
GPUS IN RUN 3: A SHIFT IN THE OFFLINE/
ONLINE PROCESSING PARADIGM FOR ALICE

MATTEO CONCAS - POLITECNICO DI TORINO (DET)
“WORKSHOP DI CCR” JUNE 3-7, 2019

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

OVERVIEW

▸ The goal of this presentation is to show current state of the art of the available
technologies used and/or investigated in ALICE during the development
reconstruction software for the upgrade. Some things are stable already, others are
likely to change, things move fast

▸ This presentation includes and mentions the work of many in the collaboration.
Credits and reference are added whenever possible. Any consideration or opinion
that might transpire during this presentation has to be considered as my personal

�2

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

RUN 3 AT THE LARGE HADRON COLLIDER (LHC)

▸ The accelerator will deliver an increased luminosity ➞ 6x1027cm-2s-1, up to 50kHz in PbPb collisions

▸ Some experiments will dramatically improve their capabilities, both on the hardware and software

▸ A Large Ion Collider Experiment (ALICE), among them:

▸ will replace its innermost detector, the Inner Tracking System (ITS) with a brand new one, entirely
based on silicon pixel detectors, with better pointing resolution*, tracking efficiency at low pT[1]

▸ will introduce a continuous readout mode, possibly partitioning data in so-called timeframes

▸ will introduce: O2 a renewed software stack for simulation, reconstruction and analysis written
from scratch, with a multi-process structure ready to scale across clusters. The structure is
granularly divided in devices, which represent individual compute tasks, that communicates via
the abstraction of transport, transparently supporting different communication strategies[8]
(shared memory, ZeroMQ)

�3
*increased by a factor of 3(5) in rφ (z) at pT =500 MeV/c

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

THE ONLINE/OFFLINE RECONSTRUCTION IN ALICE: CHALLENGES AND GOALS

▸ Run2 vs Run3 comparison

▸ move from O(1) kHz single events (triggered) up
to 50kHz of continuous data acquisition

▸ reconstruct up to 50x more events

▸ not enough storage: need for data reduction and
data compression, from the nominal 3+ TB/s to
less than 100 GB/s

▸ from the division from online “quick & dirty” and
offline “Precise but slow” reconstruction
paradigm towards a ”synchronous vs
asynchronous” reconstruction sharing the same
software codebase

�4

D. Rohr - “Track Reconstruction in the ALICE TPC using GPUs for LHC Run 3” Connect the Dots 2018”[2]

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

HOW TO ACHIEVE THE NEEDED DATA REDUCTION: ONLINE RECONSTRUCTION
▸ With continuous readout we need to be able to perform calibration and full reconstruction to quickly select physically

interesting “events” to be stored. The reconstruction is divided in two phases

▸ Synchronous (during data taking): perform online calibration and data compression

▸ Asynchronous (during no beam time): full reconstruction with final calibration

▸ The most computational-demanding phases are proportional to powers of the event multiplicity e.g. in tracking and vertex
reconstruction, because of the presence of heavy combinatorial sections in the algorithms (~6000 charged particles produced in
the acceptance)

▸ In most of cases the event processing can be trivially split across parallel unrelated computations, the problem is often
embarrassingly parallel ➞ scales with the number of used computing units the approach is limited by the amount of RAM
required by the process

▸ Parallel accelerators such as GPUs allows us to exploit the high core/threads density and the dedicated memory to address the
computing demand, both releasing memory on the host that can be used by other tasks and adding resources to the same host

▸ Graphic Processing Units (GPUs) are a suitable choice (General Purpose GPU Computing) ➞ Introduction in the O2 the
possibility to run the reconstruction on GPUs alongside the generic code that can runs on CPU (OpenMP, C++11 threads,
OpenCL, …)

�5

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

GPU IN RECONSTRUCTION IN ALICE: USED TECHNOLOGIES AND OUTLOOK
▸ GPU market split between two major actors AMD and Nvidia*, nowadays is not yet known whether ALICE will adopt GPUs and which architecture

would be chosen in case. It would be anyway optimal to be ready also to exploit different GPU architectures also considering the reconstruction of
Montecarlo generated events which involve the same procedure

▸ GPGPU programming languages taken in consideration

▸ CUDA[3]: proprietary, closed-source API to program against Nvidia GPUs.  
Pros: At the moment leader in the innovation front, capable to exploit each new feature in latest architectures, by construction  
Drawback: vendor lock-in

▸ OpenCL[4]: the open, royalty-free standard for cross-platform language, by Khronos group. At the moment we are using the v1.2 for both TPC
and have ITS standalone version of the tracking code 
Pros: can run on different architectures: CPU, GPU, FPGA… ➞ single codebase, in principle easier to maintain 
Drawbacks: generally support a subset of the features available for CUDA, this is mainly because of the portability of the interface which needs
to be compatible with diverse architectures and may not allow to be tailored to fit only one of them. Real performances may vary from one
architecture to another

▸ HIP[5] (Heterogeneous-Compute Interface for Portability, with ROCm): [evaluation in progress] C++ runtime API and kernel language that allows
developers to create portable applications that can run on AMD and other GPUs. 
Pros: got some boost in development, stimulated by the need to stay in the market; possible to semantically convert CUDA kernels code to HIP
API calls making it possible to map CUDA kernels on software ready to be deployed on AMD GPUs; can dramatically reduce the code to be
maintained, still supporting diverse architectures 
Drawback: always one step behind latest released CUDA features (must be said that eventually the reconstruction code will reach some stable
release; if HIP fits the needs once, one does not really need to have regular updates on the translation)

�6
*Intel GPUs might not come in time to join the discussion for Run3

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

GPU IN RECONSTRUCTION IN ALICE: STATE OF THE ART

▸ TPC: tracking in the High Level Trigger (HLT) has been already in place since Run2

▸ first to port the O2 version for Run 3, based on Cellular Automaton (CA) and Kalman filter
(KF)

▸ implementation with OpenMP, CUDA, OpenCL[2], HIP on its way

▸ ITS: tracking[1] and vertex reconstruction

▸ tracking based on CA and KF, vertex reconstruction based on cluster identification, to
cope with the pile-up of many events on same bunch-crossing (~5 piled up events in pp
collisions with readout base option)

▸ parallel implementation using CUDA, OpenCL (standalone tracking version)

▸ Transition Radiation Detector (TRD) is also using a GPU-accelerated tracking and fitting

�7

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

GPU TRACKING PERSPECTIVES

▸ In a first iteration the different steps in the
tracking have been developed separately,
to naturally share the workload across
experts of different detectors, leaving to
them the evaluation and decision of
tracking strategies

▸ With GPU-based workflow, this leads to
some obvious overhead, especially in data
moving across host and device before and
after each phase

▸ It appears natural to connect steps that
share common data structures into
pipelines on the GPU, to save all those
transactions and to avoid useless and
expensive transfers/allocations

▸ On the other hand, the execution of the
unrelated and distributable steps are
managed by the multi-process nature in O2

�8

4.4.2019 David Rohr, drohr@cern.ch 27

Barrel Tracking Chain

• Many steps of barrel tracking must run consecutively.
• Makes sense to port consecutive steps to GPU to avoid data transfer.

• Although not strictly needed, depends also on data size. TPC clusters are most critical.

• Beginning of tracking chain with TPC / ITS well established on GPU already.
• TRD already available, but TPC / ITS matching missing.
• Following steps could be ported when there is

manpower available.
• Primary focus right now:

consolidate baseline solution.

TPC Track
Finding

TPC Track
Merging

ITS Track
Finding

ITS
Track Fit

TPC ITS
Matching

TPC
dE/dx

ITS
Afterburner

TRD
Tracking

ITS
Vertexing

TOF
Matching

Global
Fit

V0
Finding

TPC Track Model
Compression

TPC Entropy
Compression

TPC
Track Fit

In operation
Nearly ready

Being studied
Not started

Match TPC tracks to
remaining hits in ITS.

TPC Cluster
removalTPC Junk

Identification
Depending on removal

strategy

optional

D. Rohr - “Track Reconstruction in the ALICE TPC using GPUs for LHC Run 3” Connect the Dots 2019”[6]

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

USE-CASE EXAMPLE: TRACK RECONSTRUCTION IN ITS USING CELLULAR AUTOMATA

▸ The reconstruction in ITS is
responsible to find and
classify the tracks generated
by charged particles and the
position of the interaction
vertex

▸ After a preliminary vertex
position estimation, needed
as a seed for current tracking
algorithm implementation,
the tracking phase is
constituted by three steps

�9

seed vertex seed vertex seed vertex

A combinatorial routine to
find pairs of clusters on
adjacent layers, filtering
them using some criteria

Subsequent tracklets that
satisfy some filtering criteria
are merged into cell

Neighbour cells are
combined into track
candidates a fit is later
performed using a Kalman
Filter

Tracklet finding Cell finding Track Fitting

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

USE-CASE EXAMPLE: CUDA VS OPENCL IMPLEMENTATION
▸ For each pair of layers an instance of the ITS the trackleting

kernel is launched

▸ For each cluster in the innermost layer a single thread
performs the search for a good tracklet

▸ The same strategy and algorithm are used for the cell
finding, where tracklets are combined instead of
clusters

�10

Host-device paradigm: host execution, red filled, and device execution, blue filled, must be properly synchronised

Host-device paradigm: host execution, red filled, and device execution, blue filled, must be properly synchronised

▸ The algorithm has been modified to avoid the sorting of the
tracklets and atomic operations

▸ A “dry run” of the tracklets/cells finding algorithm is
performed in order to count the total number of tracklets/
cells reconstructed per cluster

▸ A second iteration of the algorithm is used to instantiate the
object (tracklet or cell) in memory already sorted for the
following step

CUDA

OpenCL

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

CUDA VS OPENCL IMPLEMENTATION: RESULTS
▸ The algorithm has been tested on central Pb-Pb

(HIJING[7]) events simulated using the realistic
geometry of the upgraded ITS

▸ The computing time is reported for the
reconstruction of tracks coming from a single
interaction vertex

▸ Piling up more interaction vertices the
computing time increases linearly (see table)

▸ The OpenCL algorithm is slightly more
performant than the CUDA one, both leads to the
same results and are consistent with CPU version

▸ Both GPU implementations show a similar linear
dependence on the number of clusters lower than
the serial one

�11

60 65 70 75 80 85 90 95 100
310×

Number of ITS clusters
0

20

40

60

80

100

120

140

C
om

pu
tin

g
tim

e
[m

s] Implementation
CUDA [Titan Xp GPU]
OpenCL [Titan Xp GPU]
Serial [Intel(R) Xeon(R) W-2133 CPU]

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

PORTABILITY ON HETEROGENEOUS ARCHITECTURES: EXAMPLE OF A TRANSPARENT INTERFACE

▸ The O2 software stack will run online and offline, the same code must be able to adapt to the underlying architecture (online
clusters, Grid sites)

▸ There are several strategies. For instance the TPC parallel code is replicated in three different flavours (CUDA, OCL, OpenMP)

▸ The basic idea is to have transparent interfaces, which implement standard APIs for workflow

▸ Interfaces are overridden, the idea is to always choose to use the fastest version available for final architecture

▸ At the moment, for CUDA, we are able to autodetect the underlying architecture enabling the compilation of the proper piece
of code. We would like soon move towards the same direction for HIP and OpenCL

�12

VertexerTraits* traits

void member_func() {
 traits->func_traits();
}
…

Vertexer.{h,cxx}

Containers, Local ephemerals, Persistent …

virtual void initialise()
virtual void findTracklets()
virtual void findVertices()
…

VertexerTraits.h

void initialise()
void findTracklets()
void findVertices()
…

VertexerTraits.cxx

Containers, Local ephemerals, Persistent …

void initialise() override
void findTracklets() override
void findVertices() override
…

VertexerTraits{GPU,…}.h

__global__ void kernel() // et similia

void traits_m_func(){ kernel<<<…>>>()}
…

VertexerTraitsGPU.{cu,cxx,…}

CPU implementationTransparent interface Possible GPU or parallel overrides

Example of a transparent interface of a CUDA implementation for the ITS seed vertex finder

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

ALIDOCK: THE ALICE ENVIRONMENT IN A CONTAINER
▸ The alidock[9] script has been developed to solve a real problem at the ALICE analysis tutorial: make ALICE

newcomers able to install, develop and use our experiment codebase without spending too much time in
struggling with compatibility*

▸ Available for Linux and Mac (Windows version has not released yet, CUDA will not be available also with WSL2)

▸ Focused on simplicity:

▸ installation with a single command and minimal CLI with single command for basic usage

▸ automatic update both of the executable and the container image (it comes for free with docker)

▸ unburden the final user from docker technicalities as much as possible

▸ The goal: provide users with a consistent environment, based on the upstream production docker container
images used in the ALICE software validation ➞ pre-compiled and cached builds for packets not in
development mode exist: trade compilation time with downloads (usually faster on users’ laptops)

�13

*In ALICE the supported platforms for users are well defined and maintained, the context of an analysis tutorial might find people with exotic environments on their laptops, the idea was not
spend too much time in technicalities in fixing different unsupported OSs

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

ALIDOCK: HOW IT WORKS

▸ Installation is self contained into a Python 3 virtualenv, to avoid Python prerequisite conflicts

▸ Possible customisations stored in a static file and overridable by CLI

▸ Initialisation script runs inside the container at startup to customise execution (user creation, ssh
key pairs deployment, specific flags implementations…)

▸ Expose a default-created directory to store persistent data (configurable)

▸ Access through the simple alidock command (SSH behind the scene)

▸ Container is meant to be disposable, user should be able to just stop and restart it without
noticing any difference (sometimes even useful as a panacea-fix for specific issues)

▸ It provides a devel and runtime environment for final user

▸ It does not have a --privileged option

�14

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

ALIDOCK AS AN ADVANCED-USER DEVELOPMENT TOOL

▸ With the user becoming more familiar with the ALICE development workflow, there may come
out more advanced needs

▸ preserve the state within a tmux session, able to run things in “background”: --tmux[-control]

▸ access host directories, CVMFS, cernbox: --cvmfs, --mount

▸ access the host devices Nvidia or AMD GPUs: alidock --nvidia / --rocm

▸ exceptionally access the root user: alidock --root

▸ It is possible to derive a custom image from the original one and use it as the base image for
your workbench, alidock is completely application-agnostic

▸ Repository for contribs images with automatic build and test exists, publish on dockerhub

�15

https://github.com/alidock/alipier
https://cloud.docker.com/u/alipier/repository/list

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

CONCLUSIONS AND OUTLOOK
▸ Having parallel code and GPU accelerators utilisation is a fact for the upgrade. The O2 framework is

intrinsically multi process for different task communicating via the a communication abstraction and
allows for multithreaded executions on CPUs and GPUs per single device

▸ Having the same software stack for online and offline data processing will reduce the code duplication
and ease further developments and maintenance. Also the goal is to keep interfaces homogeneous and
transparent wrt the underlying running implementation ➞ need for continuous consistency testing

▸ At the moment we are trying not to be vendor locked in for what concern accelerators’ code, exploring
the most usable, reliable and performant technologies for cross compatibility, looking for being
compatible to all the foreseeable scenarios also on grid sites for asynchronous phase

▸ The most basic scenario where we will have separated workflow on GPU is not so far, we are carefully
evaluating which steps would really benefit from being connected in pipelines

▸ Tools like alidock may enable both the basic and the expert user to an agile development environment,
up to date with latest technologies frontiers

�16

BACKUP SLIDES

4.4.2019 David Rohr, drohr@cern.ch 47

TPC Tracking performance

- Speed-up normalized to single
CPU core.
• Red curve: algorithm speed-up.
• Other curves: GPU v.s. CPU

speed-up corrected for
CPU resources.
– How many cores does

the GPU replace.

- Significant gain with newer
GPU (blue v.s. green).

- GPU with Run 3 algorithm
replaces > 800 CPU cores
Running Run 2 algorithm.
(blue * red).
(at same efficiency / resolution).

- We see ~30% speedup with new
GPU generation
(RTX 2080 v.s. GTX 1080)

Algorithm speed-up on CPU
20 - 25x v.s. to Run 2 Offline

Modern GPU replaces
40 CPU cores @ 4.2 GHz

GPU of Run 2 HLT
replaces 17 cores

Min.bias collision Occupancy @ 50kHz

D. Rohr - “Track Reconstruction in the ALICE TPC using GPUs for LHC Run 3” Connect the Dots 2019”[6]

MATTEO CONCAS, POLITECNICO DI TORINO (DET) - WORKSHOP DI CCR, 3-7 GIUGNO 2019

REFERENCES
▸ [1] https://indico.cern.ch/event/587955/contributions/2935765/attachments/1678513/2699330/2018-jul-03-

conference_presentation-chep2018-v2.pdf

▸ [2] https://indico.cern.ch/event/658267/contributions/2813689/attachments/1621144/2579443/2018-03-21_CTD_2018.pdf

▸ [3] https://developer.nvidia.com/cuda-zone

▸ [4] https://www.khronos.org/opencl/

▸ [5] https://gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/

▸ [6] https://indico.cern.ch/event/742793/contributions/3274344/attachments/1823598/2983651/2019-04-04_CTD_2019.pdf

▸ [7] https://doi.org/10.1103/PhysRevD.44.3501

▸ [8] https://indico.cern.ch/event/587955/contributions/2935788/attachments/1683802/2706959/mrichter_CHEP2018-alice-
o2-epn-processing_final.pdf

▸ [9] https://github.com/alidock/alidock

�19

https://indico.cern.ch/event/587955/contributions/2935765/attachments/1678513/2699330/2018-jul-03-conference_presentation-chep2018-v2.pdf
https://indico.cern.ch/event/587955/contributions/2935765/attachments/1678513/2699330/2018-jul-03-conference_presentation-chep2018-v2.pdf
https://indico.cern.ch/event/587955/contributions/2935765/attachments/1678513/2699330/2018-jul-03-conference_presentation-chep2018-v2.pdf
https://indico.cern.ch/event/658267/contributions/2813689/attachments/1621144/2579443/2018-03-21_CTD_2018.pdf
https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/
https://gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/
https://indico.cern.ch/event/742793/contributions/3274344/attachments/1823598/2983651/2019-04-04_CTD_2019.pdf
https://doi.org/10.1103/PhysRevD.44.3501
https://indico.cern.ch/event/587955/contributions/2935788/attachments/1683802/2706959/mrichter_CHEP2018-alice-o2-epn-processing_final.pdf
https://indico.cern.ch/event/587955/contributions/2935788/attachments/1683802/2706959/mrichter_CHEP2018-alice-o2-epn-processing_final.pdf
https://indico.cern.ch/event/587955/contributions/2935788/attachments/1683802/2706959/mrichter_CHEP2018-alice-o2-epn-processing_final.pdf
https://github.com/alidock/alidock

