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OUTLINE OF THE MINI-COURSE

* First Lecture
* Principles of CR transport
e Second Order Fermi Acceleration
 Diffusive Shock Acceleration: test particle theory
 Diffusive Shock Acceleration: modern theory including non linear aspects

e Second Lecture (?)
e Propagation of CR in the Galaxy: classical theory
e Non linear propagation of CR in the Galaxy
e Contact with observables - spectra and mass composition
e Modern aspects of the problem




COSMIC RAY TRANSPORT

CHARGED PARTICLES
IN A MAGNETIC FIELD

COSMIC RAY
{ | PROPAGATION IN THE |
{ | GALAXY AND OUTSIDE

DIFFUSIVE PARTICLE
ACCELERATION
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THE PROBLEM OF CR
TRANSPOKT IS
DESCRIBED IN TERMS OF
NON-LINEAR SECOND
ORDER PARTIAL
DIFFERENTIAL
EQUATIONS




CHARGED PARTICLES IN A REGULAR B FIELD

—

Guiding p — 5 \ D

charged plasma Magnetic q E 4+ — X B

aribs field line dt C

In the absence of an electric field one obtains
the well known solution:

LARMOR FREQUENCY

p, = Constant
v, =V, cos|2 t]

v




A FEW THINGS TO KEEP IN MIND

e THE MAGNETIC FIELD DOES NOT CHANGE
PARTICLE ENERGY -> NO ACCELERATION BY B
EIELDS

e ARELATIVISTIC PARTICLE MOVES IN THE Z
DIRECTION ON AVERAGE AT C/3




MOTION OF A PARTICLE IN A WAVY FIELD

Let us consider an Alfven wave
propagating in the z direction:

8B << BO Bl—é JE EO

\We can neglect [for now] the electric field associated with the wave,
or in other words we can sit in the reference frame of the wave:

dp v D D
a 2}(]30 g2 8\]3)

THIS CHANGES ONLY THIS TERM CHANGES
THE X AND Y COMPONENTS ONLY THE DIRECTION

OF THE MOMENTUM OF P,=Pp




Remember that the wave typically moves with the Alfven speed:

B
(4mp)1/?

Alfven waves have frequencies << ion gyration frequency Qp — QB/mpC

s — — 1()6Bmzfl/2 cm/ s

It is therefore clear that for a relativistic particle these waves, in first approximation,
look like static waves.

The equation of motion can be written as:
o
dt c

If to split the momentum in parallel and perpendicular, the perpendicular component
cannot change in modulus, while the parallel momentum is described by

x (Bo + 8B)

dp || _
dt

6. x8B]  P|=D W




d

d—'l; = Z%v(l — 12)Y26 Beos(U — kx + )
\Wave form of the magnetic field with
a random phase and frequency

() = qBO/mey Larmor frequency

In the frame in which the wave is at rest we can write L — UllLt

d q o1 2
7 Cfu( u)’'“6Bcos |( kop)t +

It is clear that the mean value of the pitch angle variation over a long enough time

vanishes
Ap)e =0
We want to see now what happens to <A,LLAH>




Let us first average upon the random phase of the waves:

(Ap(E) M)y = L EVB 1@ — ko) — )

2¢2p?

And integrating over time:

b )0 B2
(ApAp); = : (2(:2 2 /dt / dt” cos [(Q — kvp)(t' — )]
- ¢*v(1 — p*)dB?
. E2p3y)

o(k — Q/vp)At

|

RESONANCE




Many waves

IN GENERAL ONE DOES NOT HAVE A SINGLE WAVE BUT RATHER
A POWER SPECTRUM:

P(k) = Bi/4m

THEREFORE INTEGRATING OVER ALL OF THEM:

Aubpy _ (L= p)r 1, / kBB 506 — ooy

( At m2c?y? v 47

OR IN A MORE IMMEDIATE FORMALISM: @)

AuAp T , K e =
=—Q(1-pHk
< At > 2 (1)Ko

F(kK,) VUL

RESONANCE!!
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DIFFUSION COEFFICIENT

THE RANDOM CHANGE OF THE PITCH ANGLE IS
DESCRIBED BY A DIFFUSION COEFFICIENT

5 <A9A9> _Tok Bl TRACTIONAL

m POWER (3B/B,)>

=6(Kres)

THE DEFLECTION ANGLE CHANGES BY ORDER UNITY
IN A TIME:

At 4

PATHLENGTH FOR DIFFUSION ~ vr

1 - AzAz v’
16 o VT
Q G(kres) < At > iy (2 G(kres)

SPATIAL DIFFUSION COEFF.
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PARTICLE SCATTERING

EACH TIME THAT A RESONANCE OCCURS THE PARTICLE
CHANGES PITCH ANGLE BY A 6“0 B/B WITH A RANDOM
SIGN

THE RESONANCE OCCURS ONLY FOR RIGHT HAND

POLARIZED WAVES IF THE PARTICLES MOVES TO THE RIGHT
(AND VICEVERSA)

THE RESONANCE CONDITION TELLS US THAT 1) IF k<<1/rL
PARTICLES SURF ADIABATICALLY AND 2) IF k>>1/rL
PARTICLES HARDLY FEEL THE WAVES




What Equations for Diffusion?
BASIC FORMALISM

DISTRIBUTION FUNCTION OF PARTICLES
= — t WITH MOMENTUM P AT THE POSITION X
D, T, T) armmer

PROBABILITY THAT A PARTICLE WITH

\I} = A ~7\  MOMENTUM P CHANGES ITS MOMENTUM
p, p BY DELTA P

/ IAF U (5, Ap) = 1



In general we can write:

£(5,@ + AL t + At) = / AP F(7— AF, 7, 1) U(5— AF, Ap)

In the limit of small momentum changes we can Taylor — expand:

E L (O
5.5+ FALE+ AL) = [(5.5,1) + (vax . at)At

of 1 92 f
AF+ ~AgAp
o5 P T 3PP g

O 1 <l
AF+ ~AGAF
o5 —P T 3 SPP 5

V(p — Ap, Ap) = ¥(p, Ap)



Substituting in the first Equation:

g 9 0 o e
f+At( a_£+a_f> | sv <f< .0) — AT+ ‘AﬁApa*J;) (‘I’(mt)FAp 5 AP g )

Recall that /dAﬁ \Ij(ﬁ, Aﬁ) — |

f - _f<A—ﬁ>_ L O <AﬁAﬁ>f _
Ot ax op |” “At'|  20p |0p \' At
Ap 1

Vil At/dﬁp Ap VY (p, Ap)
AGAG. 1
dAD Ap Ap VU(p, A
= At/ pAp Ap ¥ (p, Ap)



We can now use a sort of Principle of Detailed Balance:

V(p, —Ap) = V(p — Ap, Ap)
and expanding the RHS:

oV 0>

0 <A_ﬁ> | 1 0 0O <AﬁAﬁ>
op ' At’  20p0p" At

1
S APAP

op Op*

=

<A_ﬁ> 19 <AﬁAﬁ
At’  20p At

) = Constant



We shall see later that the terms in this Eq. vanish for p—>0, therefore the
Constant must be zero and we have:

- ool
At’  20p" At

of  Of _ 0 [ A5] 10 [0 (ApAR, Y
ot Vo Op _f<_ (< At >f)

At>_ - 20p | 0p

1 AGAF

of  0f _ 9 [, of APAT,
2" At

— | D
Ot (9$ 7 (9p

BOLTZMANN CDLLISIDN
EQUATION TERM

Dpp =




IN ONE SPATIAL DIMENSION ONE EASILY OBTAINS:

aflva_f—iD ﬁ
ot '~ "0z ol "ou

WHERE
1 AuAp

=
FL R 9 < 'Y >

IS THE PITCH ANGLE DIFFUSION COEFFICIENT.

THE PREVIOUS EQUATION CAN BE VIEWED AS THE BOLTZMANN
EQUATION WITH A SCATTERING TERM DEFINED BY DIFFUSION.



From pitch to Spatial Diffusion

IT IS INTUITIVELY CLEAR HOW A PARTICLE THAT IS DIFFUSING IN ITS PITCH
ANGLE MUST BE ALSO DIFFUSING IN SPACE. LET Us SEE HOW THE TWO ARE
RELATED TO EACH OTHER BY INTEGRATING THE BOLTZMANN EQUATION IN
PITCH ANGLE:

Of of 0 Of
Fop— = — | Dy =
ot dz  Ou | o
1l
fO(pvtaz) — 5/ d,uf(p,t,,u,z)
—1

ISOTROPIC PART OF THE PARTICLE Ofo 1 . of
DISTRIBUTION FUNCTION. FOR MOST - —v / d =0
PROBLEMS THIS IS ALSO VERY CLOSE ot 2 = 0z

TO THE ACTUAL DISTRIBUTION FUNCTION



ONE CAN SEE THAT THE QUANTITY

1

1
J = —v/ dpp f
2 J_q

BEHAVES AS A PARTICLE CURRENT, AND THE BOLTMANN EQUATION BECOMES:

dfo 0J

Ot 0z

NOTICE THAT YOU CAN ALWAYS WRITE:

1 0
20U

= (1—p?)



WITH THIS TRICK:

1 : v 1 o0f
= — dupf = — [ du(l —p?)==
J 2@/_1uuf 4/lu( “)au

RECONSIDER THE INITIAL EQUATION
af y af g _D ﬁ_
ot Moz T o | "™ ou

AND INTEGRATE IT AGAIN FROM -1 TO u:

a [* p O f of
N d — D,
875/_1 “H/_l pop o~ = Duns

AND MULTIPLYING BY (]_ = ,u2 ) /D’u'u



J =

af 1_M28/M / 1_:u2/'u / ,8f
P ) — d | d —
( )8,u D,, 0Ot J_; il D, J_q altall 7%

NOW RECALL THAT THE DISTRIBUTION FUNCTION TENDS TO ISOTROPY,

S0 THAT AT THE LOWEST ORDER IN THE ANISOTROPY ONE HAS:

O 1 — u? o
. % ~ 0000 4 ) - L2 — 1§95
p

AND RECALLING THE DEFINITION OF CURRENT:

v d fo /1 L — v® 0 fo /1 (1 —p*)° d fo
vl [ 1 d —
i ) p, AT g | M T TRy

USING THE TRANSPORT EQ IN TERMS OF CURRENTT:

J = —K 9J K 0o
- Moz © 0z




NOW WE RECALL THE TRANSPORT EQUATION IN CONSERVATIVE FORM:

0fo __0J

Ot 0z

AND PUTTING THINGS TOGETHER:

o _ 0 [  0J s
ot 0z 0z 0z

BUT IT IS EASY TO SHOW THAT THE FIRST TERM MUST BE NEGLIGIBLE:

1

1

J:g/ dppfo(l (5,u):§v(5fo < v fo 01
il

IT FOLLOWS THAT THE ISOTROPIC PART OF THE DISTRIBUTION FUNCTION
MUST SATISFY THE DIFFUSION EQUATION:

2 ,l 212
1 — 1
/ﬁJZ:U—/ d,u( i) :—v)\H

3

DIFFUSION EQUATION SPATIAL DIFFUSION COEFFICIENT

AN ADDITIONAL TERM APPEARS BECAUSE OF MOMENTUM CHANGES!



A GENERAL TRANSPORT EQUATION

X5 D
ax 3dx op Q( Pt

Time Dep. Diffusion Advectlon ‘compressmn Injectlon *

THIS EQUATION, THOUGH IN ONE DIMENSION, CONTAINS ALL THE MAIN
EFFECTS DESCRIBED BY MORE COMPLEX TREATMENTS

. TIME DEPENDENCE
. DIFFUSION (EVEN SPACE AND MOMENTUM DEPENDENCE)
. ADVECTION (EVEN WITH A SPACE DEPENDENT VELOCITY)
. COMPRESSION AND DECOMPRESSION

S. INJECTION

IT DOES NOT INCLUDE 2nd ORDER AND SPALLATION, BUT EASY TO INCLUDE

IT APPLIES EQUALLY WELL TO TRANSPORT OF CR IN THE GALAXY ORTO CR
ACCELERATION AT A SUPERNOVA SHOCK

5




ACCELERATION OF NONTHERMAL PARTICLES

The presence of non-thermal particles is ubiquitous in the Universe
(solar wind, Active galaxies, supernova remnants, gamma ray bursts,
Pulsars, micro-quasars)

WHEREVER THERE ARE MAGNETIZED PLASMAS THERE ARE NON-
THERMAL PARTICLES

!

PARTICLE ACCELERATION

BUT THERMAL PARTICLES ARE USUALLY DOMINANT, SO WHAT DETERMINES
THE DISCRIMINATION BETWEEN THERMAL AND ACCELERATED PARTICLES?

INJECTION




ALL ACCELERATION MECHANISMS ARE ELECTROMAGNETIC
IN NATURE

MAGNETIC FIELD CANNOT MAKE WORK ON CHARGED
PARTICLES THEREFORE ELECTRIC FIELDS ARE NEEDED
FOR ACCELERATION TO OCCUR

THE ELECTRIC FIELD IS LARGE THE ELECTRIC FIELD IS SMALL
SCALE: SCALE:




STOCHASTIC ACCELERATION

(EFS 0 (B2 A0

Most acceleration mechanisms that are operational in astrophysical environments
are of this type. We have seen that the action of random magnetic fluctuations is that
of scattering particles when the resonance is achieved. In other words, the particle
distribution is isotropized in the reference frame of the wave.

Although in the reference frame of the waves the momentum is conserved (B does
not make work) in the lab frame the particle momentum changes by

VA
AP pE—

In a time T which is the diffusion time as found in the last lecture. It follows that

APAp VA2 p*
Dyp = ( ) ~ ?) T -
pp

THE MOMENTUM CHANGE IS A SECOND ORDER PHENOMENON !!!

28




SECOND ORDER FERMI ACCELERATION

—y

We inject a particle with energy E. In the
reference frame of a cloud moving with
speed  the particle energy is:

E =50 £l

E and the momentum along x is:

’
’
St g

p,, = BYE + ypu

Assuming that the cloud is very massive compared with the particle, we can assume
that the cloud is unaffected by the scattering, therefore the particle energy in the
cloud frame does not change and the momentum along x is simply inverted, so that
after ‘scattering’ p’,=> - p’,. The final energy in the Lab frame is therefore:

E” = yE' + Byp, =
2E (1 IS 25,%)




mvﬂ)/ Where v is now the dimensionless
= 1 Particle velocity

mry
E” =~°FE (1 T adi Qﬂ,uv)

i L (1 +2Bvp+ %) —

and finally, taking tﬁé limit of non-relativistic clouds y—>1:

It follows that:

and:

E" — F
b

We can see that the fractional energy change can be both positive or
negative, which means that particles can either gain or lose energy,
depending on whether the particle-cloud scattering is head-on or tail-on.

~ 26° + 28vu




We need to calculate the probability that a scattering occurs head-on or

Tail-on. The scattering probability along direction u is proportional to the
Relative velocity in that direction:

Op+v
Bl = Avssr = A b steaiAirl
() = Avrer = A7 i 1~ A(1 + Bp)

The condition of normalization to unity:

/iPWMuzl

leads to A=1/2. It follows that the mean fractional energy change is:

1

duP(p) (26° + 26p) = 262

NOTE THAT IF WE DID NOT ASSUME RIGID REFLECTION AT EACH CLOUD
BUT RATHER ISOTROPIZATION OF THE PITCH ANGLE IN EACH CLOUD,
THEN WE WOULD HAVE OBTAINED (4/3) 52 INSTEAD OF (8/3) g2

—

gl




THE FRACTIONAL CHANGE IS A SECOND ORDER QUANTITY IN
B<<1. This is the reason for the name SECOND ORDER FERMI
ACCELERATION

The acceleration process can in fact be shown to become more
Important in the relativistic regime where p>1

THE PHYSICAL ESSENCE CONTAINED IN THIS SECOND ORDER
DEPENDENCE IS THAT IN EACH PARTICLE-CLOUD SCATTERING
THE ENERGY OF THE PARTICLE CAN EITHER INCREASE OR
DECREASE - WE ARE LOOKING AT A PROCESS OF DIFFUSION
IN MOMENTUM SPACE

THE REASON WHY ON AVERAGE THE MEAN ENERGY INCREASES
IS THAT HEAD-ON COLLISIONS ARE MORE PROBABLE THAN
TAIL-ON COLLISIONS




WHAT IS DOING THE WORK?

We just found that particles propagating in a magnetic field can change
their momentum (in modulus and direction)...

BUT MAGNETIC FIELDS CANNOT CHANGE THE MOMENTUM
MODULUS... ONLY ELECTRIC FIELDS CAN

WHAT IS THE SOURCE OF THE ELECTRIC FIELDS#22¢2
Moving Magnetic Fields

The induced electric field is responsible for this first instance of particle
acceleration

The scattering leads to momentum transfer, but to WHAT?

Recall that particles isotropize in the reference frame of the waves...

33




SHOCK SOLUTIONS

DOWNSTREAM Let us sit in the reference frame in which
the shock is at rest and look for stationary
solutions

UPSTREAM

)

0

o (pu) =0

g(qu—l—P):O

0= 1 vy
e ukel —0
AL . ~v—1
It is easy to show that aside from the trivial solution in which all quantities
remain spatially constant, there is a discontinuous solution:

P G

DE e o ey
M, is the upstream Py - 29MZ 4 —1

Z
é
;
.
2
;
.
2
;
.
2
;
.
2
;
é
%

Fluid Mach number D1 o o
Do — alge )| 0 22
. (v + 1)2M7




STRONG SHOCKS M >>1

In the limit of strong shock fronts these expressions get substantially simpler
and one has:

p2 E:’Y+:_

-1
/ >/ —
—

el
ik e

M 1

ONE CAN SEE THAT SHOCKS BEHAVE AS VERY EFFICENT HEATING
MACHINES IN THAT A LARGE FRACTION OF THE INCOMING RAM PRESSURE

IS CONVERTED TO INTERNAL ENERGY OF THE GAS BEHIND THE SHOC(
FRONT...




COLLISIONLESS SHOCKS

While shocks in the terrestrial environment are mediated by particle-particle
collisions, astrophysical shocks are almost always of a different nature. The
pathlength for ionized plasmas is of the order of:

A T e ( 2 )_1
e U8 cn
no 5 10—29¢m?

Absurdly large compared with any reasonable length scale. It follows that
astrophysical shocks can hardly form because of particle-particle scattering but
REQUIRE the mediation of magnetic fields. In the downstream gas the Larmor
radius of particles is:

1/2
TL th & lOloBuTg/ cm

The slowing down of the incoming flow and its isotropization (thermalization) is
due to the action of magnetic fields in the shock region (COLLISIONLESS
SHOCKS)




DIFFUSIVE SHOCK ACCELERATION
OR

FIRST ORDER FERMI ACCELERATION




BOUNCING BETWEEN APPROACHING MAGNETIC MIRRORS

UPSTREAM

A R R RN NN NN

DOWNSTREAM

%
g
Z
g
,’/4‘.
,1
g
Z
Z
2
7
g
é
2
Z
g
%

Let us take a relativistic particle with
energy E~p upstream of the shock. In the
downstream frame:

e — Bl S oa) 0 < =l

where B = u,-u,>0. In the downstream

frame the direction of motion of the
particle is isotropized and reapproaches
the shock with the same energy but pitch
angle py’




In the non-relativistic case the particle distribution is, at zeroth order, isotropic

Therefore:
TOTAL FLUX

ANv,u
= fdﬂﬁvu—NV ‘ P(w)du = du =2 udw

4

The mean value of the energy change is therefore:

/dMQM/ dp'2p' [¥*(1 + Bp)(1 — Br') —

A FEW IMPORTANT POINTS:

I. There are no configurations that lead to losses
I. The mean energy gain is now first order in

lll. The energy gain is basically independent of any detail on how particles scatter
back and forth!




THE TRANSPORT EQUATION APPROACH

0 | l
f_ 0 [pdf
of o0x 0x

DIFFUSION ADVECTION COMPRESSION INJECTION

Integrating around the shock:

0x ol 3 dp

Integrating from upstr. infinity to 0-:

+oo

7y,
(Dax)l o

and requiring homogeneity downstream:

pf{o: : (u1fo_Qo)
P by =l




THE TRANSPORT EQUATION APPROACH

INTEGRATION OF THIS SIMPLE EQUATION GIVES:

_3u1 DEFINE THE COMPRESSION FACTOR
r=u,/u,—>4 (strong shock]
3u, N

£ (p)_ inji | P |U — Uy
0 _ 2 THE SLOPE OF THE SPECTRUM IS
U, —u, 47Lpinj Pinj

3u1 3

>4 ifr—4

U1 — U9 :1—1/7“

NOTICE THAT: N(p)dp 8 47Tp2f(p)dp e N(p) O(p_2

1. THE SPECTRUM OF ACCELERATED PARTICLES IS A POWER LAW IN MOMENTUM
EXTENDING TO INFINITE MOMENTA

. THE SLOPE DEPENDS UNIQUELY ON THE COMPRESSION FACTOR AND IS INDEPENDENT OF
THE DIFFUSION PROPERTIES

INJECTION IS TREATED AS A FREE PARAMETER WHICH DETERMINES THE NORMALIZATION
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TEST PARTICLE SPECTRUM

O-) ~J \
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SOME IMPORTANT COMMENTS

& THE STATIONARY PROBLEM DOES NOT ALLOW TO HAVE A MAX
MOMENTUM!

& THE NORMALIZATION IS ARBITRARY THEREFORE THERE IS NO CONTROL
ON THE AMOUNT OF ENERGY IN CR

& AND YET IT HAS BEEN OBTAINED IN THE TEST PARTICLE APPROXIMATION

& THE SOLUTION DOES NOT DEPEND ON WHAT IS THE MECHANISM THAT
CAUSES PARTICLES TO BOUNCE BACK AND FORTH

& FOR STRONG SHOCKS THE SPECTRUM IS UNIVERSAL AND CLOSE TO E-2

&IT HAS BEEN IMPLICITELY ASSUMED THAT WHATEVER SCATTERS THE
PARTICLES IS AT REST (OR SLOW) IN THE FLUID FRAME




MAXIMUM ENERGY

The maximum energy in an accelerator is determined by either the age of the
accelerator compared with the acceleration time or the size of the system
compared with the diffusion length D(E)/u. The hardest condition is the one that
dominates.

Using the diffusion coefficient in the ISM derived from the B/C ratio:
= 28 11/3 2
D(E) =3 x 10 E, ,,cm®/s
and the velocity of a SNR shock as u=5000 km/s one sees that:

tins s RIS ~od X 103Eé/j/ Years

Too long for any useful acceleration > NEED FOR ADDITIONAL TURBULENCE

I
/
o P U U2

: / Pdp [Di(p)  Da(p')
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ENERGY LOSSES AND ELECTRONS

For electrons, energy losses make acceleration even harder.

The maximum energy of electrons is determined by the condition:

ta,cc < M1n [Agea 7-l()ss]

Where the losses are mainly due to synchrotron and inverse Compton
Scattering.




ELECTRONS IN ONE SLIDE

10.000 f

1.000 |

0.100 }
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NON LINEAR THEORY OF DSA

WHY DO WE NEED A NON LINEAR THEORY?

1‘THE MAX MOMENTUM CAN ONLY BE INTRODUCED BY HAND IN TES ‘
‘g * e 7 PARTICLE THEORY




DYNAMICAL REACTION OF ACCELERATED PARTICLES

VELOCITY
PROFILE Particle transport is described by using
the usual transport equation including
_9 diffusion and advection

@ fars T But now dynamics is important too:

pPoUpg = P1U1 Conservation of Mass

pou(z) —~+ Pg,O — plu% ~+ Pg,l -+ Pc,l Conservation of Momentum

Conservation of Energy
Pg,l“l’Yg | Pc,lrU/l/yc
|
'Yg -1 Ve — 1




FORMATION OF A PRECURSOR - SIMPLIFIED

VELOCITY 0
PROFILE s pu] =0 — p(x)u(z) = poug

271
-
-~ 2 | // 2
# N \ 5 !
I, e 1
- i \
P ~
-, S l ~
., \ 2 D
/ . \ SRS 1
I - ~ 1
\ e A

i [P —I—pu —I—P(;R] —10

/’—_—‘I\ ~ \ \ /
7’ { e S \\ \ /7
// I \\ v = \v,——"*~.’
] ! 1 %
I o 1
1 ' b
/
1 SHN
ox % 4
\ o 3 \
-~ \
¢ ’ \
\ A \

2
Py(x )+PU +P(JR = Fg,0 + pouyp
AND DIVIDING BY THE RAM PRESSURE AT UPSTREAM INFINITY:
u PCR Pg 0 u

> | e ’2|1=>—%1—ng($)
polyg Uo  PolUg PoUg (270 /

WHERE WE NEGLECTED TERMS OF ORDER 1/M?

Ecr(T) =




BASIC PREDICTIONS OF NON LINEAR THEORY

VELOCITY
PROFILE

PB+2010

COMPRESSION FACTOR BECOMES
FUNCTION OF ENERGY

SPECTRA ARE NOT PERFECT
POWER LAWS (CONCAVE)

GAS BEHIND THE SHOCK IS
COOLER FOR EFFICIENT SHOCK
ACCELERATION

SYSTEM SELF REGULATED

EFFICIENT GROWTH OF B-FIELD IF
ACCELERATION EFFICIENT
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BASIC PREDICTIONS OF NON LINEAR THEORY

VELOCITY
PROFILE

PB+2010
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BASIC PREDICTIONS OF NON LINEAR THEORY

10-8
PB+2010
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BASICS OF CR STREAMING INSTABILITY

THE UPSTREAM PLASMA REACTS TO THE
UPCOMING CR CURRENT BY CREATING A
RETURN CURRENT TO COMPENSATE THE
Jer=NcrVs d POSITIVE CR CHARGE

THE SMALL INDUCED PERTURBATIONS

ARE UNSTABLE (ACHTERBERG 1983, ZWEIBEL
1978, BELL 1978, BELL 2004, AMATO & PB 2009)

CR MOVE WITH THE SHOCK SPEED (>> V,). THIS UNSTABLE SITUATION
LEADS THE PLASMA TO REACT IN ORDER TO SLOW DOWN CR TO <V, BY
SCATTERING PARTICLES IN THE PERP DIRECTION (B-FIELD GROWTH)




STREAMING INSTABILITY - THE SIMPLE VIEW

CR streaming with the shock leads to growth of waves. The general idea Is
simple to explain:

dP., n.mly,-V
n.,mv, —=>n.,mV, = d§R= CX (TD 2)

and assuming equilibrium:

o = ,\/5 Ner Vp _VA Qcyc
n V,

gas

And for parameters typical of SNR shocks:

VS 2 VS _4 _1
YW NEeE e o OU0= - seconds )
C Va




BRANCHES OF THE CR INDUCED STREAMING INSTABILITY

A CAREFUL ANALYSIS OF THE INSTABILITY REVEALS THAT THERE ARE TWO BRANCHES

RESONANT NON RESONANT

MAX GROWTH AT MAX GROWTH AT
K=1/LARMOR K>>1/LARMOR

THE MAX GROWTH CAN ALWAYS BE WRITTEN IN THE FORM

enas = Kuaoalls

WHERE THE WAVENUMBER IS DETERMINED BY THE TENSION CONDITION:

41 47
kma:cBO ~ “JCR — kmam -~ —JC’R
C CB()




THE SEPARATION BETWEEN THE TWO REGIMES IS AT kyax ri.=1

IF WE WRITE THE CR CURRENT A Jog = ngor(> E)evp

WHERE E IS THE ENERGY OF THE PARTICLES DOMINATING THE CR CURRENT,
WE CAN WRITE THE CONDITION ABOVE AS

BZ
Ucr =ncr(> E)E Up = =

IN CASE OF SHOCKS VD=SHOCK VELOCITY AND THE CONDITION SAYS THAT
THE NON-RESONANT MODES DOMINATED WHEN THE SHOCK IS VERY FAST
AND ACCELERATION IS EFFICIENT — FOR TYPICAL CASES THIS IS ALWAYS THE

CASE

BUT RECALL! THE WAVES THAT GROW HAVE K MUCH LARGER THAN THE
LARMOR RADIUS OF THE PARTICLES IN THE CURRENT —> NO SCATTERING
BECAUSE EFFICIENT SCATTERING REQUIRES RESONANCE!!!




THE EASY WAY TO SATURATION OF GROWTH

The current exerts a force on the

background plasma
CURRENT

Y d
| p—v ~ lJCRéB
.  C

/f

which translates into a plasma displacement:

Jor 6B(0)
el 2

P Ymax

which stretches the magnetic field line by the same amount...
The saturation takes place when the displacement equals the Larmor radius of the

Ax

EXLP (Vma:ct)

particles in the field ®B ... imposing this condition leads to:

6 B? ECR 9 Vg

specialized to a shock and a spectrum E-2




A QUALITATIVE PICTURE OF ACCELERATION

Time= 001[1/w,]

100 . . . . . g . . . . .

80 [~ {
=z Sof =
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o, ]
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O’ 1 1 1 1

o 500 1000 1500 2000
x [/ wy]

Time= 001[1/w,]

ylelo)

o 500 1000 1500 2000
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Caprioli & Spitkovsky 2013

Bell & Schure 2013
Cardillo, Amato & PB 2018




A QUALITATIVE PICTURE OF ACCELERATION
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A QUALITATIVE PICTURE OF ACCELERATION
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A QUALITATIVE PICTURE OF ACCELERATION

Caprioli & Spitkovsky 2013

Bell & Schure 2013
Cardillo, Amato & PB 2018




X-ray rimsrand.B-field mpllflcatlon

TYPICAL THICKNESS ®
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IMPLICATIONS FOR THE MAXIMUM ENERGY
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THE PROBLEM OF ESCAPE FROM THE ACCELERATOR

IN STANDARD DSA THERE IS NO ESCAPE FROM
UPSTREAM

Advected = ESCAPE CAN BE FORCED BY A IMPOSING A

FREE ESCAPE BOUNDARY CONDITION
Freé Escape

Bo/undary

@, (E, x)= D(E >( &f(:;(, X))pr

Age(yr)=265000, 85500, 25400, 410

Caprioli et

Escape Flux




FROM SNR TO COSMIC RAYS

r
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| Type IIb

| | I I | I | | 1 1111 || |
1073 1072 107!
Time [kyr]

Cristofari & PB 2020
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FROM SNR TO COSMIC RAYS
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DSA IN PARTIALLY

IONIZED MEDIA




MOTIVATION

THE COLLISIONLESS NATURE OF MOST ASTROPHYSICAL SHOCKS LEADS TO
THE RELEVANT QUESTION ‘WHAT DO NEUTRAL ATOMS DO AT THE

SHOCK?' (see case of pick up ions at the solar wind termination shock)

PARTIALLY IONIZED PLASMAS ARE THE NORM, AT LEAST IN THE ORDINARY ISM
WHERE SN TYPE la EXPLODE BUT ALSO IN THE SURROUNDINGS OF SOME TYPE
Il SN

1) SHOCK MODIFICATION INDUCED BY NEUTRALS IN THE ABSENCE OF
ACCELERATED PARTICLES
a) Neutral return flux
b) Spectra of test particles accelerated at neutrals-mediated collisionless shocks

NON LINEAR THEORY OF DSA IN THE PRESENCE OF NEUTRALS

a) Shock modification induced by neutrals vs CR modification

b) Narrow and broad Balmer lines in the presence of efficient CR acceleration
c) Application to some SNR where Balmer emission is observed




N
KS IN PARTIALLY IONIZED PLASMAS

NEUTRALS >

SHOCK VELOCITY

INFLOWING )
NEUTRALS AND IONS

JA\Y;

AT ZERO ORDER NOTHING
HAPPENS TO NEUTRALS

IONS ARE HEATED UP AND
SLOWED DOWN



= RALS > AT ZERO ORDER NOTHING
SHOCK VELOCITY HAPPENS TO NEUTRALS
'
INFLOWING Av IONS ARE HEATED UP AND
NEUTRALS AND IONS SLOWED DOWN
kﬁ
' © |
¢ ¢ =) + €
Hot L . | cold
lon W Vo ion

Cold neutral hot neutral




BASIC PHYSICS OF BALMER SHOCKS

[Chevalier & Raymond (1978); Chevalier et al. (1980)

Ha LINES ARE PRODUCED AFTER
EXCITATION OF H ATOMS TO THE n=3
AND DE-EXCITATION TO n=2

T IF EXCITATION OCCURS BEFORE THE
— ATOM SUFFERS A CHARGE EXCHANGE
BalmerLines 4360y > NARROW BALMER LINE (ION T

UPSTREAM)

Lyo. ILyp  |Lyy

Lyman Lines IF H IS EXCITED AFTER CHARGE

=1 Vo EXCHANGE DOWNSTREAM - BROAD
Ground State = Lowest Energy Level BALMER LINE (ION T DOWNSTREAM)

THE WIDTH OF THE BROAD Ha LINES TELLS US ABOUT THE ION TEMPERATURE
DOWNSTREAM OF THE SHOCK

W”ccm




BASIC PHYSICS OF BALMER SHOCKS

[Chevalier & Raymond (1978); Chevalier et al. (1980)

~2000 —1000 O 1000 2000 CED AFTER
- S TO THE n=3

=2

1.0
BEFORE THE

_JINE (ION T

0.6

Ly,

,_
scaled flux

= ER CHARGE
: ’ ] M - BROAD
Ground NSTREAM)

THE WIDTH
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BALMER LINE WIDTHS IN CR MODIFIED SHOCKS

IN THE PRESENCE OF PARTICLE ACCELERATION TWO THINGS HAPPEN:

LOWER TEMPERATURE DOWNSTREAM

A PRECUKSOR APPEAKS UPSTRKEAM

NEUTRALS

BEROAD BALMER LINEGETS
an NARROWER

NARROW BALMER LINE
GETS BROADER




BALMER SHOCKS WITH NO CR

PB, Morlino, Bandiera, Amato & Caprioli, 2012

IONS ARE TREATED AS A PLASMA WITH GIVEN DENSITY AND A THERMAL
DISTRIBUTION

NEUTRAL ATOMS ARE DESCRIBED USING A BOLTZMAN EQUATION WITH
SCATTERING TERMS DESCRIBING CHARGE EXCHANGE AND IONIZATION

- .[d3w vrel[o V )+O-ion(vml)lfi(:’w)
3 (,v)= [ d*w vy0,(v)fylz.w)




Partial Scattering Functions
PB+ 2012

WE INTRODUCE THE FUNCTIONS: (k) (Z fUH UJ_ )
) )

THEY REPRESENT THE DISTRIBUTION FUCNTIONS OF NEUTRALS THAT

SUFFERED 0, 1, 2, ..., Kk CHARGE EXCHANGE REACTIONS AT GIVEN
LOCATION. THEY SATISFY:

70 | o flk) )
f _ —,Bif.&?) V) Z;: _ 3(k l)fz — B; f(k) k=1,2,...

WE SOLVE THESE EQUATIONS ANALYTICALLY AND THE
TOTAL SOLUTION CAN BE WRITTEN AS:

fN(ZavHavJ_ Z (k) Z,UH,UJ_)

69



Spatial dependence of the partial
scattering functions
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SHOCKS IN PARTIALLY IONIZED MEDIA WITH NO CR

PB, Morlino, Bandiera, Amato & Caprioli, 2012

IONS AND NEUTRALS ARE CROSS-REGULATED THROUGH MASS, MOMENTUM
AND ENERGY CONSERVATION:

Flux conservation:

' 'pi111.+F =0

mass

' .piuf+Pl.+F = 0

mom

1 |
— !

— |5 it 1)’ 1 Pu.+F, ENERGY FLUX
z |2 r,—




NEUTRAL RETURN FLUX

PB et al. 2012

NEUTRALS
AND IONS SHOCK VELOCITY

A NEUTRAL ATOM CAN CHARGE
EXCHANGE WITH AN ION WITH V<o,
THEREBY GIVING RISE TO A1
NEUTRAL WHICH IS NOW FREE TO
RETURN UPSTREAM 0.8

THIS NEUTRAL RETURN FLUX LEADSO.4 |
TO ENERGY AND Momawumwi
SHOCK! 00

70 —4

0.6 :




DISTRIBUTION FUNCTIONS IN PHASE SPACE

PB+ 2012

| i | b | b |

T PV LI
r fNﬁ;; - f((()0 downstream

| IN(Z) - * ] i fN?21)
IN(Zg) ==~

24 Ly = 2000 kmis

- ntot: 0.1 Cm.3

“* = lon fraction= 50%
_ EEUTRAL
ETURN

-LUX

/ 1 | 1 | | 1 | 1 'll. 1 | 1 | 1 | 1L S/ 1 1 1 1 1 1 1
410° 310% -210% -110® 010° 110® 210° 310 410° 410° 310% -210° -110® 010° 110® 210° 310 410°
v, [cm/s] v, [cm/s]

THE DISTRIBUTION FUNCTIONS OF NEUTRALS ARE
NOT MAXWELLIAN IN SHAPE THOUGH THEY APPROACH
A MAXWELLIAN AT DOWNSTREAM INFINITY




NEUTRAL INDUCED PRECURSOR

E n,=01cm>

- ion fraction= 50%

104 —— k.:.*.1'...:.,-?{:1;; L 1 R EPEPEPE et BP P P 1
810'7-7.10""-6.10'" 5-10'"-4-10"" 310" -2-10'"-1-10"" 0.10° 1-10
Z [cm]

PB+ 2012

EVEN FOR A STRONG SHOCK (M>>1) THE EFFECTIVE MACH NUMBER OF
THE PLASMA IS DRAMATICALLY REDUCED DUE TO THE ACTION OF THE
NEUTRAL RETURN FLUX




ACCELERATION OF TEST PARTICLES

PB+ 2012

E/GeV = 1 :
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NON LINEAR CR ACCELERATION IN
PARTIALLY IONIZED PLASMAS

RN . sausnovroe s
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Morlino +, 2013

HEATING
IN THE PRECURSOR
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-3

i n0:0.1 cm

Temperature(x)

10000 :
-2e+18 -1.5e+18 -1e+18

Z [cm]
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MAIN IMPLICATIONS OF CR + NEUTRALS

M THE UPSTREAM PLASMA IS HEATED BY BOTH THE NEUTRAL RETURN FLUX
AND TURBULENT HEATING INDUCED BY CR

[V TURBULENT HEATING OCCURS ON THE SCALE OF THE PRECURSOR WHICH
IS IN GENERAL LARGER THAN THE NEUTRAL PRECURSOR

M THE NARROW BALMER LINE IS AFFECTED BY TURBULENT HEATING AND
BROADENS

M AN INTERMEDIATE COMPONENT OF THE BALMER LINE IS CREATED AS A
RESULT OF CHARGE EXCHANGE IN THE NEUTRAL INDUCED PRECURSOR

M THE BROAD BALMER LINE GETS NARROWER AS A RESULT OF THE NON
LINEAR CR FEEDBACK




TYCHO: AN INSTANCE OF DSA WITH NEUTRALS
s pitel
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elder et al. 2009
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SNR 0509-67.5

o , 2 . , 2
ecR” = Pcr/(Pojion Vsh ) £cR’ = Pcr/(Po,ion Ven )
0.2 0.3 0.4 . i . 0.3 04

Vh= 4000 ks ; hy= 50%

FWHM broad line [kmvs]
FWHM broad line [kmvs)

0.15 0.2 0.25
0.3 0.4 0.5

0.05

PR |
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0.1

0.15

0.2 0.3 X 0.1 02

[ V= 5000 km/s; hy= 10%

FWHM broad line [kmvs]
FWHM broad line [kmvs])

03 04
. 2 ‘ 2
€cR = Pcr/(Po sot Ven ) €cr = Pcr/(Potot Van )

Morlino et al. 2013

FOR SHOCK VELOCITY ~5000 km/s A LOWER LIMIT OF 5-10% TO THE CR
ACCELERATION EFFICIENCY CAN BE IMPOSED
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RCW 86

Helder, Vink and Bassa 2011

DISTANCE TO THIS SNR RATHER UNCERTAIN
WITH VALUES RANGING FROM 2 TO 3 kpc, WITH
MOST LIKELY VALUE OF 2.5 kpc
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IN THE ABSENCE OF INDEPENDENT INFORMATION ON THE ELECTRON-ION
EQUILIBRATION, THE BALMER LINE WIDTH IS COMPATIBLE WITH NO CR
ACCELERATION

IN SOME REGIONS HOWEVER THERE ARE X-RAY MEASUREMENTS OF THE
ELECTRON TEMPERATURE




FWHM broad line [km/s]

s . S ;
e - distance= 2.5 Kpc
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IE-THE MEASUREP EFECTRON TEMPERATLURE [§° FHE -AGTUAL

DOWSNTREAM, THEN ALL MEASURED FWHM OF THE BROAD BALMER LINE
SUGGEST EFFICIENT CR ACCELERATION




RCW 86 - FILAMENT SE,

ecr” = Por/(Pojion Van') ecr” = Pcr/(Pojon Ven')
0.2 03 0.4 . . . 0.2 0.3 0.4

FWHM broad line [km/s)
FWHM bmad line [km/s]

F nyge= 1 om™; hy= 10%
_—Vsh= 1531 km/s

0.05 0.1 A 0.2 0.25
0.1 0.2

. ) . 0.15
ecn = Poa/(Po ot Vah') ecr = Pcp/(Po ot Ven')

A NON THERMAL PRESSURE OF ABOUT 20-30% IS REQUIRED TO EXPLAIN AT
THE SAME TIME THE FWHM OF THE BALMER LINE AND THE VALUE OF T,
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