Web-based interactive data
analysis tfor HEP with Spark
and ROOT DataFrame

V. E. Padulano, E. Tejedor, J. Cervantes

Data Analysis Framework

https://root.cern

https://root.cern

Outline

Motivation
Spark distributed infrastructure at CERN

vEvEY

Web-based interactive data analysis
e SWAN, storage, software, Spark
e Distributing ROOT analysis

D Use cases

e Infrastructure data

e Physics data

Motivation

a Nutshell: HEP Distributed Computing

Il Parallel processing through batch (local or grid) jobs on statistically independent events
i

Merging of partial results happens in a separate stage (more space needed for data and
sequential operations)

Ll Working, but we always strive for improvement L o
Very simplified description!

Partial Results

((

Merge

Data Processing

Dataset Range 1

Initial
Dataset

Dataset Range 2

Dataset Range n

A\

I HL-LHC will bring ~30x more data w.r.t. Run 2
L Automation of processing will be key
IJ Both hardware and software challenge

More Data Incoming!

e Currently CMS expects to need significantly more Tape, Disk and CPU by
2027

LHC / HL-L | HL~iLHC Pﬁmj!

LHC - HL-LHC

LS1 EYETS LS2 14 TeV LS3 14 TeV

13 TeV energy
splice consolidation INJECTOR UPGRADE limit r?o?nﬁ\él
rolimit -
7Tev 8TeV button collimators TDIS absorber cyolimit ~HL LH(_: {Uminosity
— R2E project 11T dipole & collimator regions b

Civil Eng. P1-P5

2011 ‘ 2012 | 2013 ‘ 2014 | 2015 ‘ 2016 ‘ 2017 2018 2019 | 2020 ‘ 2021 | 2022 ‘ 2023 ‘ 2024 2025 ‘ 2026 HHlHH 2038

ATLAS -CMS radiation
experiment upgrade phase 1 damage ATLAS - CMS
beam pipes 2 x nom. luminosity 2.5 x nominal luminosity upgrade phase 2
75%

nnnnnnn nomrmu’}osuy_ JE—— ALICE - LHCb _

luminosity upgrade
~ o [isow] 00 so00 15" R

Source : HSE Community WhitePaper and CMS for HOW 2019

3000

2500 A

2000

@ 1500

1000 -

500 A

CMS estimated disk space required by tier

. USER
NANOAOD
MINIAOD
AOD

N GENSIM

. RAW

Il Ops space

Runl & 2015

https://hepsoftwarefoundation.org/organization/cwp.html
https://indico.cern.ch/event/759388/contributions/3302196/

Complementing the existing
approaches

New Tools

To complement existing approaches, we can make use of new tools, not specific
to HEP and backed by large communities that have already proved their
potential.

[Orchestrated Parallel Computing } [Interactive Data Analysis }

3@’15&"@@[3 Spr‘"(\z jupyter
.\/

Spark Distributed Infrastructure
at CERN

What is Spark?

Open-source, general-purpose cluster
computing system

High level APIs and interactive

Spark Spark Spark.ml SparkR GraphX
SQL Strea m|ng (machine learning) (R on Spark) Con(gzjatg?ion)

execution in Scala, Java, Python

Offers data management, machine ST

. e (Scala / Python / Java)
learning and query capabilities
Local SEhRelal): YARN Kubernetes
Scheduler

Runs on multiple cluster frameworks,
such as Hadoop, Kubernetes and
more

On-Premise Clusters

CernVM

CERN clusters managed by IT department
Spark runs on top of YARN/HDFS

Data Locality: storage and computation on

the same machines

Storage
4 clusters ~1850 physical cores and 15 PB YARN Resource Manager (EOS, S3...)

capacity

e different configurations based on users’ L :
needs Hadoop Distributed File System

10

IJ Hosted on CERN OpenStack File system =
2 Spark runs on cloud VMs Spr’(kubernetes O€Nstack. ' i
La No persistent storage, data resides in
external storage clusters Spark
Ldl Capacities available in production today:

Storage

60 VMs
. Kubernetes Resource Manager (EOS, S3...)

e 260 Cores
e 480 Gb Memory

OpenStack Cloud Infrastructure

e + VM local storage

11

On-Premise vs Cloud-managed

Y T
A B
hactoop Spa .$ openstack.
Hadoop/Spark Spark on Kubernetes over Openstack
Cogpsti hﬂij?;';'; o) ' l Spark-on-Kubernetes Spark-on-Kubernetes
on thpe same machir?es only compute only compute
HBase
External Storage Kubernetes Resource Kubernetes Resource
VAT REECIIRER [I (EOS, S3, HDFS) Manager Manager
HDFS Hadoop Distributed File System Openstack Project 1 Openstack Project 2
Resources Resources
On-Premise Bare metal Infrastructure On-Premise Openstack Cloud Infrastructure
I stable production workloads Ld Cloud-native (rapid resource provisioning)
2 Data Locality Le Elasticity (Scale out cluster resources)
2 No on-demand resource elasticity id Separation of storage and compute
@ Used if the data resides on HDFS id Recommended for physics analysis, since

experiments store data on EOS 12

Web-based Interactive Data
Analysis

L SWAN: Service for Web-based Analysis
2 Interactive computing platform for scientists

e Based on Jupyter technology
2 Analysis with only a web browser
I Easy sharing of results
L Integrated with CERN resources

e Storage, software and computing

https://swan.web.cern.ch

14

https://swan.web.cern.ch

CERNBox

SWAN > My Projects

My Projects

NAME o STATUS MODIFIED
Proj1 < 5 days ago
Proj2 15 days ago
Project 21 days ago
Project 1 2 months ago
Project 2

ProjTest

Spark

SWAN-Spark_NXCALS_Example

teste

SWAN © Copyright CERN 2017. All rights reserved.
Home | Contacts | Support | Report a bug | Imprint

Simple_ROOTbook_cpp.ipynb

(view-only)

Simple ROOTbook (C++)

This simple ROOTbook shows how to create a histogram, fill it and draw it. The language chosen is C++.

In order to activate the interactive visualsisation we can use the JSROOT magic:

In [1): %jsroot on

Now we will create a histogram specifying its title and axes titles:

THIF h("myHisto","My Histo;X axis;Y axis",64, -4, 4)

(TH1F &) Name: myHisto Title: My Histo NbinsX: 64

If you are wondering what this output represents, it is what we call a "printed value”. The ROOT interpreter can indeed be instructed to "print" according to
certain rules instances of a particular class.

Time to create a random generator and fill our histogram:

TRandom3 rndmGenerator;
for (auto i : ROOT::TSeqI(1000)){

auto rndm = rndmGenerator.Gaus();
h.Fill(rndm);

We can now draw the histogram. We will at first create a canvas, the entity which in ROOT holds graphics primitives.

TCanvas ¢;

h.Draw();
c.Draw();

My Histo
myHisto

60! Entries 1000
Mean 0.02680

Y axis

Std Dev 1.038

50

SWAN Pillars

-
Computing Jupyter qu”(\z

upyte
e

‘r rfi'ei'igwsystem Software Storage

17

https://cernbox.web.cern.ch/
http://information-technology.web.cern.ch/services/eos-service
https://cernvm.cern.ch/portal/filesystem

Software Releases: CVMFS

Software releases for all CERN users
Designed for distributing small files, fits code needs
Read-only

Implements versioning through hashed folders + sqlite meta-data
catalogues

Lazy evaluation: first list files, then download them on-demand

Aggressively cached at all-levels

vEVEVERRvEvEvEY

Publisher-subscribers paradigm

18

o User Storage: CERNBoX

S
AR CernBox [

.| Provides cloud data storage to all CERN users
Based on EOS: the disk-based, low-latency storage service at CERN

s

. Share data with other users

.| Synchronize data across devices
"

Up to 1TB personal quota

19

Integration with Spark

4 y N\
Spark Master
i

()

d‘ocker User Notebook

Spark Executor

: 1
Spark Driver Task

- J

- J

S CernVM
i ‘. File system .

-/

Spark Cluster SpQ

Offload computations to
pluggable resources

20

Spark Monitor

c df = y df.filter(df.Location == '"Switzerland"') \
.select(df.Time, "Sum") \
.collect()

1 EXECUTORS 1CORES 2 COMPLETED

Event Timeline Eshow task phases

I Bridge the gap between T e
interactive computing and ~ S —— e

|

distributed data processing Sg | I 1 |||||H||I|I|||Hllllll.mi
. I:klht ot wan oo e e
E Automat|ca||y appears when a L0 L Y AL

Spark job is submitted from a cell |

d Progress bars, task timeline,

Job ID Job Name Status Stages Tasks Submission Time Duration
o o
resource utilisation v 2 e 2 5 mintes ago =
Stageld Stage Name Status Tasks Submission Time Duration

v 3 o 11 sppea) 5 mines a0 1m20s

Stageld Stage Name Status Tasks Submission Time Duration
— 6 coalesce Unknown -
(</>)3 Code here! e 5 minves ao
odae nere.
h 4

7
Google Summer of Code

21

https://github.com/krishnan-r/sparkmonitor

EOS, CERNBox, CVMFS and SWAN
together in one place: Science
Box.

Container-based packaging of all
these services

Single-machine demo and
scalable deployment with
Kubernetes

Deployable on-premises: have a
look here!

ScienceBox distributed infrastructure configuration

s Abltyt cale- JupyterHub
Cﬁe@ i I t ,
's - 5 - %
£OS Fuse ",« ingle-user NN N Moo oo / C| nt

e i
CERNBox i
............. CERNBox |
MysQL = e L e :\T o Sateway 0
Backend _“’ u . e < ™ =~
i‘ @ L \\\ : .- LDAP
\ T A
\

Mount Tiﬂ . _,::
SWAN ___'_'_“_‘_‘::::::::é—

~~~~~~~~~
™ W

EOS Management Node

22


https://sciencebox.web.cern.ch/sciencebox/

- Self-contained, Docker-based package with:

N U

.docker‘-compose
[

One-Click Demo Deployment

kubernetes

[0 No configuration required
[0 Download and run services in 15 minutes

https://github.com/cernbox/uboxed

Production-oriented Deployment

[0 Single-box installation via docker-compose

E. Bocchi at HEPiX 2019

[0 Container orchestration with Kubernetes
[l Scale-out storage and computing
[l Tolerant to node failure for high-availability

https://github.com/cernbox/kuboxed

ﬁ


https://github.com/cernbox/uboxed
https://github.com/cernbox/kuboxed
https://indico.cern.ch/event/765497/contributions/3351198/

Distributing ROOT Analysis



ROOT RDataFrame

Offers high-level declarative API to perform analyses on data

Multiple data sources

Columnar data structure

Consistently supports C++ and Python interfaces

Implicit optimizations for the chain of transformations and actions performed on data

ROOT
csv
Apache Arrow
ATLAS' xAOD
SQLite

_RNtuple -

25



Distributed ROOT RDataFrame

Ldl Creates a DAG from the chain of operations
ldl Can be distributed to Spark clusters via a map-reduce workflow

Id Run analysis in C++ with Spark thanks to the C++ interpreter provided by ROOT

)
d = RDataFrame(dataset)
f = d.Define(...)
.Define(...)
.Filter(...)
c
. (e
hl = f.HistolD(...) -
h2 = f.Histo2D(...) =
g = f.Graph(...) 3_.:
E 8
O =
00
N

26



B B ©

v

Python package in development by the
ROOT team

Exploits PyROOT bindings and ROOT
RDataFrame DAG

Exposes a declarative APl to users, mirroring
the existing ROOT APl and adding other
features

Allows local execution (native in
RDataFrame) and offload of heavy
computation to distributed resources

Integrated in SWAN (recently added to
software releases common to all
experiments)

PyROOT at ACAT 2019

I@ HSF Google Summer of Code

PyRDF : The Python ROOT DataFrame Library

A pythonic wrapper around ROOT's RDataFrame with support for distributed execution.
Sample usage

import PyRDF, ROOT
PyRDF.use( 'spark’, {'npartitions':4})

df = PyRDF.RDataFrame("data", ['https://root.cern/files/teaching/CMS_Open_Dataset.root’,])

etaCutStr = "fabs(etal) < 2.3"
df_f = df.Filter(etaCutStr)

df_histogram = df_f.HistolD("etal")
canvas = ROOT.TCanvas()

df_histogram.Draw()
canvas.Draw()

Code, Report

Google Summer of Code

27


https://github.com/JavierCVilla/PyRDF
http://shravanmurali.com/PyRDF/
https://indico.cern.ch/event/708041/contributions/3276254/

Use Cases



CERN Accelerator Logging Service

I Centralized database queried by
control room applications and
users

BUilt for 1 TB / year th rough put . Controls Data size in GB / day for filtered data

Exposes aJava API (and a Python
wrapper to it)

IJ Based on SQL DBMS: sl

e hard to scale horizontally

1.5 TB/day at end of Run 2!

- B E &8 &8 8 8 8 &8 & 8

e slow ETL operations
L GUI application called Timber

29



Relies on SWAN as their data
analysis platform

Exposes Java, Python, Scala APIs
through Spark

Connection to Spark clusters

Better API integration with outside
community (Python)

Stores data in Parquet data
format

In [2]:
Out([2]:

In [3]:

In [4]:

Out[4]:

NXCALS (Next CALS)

Inspect data

dfl.select('acqStamp', 'voltage 18V','current 18V', 'device', 'pt100Value').toPandas()[:5]

acqStamp voltage_18V current_18V device pt100Value
0 1524960103132865000 NaN 37.301794 RADMON.PS-10 106.578911
1 1524960284134584000 NaN NaN RADMON.PS-10 107.246742
2 1524960322134942000 NaN 37.560940 RADMON.PS-10 106.504707
3 1524960353135244000 20.099066 NaN RADMON.PS-10 107.068654

4 1524960911140548000 20.111261 37.698135 RADMON.PS-10 106.578911

Draw a plot with matplotlib

import matplotlib
import pandas as pd
smatplotlib inline

p_df = dfl.select('acqStamp’, 'current 18V').toPandas()
p_df.plot(‘'acqStamp', ‘current_18V',figsize=(15,5))
# p _df.sort _values(by='acqStamp').plot(pd.to datetime(p_df['acqStamp'],unit="'ns'),'current 18V',6 figsize=(15,5))

<matplotlib.axes. subplots.AxesSubplot at ©x7fd8fa2bcc50>

80
— arrent 18V

1524975 1525000 1525025 1525050 1525075 1525100 1525125
aqStamp 18

30



L2l TOTEM experiment analysis
converted to a declarative
approach using ROOT
RDataFrame

e Real physics analysis that led
to a thesis at CERN (ref.)

d Distributed to Spark clusters with
SWAN

2 Map-reduce jobs monitored in
real-time on the jupyter notebook

e Spark monitor helped to find
performance issues and
optimize the workload

Example real workload: TOTEM

# Name of the ree
input_ntuple_name = "TotemNtuple"

selected ds = ['DS1', 'DS2', 'DS3', 'DS4', 'DS5', 'DS6', 'DS7']

source_files = ["input files {}.txt".format(ds) for ds in selected ds]

prefixes = ["root://eostotem//eos/totem/data/cmstotem/2015/90m/Totem/Ntuple/version2/{}/". format (DS[ds]) for ds
input_files = [prefixes[i] + line.rstrip('\r\n') for i in range(len(source files)) for line in open(source files[i])
All datasets
ree (input_fil
treename uple”
npartitior )

12
10
Job |“—"m
Stages: OreeReduce
Tasks: g b
5 8 a72
spark- 16 365
w-0039. lot |24 an
40 364
3 a62
5% 350
& a74
72 352
80 337

tttttttt

31


https://cds.cern.ch/record/2655457?ln=en

50000 1

Test setup
40000 -
& Data
e 4.7 TBTOTEM Dataset
& Cluster 30000
e 15 workers e
e 16 cores/worker E
la Requirements e

e Data access (EOS)
e Software (CVMEFES)

10000

Distributed Execution

49140

25249

13096

7174

3786

1972

1021 1
B e 2
1 2 4 8 16 32 64 128

Number of cores

32




50000 1

Test setup
40000 -
Id Data
e 4.7 TBTOTEM Dataset
i Cluster 300001
e 15 workers e
e 16 cores/worker E
la Requirements 206

e Data access (EOS)
e Software (CVMEFES)

10000

Distributed Execution

25249

13096

7174

Time Reduction
13 hours to 10 minutes

3786

1972

1021 1
B e 2
2 4 8 16 32 64 128

Number of cores

33




Conclusions



Accomplishments

2l Deployment of a Spark infrastructure, using both on-premise and cloud-managed clusters
I Integration with SWAN, a web-based interactive analysis tool and “service federator”

e Modern and ergonomic interface

e [Easyto access, use and share notebooks

e Real-time monitoring of resources
Il Simplifying the interface to physics analysis:

e ROOT RDataFrame allows for declarative analysis, thus enabling optimisations behind
the scenes

e PyRDF wraps RDataFrame and enables distributed computation via Spark in a
seamless way for the scientists

e SWAN provides an interface for such an interactive and distributed approach

35



Challenges

Il Theincrease in physics and controls data volumes and complexity is pushing
software at CERN

e Adoption of Spark and other big data technologies still in its early stages
d Large codebase developed over decades

e Cannot change overnight
d Spread new paradigms to users

e Declarative, interactive, web-based analysis vs local and compiled

e Map-reduce dealing with columnar data

e On-demand computing resources
dl Prepare for HL-LHC data workflows

e Test new technologies further with more data 36



Thank youl!



