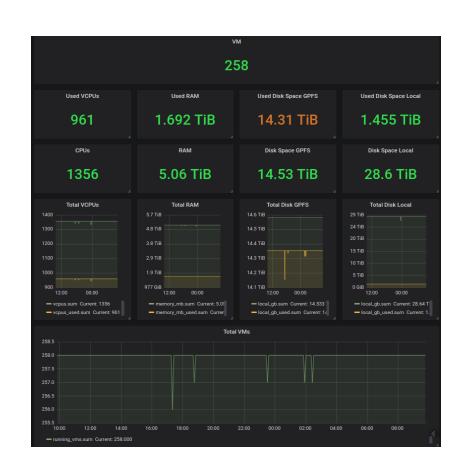

Cloud@CNAF Evolution

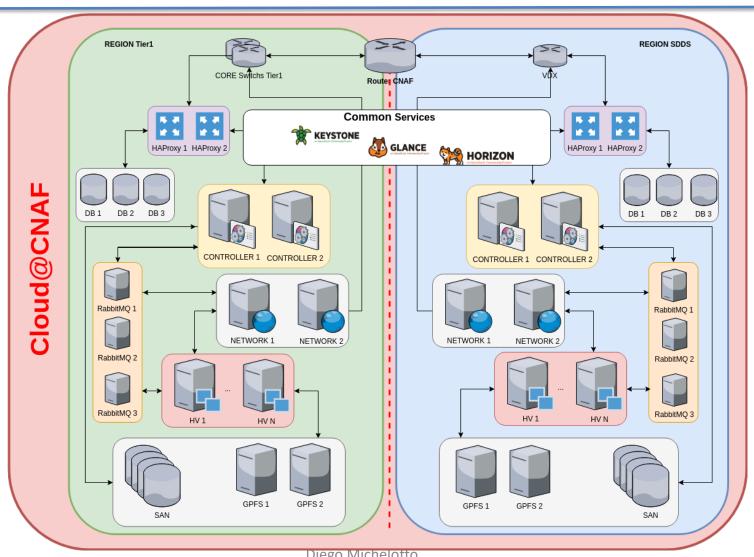
<u>Diego Michelotto</u>, Andrea Chierici, Alessandro Costantini, Cristina Duma

Outline


- Requirements
- Infrastructure
- Authn/Authz
- Problems and solutions
- Next steps
- A Cloud for INFN

Cloud@CNAF before

- Based on (outdated) OpenStack[1]
 Mitaka release.
- Only one region managed by SDDS group.
- Used mainly by:
 - INFN experiments,
 - Developers and local users,
 - External, H2020 and regional projects.



Requirements

- Single management domain shared between SDDS and Tier-1 functional units.
- Single infrastructure for all CNAF use-cases:
 - R&D projects,
 - Developers,
 - WLCG and INFN experiments (Pledged experiments).
- Environment separation:
 - Tier-1 and SDDS regions,
 - Tier-1 data access,
 - LHCONE, LHCOPN networks,
 - H2020 Projects.

Infrastructure - Schema

Infrastructure - Services

Common core services

- Keystone
- Glance
 - GPFS backend
- Horizon

• Per region support services

- 3 nodes RabbitMQ Cluster
- 3 nodes Mysql Percona Multi Master Cluster
- 2 Nodes HAProxy + Keepalived
 - Serve and manage all OpenStack services and DBs

Per region services

- Cinder
 - GPFS backend
- Nova
 - GPFS backend as storage, Libvirt backend as virtualizator
- Neutron
 - Linuxbridge, VLAN, External Network (/23)
- Heat

Virtual vs Bare Metal

- Only openstack-nova-compute, neutron-linuxbridge, neutron-dhcp, neutron-l3-agent and neutron-metadata are on physical nodes (Compute nodes and Network nodes).
- All other openstack service are virtualized and replicated on different virtualization systems (oVirt, VMWare).
- DBs are on physical nodes on diffent racks with 15k SAS disks.

Infrastructure - Deployments

- Rocky (in production):
 - SDDS region ~ 1400 cores, 5TB RAM, 16TB Shared FS, 28TB local FS.
 - Tier1 region ~ 500 TB-N shared FS, ~5200 cores (to be added soon).

Testbed:

- 2 smaller production-like setup regions.
- Necessary to test pre-production of new services, puppet classes and upgrades.
- ISO 27001 testbed.

SGSI separate instance

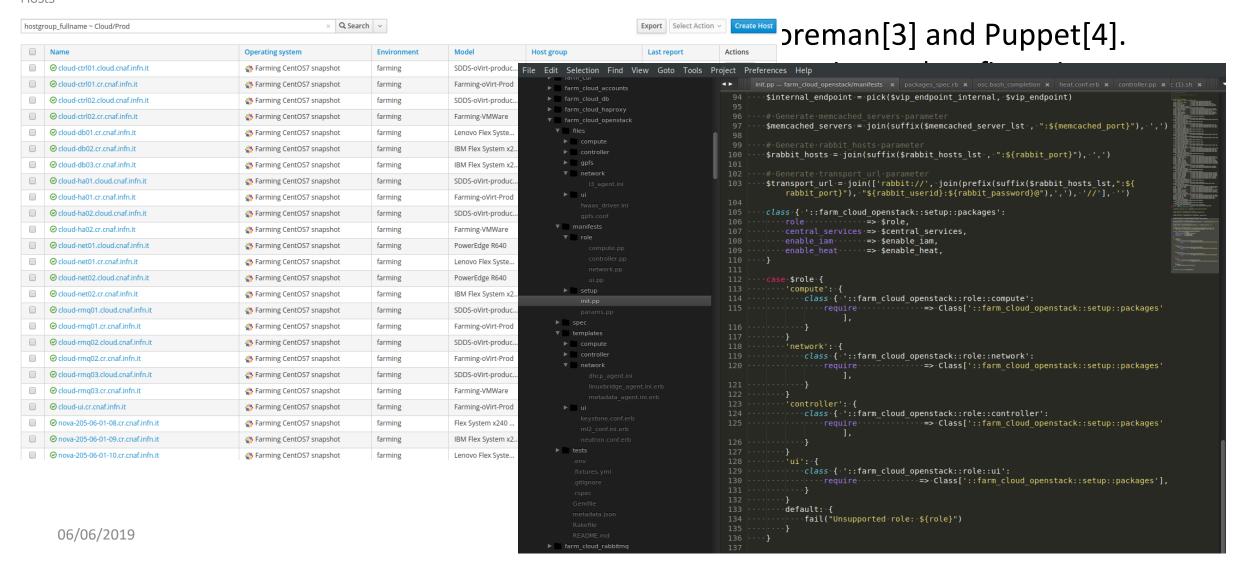
Infrastructure - SGSI

- CNAF got ISO27001 certification to address strictly secure data handling requirements ("Sistema per la Gestione della Sicurezza dell'Informazione").
- A cloud deployment is going to be setup in June to host new experiments:
 - Harmony (genomics),
 - Alleanza Contro il Cancro (biomedic).
- Separated and isolated infrastructure.
- Ceph will be used as storage backend.

Authn/Authz

- Based on OpenID-connect provided by INDIGO-IAM[2]
 - Dedicated INDIGO-IAM service https://iam.cnaf.infn.it for CNAF, INFN AAI and EduGAIN users, permissions managed through IAM groups:
 - No group membership means no cloud access.
 - Users in "cloud" group can access cloud in the shared project CNAF with limited resources through ephemeral user.
 - Users in "cloud/user" group can access cloud in two project: CNAF one and personal one through ephemeral user.
 - Users in "cloud/local" group can access cloud through keystone mapped user and projects.
 - Other INDIGO-IAM services for R&D project like DODAS, eXtreme-DataCloud, DEEP Hybrid Data Cloud, etc. mapped on ephemeral user with dedicated project.

- Provisioning and configuration managed via The Foreman[3] and Puppet[4].
 - Developed our own puppet classes for all the clusters, services and configurations.



Claud@CNIAE acasystem

Hosts

FOREMAN

Monitor V Hosts V Configure V Infrastructure V

- Provisioning and configuration managed via The Foreman[3] and Puppet[4].
 - Developed our own puppet classes for all the clusters, services and configurations.
- All software repositories are locally cloned and snapshotted.
- Infrastructure **deployment** and **functionalities** are **tested** with Rally[5], smoke and stress test.

Task overview

Input file

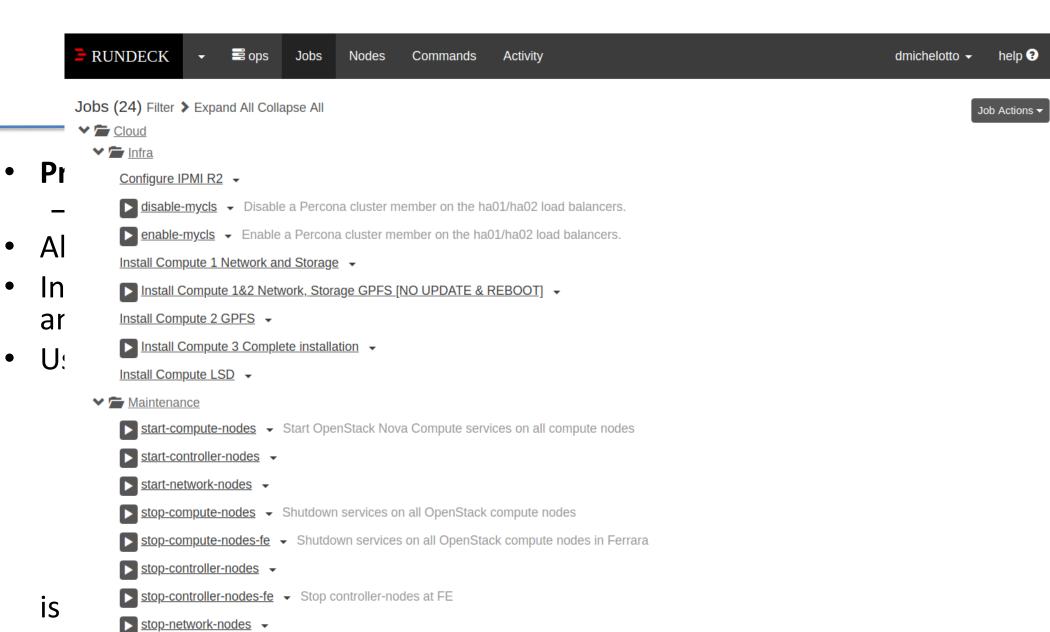
Provisi

- − Deve
- All soft
- Infrastr and str

- ► Authenticate
- ► CinderVolumes
- ► GlanceImages
- ► KeystoneBasic
- ► NeutronNetworks
- ▶ NovaKeypair
- ► NovaServers
- ► Quotas

Task overview

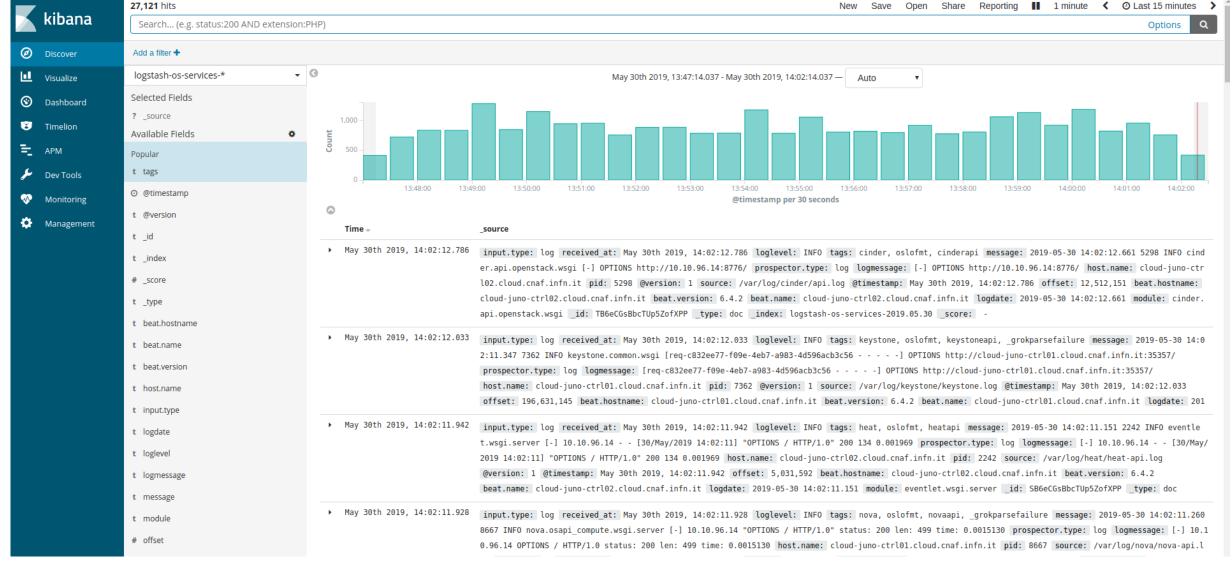
Scenario 🛦	Load duration (s)	Full duration (s)	Iterations	Runner	Errors	Hooks	Success (SLA)
Authenticate.keystone	0.482	2.688	1	constant	0	0	•
CinderVolumes.create_and_attach_volume	24.119	40.619	1	constant	0	0	•
CinderVolumes.create_and_delete_snapshot	5.990	24.749	1	constant	0	0	•
CinderVolumes.create_and_delete_volume	6.080	14.943	1	constant	0	0	•
CinderVolumes.create_and_delete_volume-2	8.156	15.075	1	constant	0	0	•
CinderVolumes.create_and_delete_volume-3	8.148	16.293	1	constant	0	0	•
CinderVolumes.create_and_extend_volume	10.512	17.821	1	constant	0	0	•
CinderVolumes.create_and_list_snapshots	3.869	26.549	1	constant	0	0	•
CinderVolumes.create_and_list_volume	5.388	15.000	1	constant	0	0	•
CinderVolumes.create_and_list_volume-2	5.664	16.950	1	constant	0	0	1
CinderVolumes.create_and_upload_volume_to_image	14.371	24.213	1	constant	0	0	•
CinderVolumes.create_from_volume_and_delete_volume	10.490	30.689	1	constant	0	0	/
Glancelmages.create_and_delete_image	2.822	7.266	1	constant	0	0	·
Glancelmages.create_and_list_image	2.830	9.485	1	constant	0	0	/
Glancelmages.list_images	0.170	3.525	1	constant	0	0	•
KeystoneBasic.add_and_remove_user_role	1.347	12.692	1	constant	0	0	•
KeystoneBasic.create_add_and_list_user_roles	1.296	13.044	1	constant	0	0	✓
KeystoneBasic.create_and_delete_role	0.676	10.338	1	constant	0	0	·
KeystoneBasic.create_and_delete_service	1.231	10.219	1	constant	0	0	/
KeystoneBasic.create_and_list_tenants	1.271	13.052	1	constant	0	0	·
KeystoneBasic.create_update_and_delete_tenant	1.590	11.075	1	constant	0	0	✓
KeystoneBasic.get_entities	1.767	19.408	1	constant	0	0	•
NeutronNetworks.create_and_delete_networks	2.785	11.706	1	constant	0	0	✓
NeutronNetworks.create_and_delete_ports	3.632	20.078	1	constant	0	0	✓
NeutronNetworks.create_and_delete_routers	10.733	29.603	1	constant	0	0	✓
NeutronNetworks.create_and_delete_subnets	3.899	17.180	1	constant	0	0	✓
NeutronNetworks.create_and_list_networks	1.747	16.396	1	constant	0	0	✓
NeutronNetworks.create_and_list_ports	2.577	18.899	1	constant	0	0	✓
NeutronNetworks.create_and_list_routers	8.257	35.458	1	constant	0	0	✓
NeutronNetworks.create_and_list_subnets	2.413	17.567	1	constant	0	0	✓
NeutronNetworks.create_and_update_networks	1.950	18.473	1	constant	0	0	✓
NeutronNetworks.create_and_update_ports	3.900	23.136	1	constant	0	0	·
NeutronNetworks.create_and_update_routers					0	0	
	8.870	30.255	1	constant	0	0	✓


et[4]. ions.

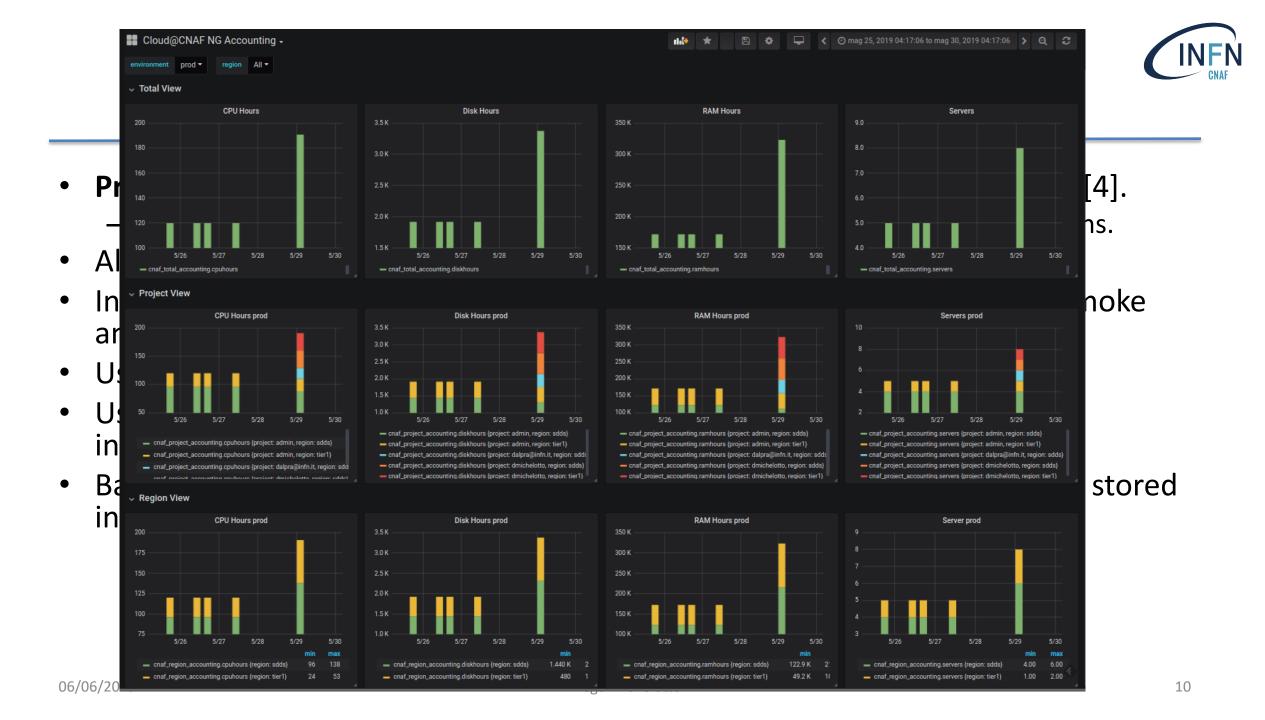
smoke

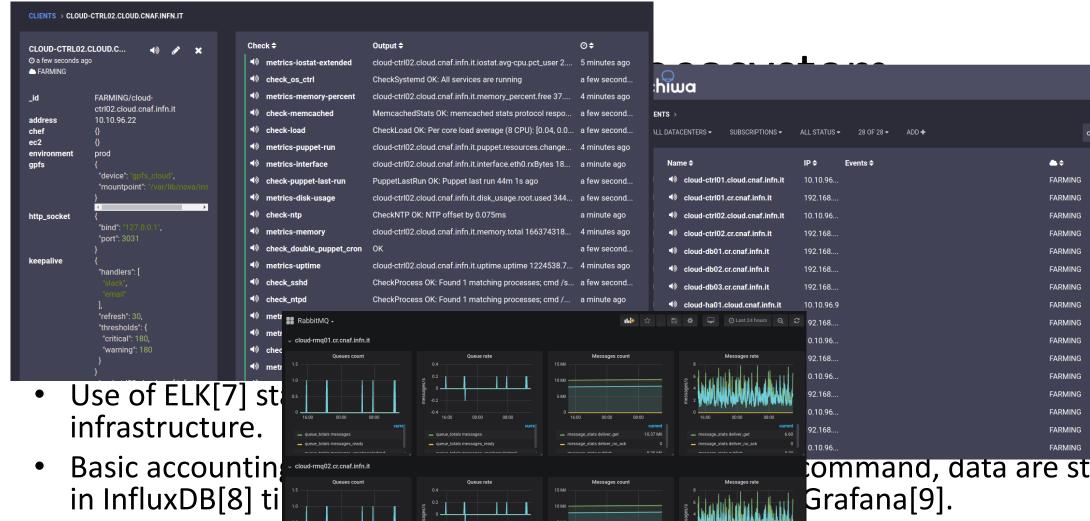
06/06/2019 NeutronNetworks.create_and_update_subnets 3.682 24.011 1 constant 0 0 1

- Provisioning and configuration managed via The Foreman[3] and Puppet[4].
 - Developed our own puppet classes for all the clusters, services and configurations.
- All software repositories are locally cloned and snapshotted.
- Infrastructure deployment and functionalities are tested with Rally[5], smoke and stress test.
- Use of Rundeck[6] for operations.


Diego iviicheiotto

▶ <u>Upgrade</u> ▼


- Provisioning and configuration managed via The Foreman[3] and Puppet[4].
 - Developed our own puppet classes for all the clusters, services and configurations.
- All software repositories are locally cloned and snapshotted.
- Infrastructure deployment and functionalities are tested with Rally[5], smoke and stress test.
- Use of Rundeck[6] for operations.
- Use of ELK[7] stack for log collection, management and analysis of the infrastructure.



- Provisioning and configuration managed via The Foreman[3] and Puppet[4].
 - Developed our own puppet classes for all the clusters, services and configurations.
- All software repositories are locally cloned and snapshotted.
- Infrastructure deployment and functionalities are tested with Rally[5], smoke and stress test.
- Use of Rundeck[6] for operations.
- Use of ELK[7] stack for log collection, management and analysis of the infrastructure.
- Basic accounting made using Openstack usage list command, data are stored in InfluxDB[8] timeseries database and displayed with Grafana[9].

- Provisioning and configuration managed via The Foreman[3] and Puppet[4].
 - Developed our own puppet classes for all the clusters, services and configurations.
- All software repositories are locally cloned and snapshotted.
- Infrastructure deployment and functionalities are tested with Rally[5], smoke and stress test.
- Use of Rundeck[6] for **operations**.
- Use of ELK[7] stack for log collection, management and analysis of the infrastructure.
- Basic accounting made using Openstack usage list command, data are stored in InfluxDB[8] timeseries database and displayed with Grafana[9].
- All services and performance are monitored with Sensu[10], is used InfluxDB and Grafana for data storing and displaying. Alert notification generate by Sensu is sent via Slack[11] and e-mail.

command, data are stored

u[10], is used InfluxDB **ication** generate by Sensu

All services and

and Grafana for

is sent via **Slack**

≅≑

a few seconds a..

a few seconds a.

a few seconds a.

a few seconds a..

a few seconds a..

a few seconds a..

a few seconds a.

a few seconds a..

a few seconds a.

a few seconds a..

±.

Cloud@CNAF security

- For the delegation of responsibility we align to what Harmony group will produce.
 - Delegate resp. to user with root access, whether internal or external
- For traceability and security reasons, users can only use images provided by Cloud@CNAF admins:
 - Customized images with rsyslog service enabled
 - Injected ssh key for root access used only in case of security incident.
- VMs external access through frontier firewall:
 - By default, CNAF outer perimeter firewall blocks incoming access.
 - Ports can be opened upon express request.

Problems and Solutions (1/2)

- Libvirt doesn't recognize GPFS as distributed file system.
 - Locally patched and tested for libvirt 4.5.
 - Patch submitted and accepted upstream for libvirt 5.0.
 https://bugzilla.redhat.com/show-bug.cgi?id=1679528
 - CentOS has not yet backported the patch but has taken it into consideration.
- Nova APIs fail when receive requests from HAProxy.
 - https://bugs.launchpad.net/nova/+bug/1728732
 - Patch backported with puppet ad-hoc class.

Problems and Solutions (2/2)

- CPU capabilities are different and can block live migrations. Two cases:
 - Different vendor: solved using host aggregate.
 - AMD vs Intel
 - -Same vendor but different architecture, two sub-cases:
 - High number of nodes for each type, solved using host aggregate.
 - e.g. AMD G4 vs. AMD G5 or Intel Broadwell vs. Intel Skylake.
 - Low number of nodes for each type, solved configuring CPU model in nova.conf with the CPU baseline between different.

Next steps

Elastic partitioning of Farm

- Possibility to detach WNs from the production farm and assign them to cloud partition and vice versa.
- Fine tuning of virtual machines monitoring and accounting.
- Implement workflow management to monitor VM lifecycle.
- Improve logs parsing and analysis.
- GPU virtualization.

A Cloud for INFN

- We can now give access to Tier-1 resources both through standard grid approach and Cloud.
- Goal is to federate our infrastructure with other INFN clouds to implement a **unique** INFN cloud.
 - Federation mechanism: INFN-CC or IAM.
- (Possibly) complemented by Data-Lake like infrastructure for data.

Credits

- CNAF Network team:
 - Study, design and setup for Cloud@CNAF networks.
- CNAF Storage team:
 - GPFS setup for Cloud@CNAF.
- CNAF Software Development team:
 - Setup and integrations of IAM and ELK.

Thanks

References

- [1] Openstack: https://www.openstack.org/
- [2] INDIGO-IAM: https://www.indigo-datacloud.eu/identity-and-access-
- management
- [3] The Foreman: https://www.theforeman.org/
- [4] Puppet: https://puppet.com/
- [5] Rally: https://rally.readthedocs.io/en/latest/
- [6] Rundeck: https://www.rundeck.com/open-source
- [7] ELK: https://www.elastic.co/
- [8] InfluxDB: https://www.influxdata.com/
- [9] Grafana: https://grafana.com/
- [10] Sensu: https://sensu.io/
- [11] Slack: https://slack.com