium spectrum in the
disc is

f(p) ∼
Q0(p)
s∗(p)

s2∗
D(p)

∼ Q0(p)D(p)−1/2 ∼ p−2γ+7/2. (43)

For injection Q0(p) ∼ p−4.3 one infers an equilibrium spec-
trum f0(p) ∼ p−5.1 (notice the contrast with the standard
diffusion model within a given halo of size H , that predicts
f0(p) ∼ Q0(p)H/D(p)).

The problem with this argument, put forward by
Ptuskin et al. (1997), is that it is strictly valid only when
the advection velocity vanishes while approaching the base
of the wind. One can see from equation (35) that the as-
sumption that diffusion is the dominant process at z → 0
holds true only if U0 = 0. The solution of the combined hy-
drodynamical equations and transport equation of CRs as
presented above clearly shows that this is not the case. At
low energies the slope of the CR spectrum at the base of
the disc, as shown in Fig. 8, is ∼ 4.3 (see also Fig. 14, lower
panel), basically the same as the injection spectrum. The
same point can be also made by plotting s∗(p) (Fig. 9) and
the diffusion coefficient D(p) (Fig. 10): the simple scaling
s∗(p) ∝ D(p)1/2 can be easily seen to be not satisfied by the
actual solution of the problem. Notice that s∗(p) becomes
larger than Zs, the location where there is a transition to a
spherical-like flow, at p ∼ 1 TeV/c. At energies much larger
than this one can assume that the advection velocity tends
to a constant, uf . The equilibrium spectrum observed at
the Earth can then be written as f0(p) ∼ Q0(p)πR

2
d/(ufs

2
∗),

while s∗ ∝ D(p), so that the equilibrium spectrum has a
slope −3γ + 7. This effect corresponds to a steepening of
the equilibrium spectrum at the transition energy, that for
the values of the parameters used in Fig. 8, corresponds to
about ∼ 1 TeV.

Even qualitatively one can see that the CR spectrum
in Fig. 8 is quite different from the one actually observed at
the Earth: it is harder than observed at low energies, and
it is softer than observed at high energies, even though the
pressure carried by these CRs is as observed.

This example clearly shows that it is possible to con-
struct solutions of the hydrodynamical equations that corre-
spond to CR driven winds, with pressures at the base of the
wind that are compatible with observations and yet leading
to CR spectra that are not compatible with the CR spectra
observed at the Earth. In particular, the basic wind model
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energies. One could argue that a larger value of the den-
sity at the base of the wind would make the Alfvén speed
smaller, but in that case two problems appear: 1) it may
become harder if not impossible to launch the wind because
of excessive baryonic load. In other words, for a given CR
pressure at the base, there may be cases in which the wind
is not launched. 2) When the wind is in fact launched, its
initial velocity may easily be super-Alfvenic, so that again
advection dominates up to relatively high energies.

This result on the spectrum of Galactic CRs appears
to be at odds with previous results by Ptuskin et al. (1997),
where a toy model for the velocity scaling with z provided
different results, of apparently easy interpretation. Since the
argument of Ptuskin et al. (1997) is rather simple, we report
it here and we explain why this simple approach does not
apply to realistic cases of CR-driven winds. The basic as-
sumption of Ptuskin et al. (1997) is that the advection ve-

locity (dominated by the Alfvén speed) scales approximately
linear with z, vA ∼ ηz. Now, it is easy to imagine that while
the advection velocity increases with z, it reaches a critical
distance, s∗, for which advection dominates upon diffusion.
This happens when

s2∗
D(p)

≈
s∗

vA(s∗)
⇒ s∗(p) ∝ D(p)1/2, (42)

where we used the assumption of linear relation vA ∼ ηz.
Now, when diffusion dominates, namely when z ! s∗(p),
one can neglect the advection terms and make the approx-
imate statement (as in the standard diffusion model), that
D(p) ∂f∂z |z=0 ≈ −Q0(p)/2 ∝ p−γ . Now, using equations (21)
and (18) one can easily show that D(p) ∝ p2γ−7 (for a p−4

injection one gets a linear scaling of the diffusion coefficient
with momentum). The quantity s∗(p) plays the role of the
size of the diffusion volume and one can show that, similar
to a leaky box-like model, the equilibrium spectrum in the
disc is

f(p) ∼
Q0(p)
s∗(p)

s2∗
D(p)

∼ Q0(p)D(p)−1/2 ∼ p−2γ+7/2. (43)

For injection Q0(p) ∼ p−4.3 one infers an equilibrium spec-
trum f0(p) ∼ p−5.1 (notice the contrast with the standard
diffusion model within a given halo of size H , that predicts
f0(p) ∼ Q0(p)H/D(p)).

The problem with this argument, put forward by
Ptuskin et al. (1997), is that it is strictly valid only when
the advection velocity vanishes while approaching the base
of the wind. One can see from equation (35) that the as-
sumption that diffusion is the dominant process at z → 0
holds true only if U0 = 0. The solution of the combined hy-
drodynamical equations and transport equation of CRs as
presented above clearly shows that this is not the case. At
low energies the slope of the CR spectrum at the base of
the disc, as shown in Fig. 8, is ∼ 4.3 (see also Fig. 14, lower
panel), basically the same as the injection spectrum. The
same point can be also made by plotting s∗(p) (Fig. 9) and
the diffusion coefficient D(p) (Fig. 10): the simple scaling
s∗(p) ∝ D(p)1/2 can be easily seen to be not satisfied by the
actual solution of the problem. Notice that s∗(p) becomes
larger than Zs, the location where there is a transition to a
spherical-like flow, at p ∼ 1 TeV/c. At energies much larger
than this one can assume that the advection velocity tends
to a constant, uf . The equilibrium spectrum observed at
the Earth can then be written as f0(p) ∼ Q0(p)πR

2
d/(ufs

2
∗),

while s∗ ∝ D(p), so that the equilibrium spectrum has a
slope −3γ + 7. This effect corresponds to a steepening of
the equilibrium spectrum at the transition energy, that for
the values of the parameters used in Fig. 8, corresponds to
about ∼ 1 TeV.

Even qualitatively one can see that the CR spectrum
in Fig. 8 is quite different from the one actually observed at
the Earth: it is harder than observed at low energies, and
it is softer than observed at high energies, even though the
pressure carried by these CRs is as observed.

This example clearly shows that it is possible to con-
struct solutions of the hydrodynamical equations that corre-
spond to CR driven winds, with pressures at the base of the
wind that are compatible with observations and yet leading
to CR spectra that are not compatible with the CR spectra
observed at the Earth. In particular, the basic wind model
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Figure 9. Effective boundary, s∗(p), between the diffusion dom-
inated and the advection dominated region of the wind in the
reference case.
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Figure 10. Self-generated diffusion coefficient, D(p), in the ref-
erence case at different locations in the wind: base of the wind
(red solid line), z = 10 kpc (green dashed line), z = 50 kpc (blue
short-dashed line) and z = 100 kpc (pink dotted line). The tran-
sition from the cylindrical to the spherical geometry of the wind
flow is clearly visible in the momentum dependence of D(p).

discussed in this section does not lead to any hardening of
the spectrum at high energy, hence it is not possible to fit
spectral hardening such as the ones observed by PAMELA
(Adriani et al. 2011) and AMS-02 (Aguilar et al. 2015). In
§5.2 below we discuss a situation in which this conclusion
may not apply.

5.2 The importance of the near-disc region

As already pointed out in the original work on CR driven
winds (Breitschwerdt et al. 1991) the region close to the disc
may be plagued by severe ion-neutral damping which sup-
presses the generation of Alfvén waves (Kulsrud & Cesarsky
1971). Since waves provide the coupling between CRs and
the ionized plasma, their severe damping leads to quenching
of the wind. In fact, ion-neutral damping was recognized as
a hindering factor for diffusion even in the absence of winds
(Skilling 1971; Holmes 1975): in these pioneering papers, the

near disc region was assumed to be wave-free and the prop-
agation of CRs in that region was taken to be ballistic. Dif-
fusion in the outer halo, where the density of neutral hydro-
gen is expected to drop and the role of ion-neutral damping
to become negligible, was considered as the actual diffusion
region. One could however speculate that some type of tur-
bulence may be maintained in the near-disc region, perhaps
due to SN explosions themselves, though the waves may be
considered to be isotropic, so that the effective Alfvén speed
vanishes.

In this section we discuss a scenario for the wind launch-
ing constructed in the following manner: the wind is assumed
to be launched at a distance z0 = 1 kpc from the disc and
the near-disc region (|z| < z0) is assumed to be characterised
by a given diffusion coefficient, in the following form:

D(p) = 3× 1028
(

p
3mpc

)1/3

cm2 s−1, (44)

and by an Alfvén velocity vA = 0. At z ≥ z0, namely in the
wind region, the diffusion coefficient is calculated as due to
self-generation through streaming instability, saturated by
NLLD, as in the reference case (§5.1).

It is important to emphasise that the near-disc region
is crucial to establish a connection between the sources and
the wind region. From the mathematical point of view this is
evident from equation (35), where the solution of the trans-
port equation in the disc, f0(p), is related to the injection
rate through the value of the advection velocity at z = 0.
When such advection velocity is non zero, there is always a
range of values of the particle momentum (at low momenta)
where advection is more important than diffusion and the
equilibrium spectrum turns out to have roughly the same
slope as the injection spectrum. In the case that we consider
in this section, we are assuming that the near-disc region is
characterised by a vanishing advection velocity and finite as-
signed diffusion coefficient. From the technical point of view,
the computation is the same as described above. The only
minor difference is that, in order to avoid discontinuities in
the advection velocity, that is zero in the near disc region
but is not zero at z = z0, we assume that both the wind
velocity u(z) and the Alfvén speed vA(z) have a low z cutoff
at z < z0, so that both velocities drop to zero in a contin-
uous manner in the near disc region. We checked that the
details of such assumption do not have serious implications
for the solution of the problem, provided that the velocity
drops to zero fast enough inside the near-disc region. It is
also worth stressing that, contrary to the reference case il-
lustrated in §5.1, the CR pressure at the base of the wind
(z = z0) does not correspond to the CR pressure measured
at the Earth (z = 0). The criterion for convergence is still
that the pressure at z = 0 equals the observed CR pressure
at the Earth location (clearly this would be different if we
were interested at a different Galactocentric distance).

In order to recover the observed CR pressure in the
Galactic disc at the Sun’s location, in the model discussed
here we need to require that:

ξCR

0.1
RSN

1/30 yr−1
≈ 0.8.

The density and temperature of the wind, limited to the
region z ≥ z0 = 1 kpc where the wind can be launched are
plotted in Fig. 11. The corresponding wind velocity, Alfvén
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ESCAPING THE GALAXY
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Cosmic Rays
As discussed above, the current of 
escaping CRs is very well known
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Such current in the typical IGM excites a non-
resonant Bell-like instability provided: 

2

assumed for simplicity that the sources of CRs are lo-
calized in an infinitely thin disc and that CRs can freely
escape at the edge of the halo |z| = H, where nCR ! 0.
This results in

nCR(z, E) = ngal(E)

✓
1� |z|

H

◆
, (2)

which implies that CRs escape from the boundary of the
halo with a flux

�CR(E) = �D(E)
@ngal

@z
= D

ngal

H
=

LCR

2⇡R2
d
⇤
E

�2
, (3)

where we have assumed that CRs are injected in the
Galaxy with a luminosity LCR and a spectrum /
E

�2 extending between Emin and Emax, and ⇤ =
ln(Emax/Emin). Eq. 3 clearly shows that, as expected,
the spectrum of escaping CRs is the same as the injected
spectrum. If, as commonly assumed, CRs propagate bal-
listically outside the Galactic halo and into the inter-
galactic medium, then their density immediately outside
the halo boundary can be easily estimated from flux con-
servation as nCR,ext(E) = 3�CR/c. For our purposes,
however, the assumption of ballistic motion is not essen-
tial. In fact we focus on the current carried by CRs with
energy > E, given by JCR = eE�CR(E). As discussed
in [6] a non-resonant instability is induced by this cur-
rent provided the energy flux associated with the escap-
ing particles is larger than c times the magnetic energy
density pre-existing the current:

E
2
�CR

c
>

B
2
0

4⇡
, (4)

where we assumed that a regular magnetic field of
strength B0 is present in the circumgalactic medium
(CGM) around our Galaxy. The instability is excited on
scales that are initially much smaller than the Larmor
radius of the particles dominating the current, namely at
wavenumber

kmax =
4⇡

cB0
JCR =

4⇡

cB
2
0

E
2
�CR

rL(E)
, (5)

and with a growth rate �max = kmaxvA, where vA =
B0/

p
4⇡⇢ is the Alfvén speed in the unperturbed field

and the density ⇢ is written as �G⌦b⇢cr, where ⇢cr =
1.88⇥ 10�29

h
2 g cm�3 is the critical density of the uni-

verse and we use ⌦bh
2 = 0.022. The parameter �G & 1

allows us to account for an overdensity of baryons around
the Galaxy.

The condition for the excitation of the non-resonant
instability, Eq. 4, translates into a condition on the back-
ground magnetic field

B0  Bsat ⇡ 2.4⇥ 10�8
L
1/2
41 R

�1
10 G (6)

where L41 is the CR luminosity of the Galaxy in units of
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In order to check whether Eq. 6 is likely to be sat-
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on equipartition with the thermal energy density: for
a CGM density �G⇢cr⌦b and temperature T , this results
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For reasonable values of �G the time for growth is ex-
tremely short compared to all other relevant timescales,
so that the field rapidly grows. The growth initially hap-
pens on scales k
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much smaller than the Larmor ra-
dius of the particles dominating the current, so that the
current is only weakly a↵ected by the growth. On the
other hand, at the same time a force ⇠ JCR�B/c is ex-
erted on the background plasma, that gets displaced by
an amount �r ⇠ �BJCR/c⇢�
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. The instability even-
tually saturates when the scale �r becomes of the same
order of magnitude of the Larmor radius, which implies
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In other words, the original assumption of free streaming
of CRs after escaping our Galaxy leads to the apparently
contradicting result that the instability they excite is suf-
ficient to induce a di↵usive motion with short scattering
length, hence particle di↵use very e↵ectively as soon as
they find themselves in a region where condition 6 is sat-
isfied. On the other hand this conclusion does not really
depend on any specific assumption on the physics of par-
ticle propagation, while only based on conservation of the
energy flux constantly injected in our Galaxy in the form
of CRs.
Much discussion has appeared in the literature con-

cerning the saturation of the instability. A comprehen-
sive study of the topic [3] has highlighted two processes
that may limit the saturation field to lower values than
the one derived above. The first is the progressive in-
crease with growing field strength of the fastest growing
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however, the assumption of ballistic motion is not essen-
tial. In fact we focus on the current carried by CRs with
energy > E, given by JCR = eE�CR(E). As discussed
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rent provided the energy flux associated with the escap-
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isfied. On the other hand this conclusion does not really
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ticle propagation, while only based on conservation of the
energy flux constantly injected in our Galaxy in the form
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In order to check whether Eq. 6 is likely to be sat-
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For reasonable values of �G the time for growth is ex-
tremely short compared to all other relevant timescales,
so that the field rapidly grows. The growth initially hap-
pens on scales k
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much smaller than the Larmor ra-
dius of the particles dominating the current, so that the
current is only weakly a↵ected by the growth. On the
other hand, at the same time a force ⇠ JCR�B/c is ex-
erted on the background plasma, that gets displaced by
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It is important to notice that, for a spectrum N(E) /
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coe�cient is expected to be Bohm-like. Moreover �B is
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In other words, the original assumption of free streaming
of CRs after escaping our Galaxy leads to the apparently
contradicting result that the instability they excite is suf-
ficient to induce a di↵usive motion with short scattering
length, hence particle di↵use very e↵ectively as soon as
they find themselves in a region where condition 6 is sat-
isfied. On the other hand this conclusion does not really
depend on any specific assumption on the physics of par-
ticle propagation, while only based on conservation of the
energy flux constantly injected in our Galaxy in the form
of CRs.
Much discussion has appeared in the literature con-

cerning the saturation of the instability. A comprehen-
sive study of the topic [3] has highlighted two processes
that may limit the saturation field to lower values than
the one derived above. The first is the progressive in-
crease with growing field strength of the fastest growing
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THE EASY WAY TO SATURATION 

CURRENT

The current exerts a force of the background 
plasma 

which translates into a plasma displacement: 
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which stretches the magnetic field line by the same amount… 
The saturation takes place when the displacement equals the Larmor radius of the 
particles in the field δB
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listically outside the Galactic halo and into the inter-
galactic medium, then their density immediately outside
the halo boundary can be easily estimated from flux con-
servation as nCR,ext(E) = 3�CR/c. For our purposes,
however, the assumption of ballistic motion is not essen-
tial. In fact we focus on the current carried by CRs with
energy > E, given by JCR = eE�CR(E). As discussed
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rent provided the energy flux associated with the escap-
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In other words, the original assumption of free streaming
of CRs after escaping our Galaxy leads to the apparently
contradicting result that the instability they excite is suf-
ficient to induce a di↵usive motion with short scattering
length, hence particle di↵use very e↵ectively as soon as
they find themselves in a region where condition 6 is sat-
isfied. On the other hand this conclusion does not really
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ticle propagation, while only based on conservation of the
energy flux constantly injected in our Galaxy in the form
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In other words, the original assumption of free streaming
of CRs after escaping our Galaxy leads to the apparently
contradicting result that the instability they excite is suf-
ficient to induce a di↵usive motion with short scattering
length, hence particle di↵use very e↵ectively as soon as
they find themselves in a region where condition 6 is sat-
isfied. On the other hand this conclusion does not really
depend on any specific assumption on the physics of par-
ticle propagation, while only based on conservation of the
energy flux constantly injected in our Galaxy in the form
of CRs.
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sive study of the topic [3] has highlighted two processes
that may limit the saturation field to lower values than
the one derived above. The first is the progressive in-
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WHAT’S GOING ON? 
We started from the assumption that CR escape freely and we got 
to the conclusion that perturbations are generated 

I remind you that the escape spectrum is ~Q(p)~p-4 hence the 
spectrum of perturbations is scale invariant

One would be tempted to assume that CR would diffuse, but after 
a few γmax-1 the pressure gradient built up because of scattering 
becomes sufficient to set the background plasma in motion with 
the speed

vD ⇡ �B

(4⇡⌦b⇢cr�G)1/2
⇠ 10� 100 km/s
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PICTURE
When escaping CR reach a region where the field drops below 
~10-8 G, they excite a non-resonant instability that sets the 
plasma in motion

Hence, their density is set by advection

Instead of escaping at c they move at speed vD so that their 
density is much higher around the Galaxy than in the case of free 
streaming 
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wavelength. We checked that this process leads to satura-
tion values close to that in Eq. 8, although a dependence
onB0 appears. Another process turns out to be of greater
importance: while the field grows and the motion of CRs
from ballistic turns into di↵usive, the pressure gradient
that develops exerts a force on the background plasma.
This force sets the gas in motion and the field saturates
when the plasma bulk speed equals the Alfvén velocity
in the amplified field, ṽA = �B/

p
4⇡⇢. If di↵usion were

the dominant transport process for CRs outside the halo,
the density could be approximated as

nCR(E) ⇡ 2�CR

s
t

⇡D(E)
, z <

p
4D(E)t, (10)

where we assumed that CRs enter steadily through the
halo surface and di↵use with a constant di↵usion coe�-
cient D(E) for a time t. For the scales that are reached
by particles in a time t, namely for z <

p
4D(E)t, the

current of particles is conserved and still given by Eq. 3.
Hence we can define a di↵usive (or drift) velocity

vD =
�CR

nCR

⇡
r

⇡D(E)

4t
. (11)

At the same time, di↵usion creates a pressure gradient
that is directly related to the CR current as rPCR =
E

2
�CR/D. This force imparts to the background plasma

a velocity that can be estimated as
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2
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⇢
. (12)

When vD = vbg the distribution of CRs becomes reg-
ulated by advection with the background gas, rather
than by di↵usion. By requiring that this advection ve-
locity is also the Alfvén velocity in the amplified field,
ṽA = �B/

p
4⇡⇢, and assuming the di↵usion coe�cient

given by Eq. 9, one derives
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This criterion returns then a strength of the magnetic
field that is somewhat larger than in Eq. 8, for typi-
cal values of the parameters, hence we conclude that the
streaming of CRs induces the generation of a magnetic
field of order �B  Bsat ⇡ 2.4⇥10�8 G, as deduced from
Eq. 8. Yet the advection velocity ṽA becomes larger than
vD after a time of a few �

�1
max

, indicating that the trans-
port quickly turns into advective, so that the distribution
function of CRs is

nCR(E) =
�CR

ṽA
, (14)

a factor ⇡ c/ṽA larger than what would be estimated in
the case of ballistic motion at the speed of light.

The problem can be treated as one dimensional, as we
have implicitly assumed above, for as long as z . Rd,

which happens in a time ⇠ Rd/ṽA. At larger distances
the CR density drops with distance r as r

�2 and the
e↵ects described above quickly disappear.

Implications for CR escape - at first it may seem coun-
terintuitive that the assumption of escape of CRs across a
free escape boundary leads to the conclusion that in fact
particles create an exceedingly small di↵usion coe�cient.
The picture we have in mind is that of CRs propagating
in an exponentially decreasing magnetic field while leav-
ing the Galaxy [7]. This results in a rapidly growing
di↵usion coe�cient. E↵ectively such a rapid growth of
the scattering length is equivalent to a transition to a
quasi-ballistic motion. At a distance where the energy
density in magnetic fields drops below that of the escap-
ing particles (Eq. 6), the CR current driven instability
starts being excited and within a time of order several
�
�1
max

the field grows to ⇠ 0.02µG, which implies a strong
tie between CRs and background plasma. The pressure
gradient induced by di↵usion sets the plasma in motion
and CR transport becomes advective with a typical ve-
locity ṽA ⇠ 10 � 100 km/s, depending on the gas den-
sity in the circumgalactic region. Advection carries CRs
away from the Galaxy, inhibiting their return. Hence the
equilibrium CR distribution inside the Galaxy (and more
specifically in the disc) is not changed with respect to the
standard picture we use to describe CR transport in the
Galaxy.

Implications for the magnetization of the Universe -
the escape of CRs from any galaxy leads to the creation
of an extended region where the magnetic field is pushed
up to a value close to the equipartition value with the
current of escaping CRs. Each galaxy can be imagined
as embedded in a halo of CR induced magnetic field. The
extent and strength of such field depends on the type of
galaxy and its luminosity. The magnetic field originated
from the growth of a CR current is expected to be roughly
scale invariant, which implies that the largest scale is of
the order of the Larmor radius of the highest energy par-
ticles in the current. Largest scales are expected around
galaxies that host more powerful accelerators, able to ac-
celerate particles to higher energies. As discussed in [2],
the field can be large enough to a↵ect the transport of
low energy CRs from the sources to Earth, by allowing
only ultra high energy particles to reach us.

Implications for high energy neutrinos - the region of
size ⇠ Rd around our Galaxy is filled with CRs in a
time ⇠ Rd/ṽA ⇠ 108� 109 years, which corresponds to a
local overdensity of CRs in the same region of ⇠ c/ṽA ⇠
104 � 105 compared with the case of free escape. The
occasional interactions of these particles with the CGM
gas leads to production of gamma rays and neutrinos.
The flux of neutrinos can be estimated as follows:
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Calculating ṽA in the magnetic field �B from Eq. 8 we31
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Calculating ṽA in the magnetic field �B from Eq. 8 we
obtain
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where we assumed that the neutrino energy is related
to the energy of the parent proton by E⌫ = ⌘E, with

FIG. 1. Flux of isotropic di↵use gamma ray emission (blue)
as measured by Fermi-LAT [15] and flux of astrophysical neu-
trinos as measured by IceCube [9, 10] (red). The (green)
horizontal lines show the expected flux of neutrinos from pp
collisions in the circumgalactic medium, for the overdensity
�G as indicated.

⌘ ⇠ 0.05. For simplicity we neglected the weak energy
dependence of the cross section for neutrino production,
which is known to increase slowly with energy, so as to
lead to a slight increase in the neutrino flux at high en-
ergy. This e↵ect would partly compensate for a proton
spectrum possibly steeper than E

�2 leading to a neutrino
flux in any case flatter than the CR injection spectrum in
the Galaxy and still compatible with the inferred slope
of the IceCube neutrino spectrum, given the large error
bars.

The estimated flux of di↵use neutrinos is plotted in
Fig. 1 (green horizontal lines) for di↵erent values of the
overdensity �G. In the same figure we show the flux of
astrophysical neutrinos measured by IceCube [9, 10] and,
for comparison, the flux of gamma rays that Fermi-LAT
associates with an isotropic extragalactic origin [15]. One
can see that if the overdensity of baryonic gas in the cir-
cumgalactic medium is of order ⇠ 100, then the expected
neutrino flux is comparable with the one measured by Ice-
Cube. It is worthwhile to mention that the virial radius
of our Galaxy, which is of order ⇠ 100 kpc, is defined
as the radius inside which the mean overdensity is 200.
Hence a value of �G ⇠ 100� 200 appears to be quite well
justified on scales of ⇠ 10 kpc.

The production of neutrinos is also associated with the
production of secondary electrons that reach equilibrium
due to energy losses. We checked that the synchrotron ra-
dio emission of these electrons in the self-generated mag-
netic field outside the Galaxy is 10�4�10�2 jy, depending
on the value of �G, several orders of magnitude smaller
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Hence a value of �G ⇠ 100� 200 appears to be quite well
justified on scales of ⇠ 10 kpc.
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