Workshop della CCR, La Biodola, 3-7 Giugno 2019

AMS and DAMPE: first experiences with federated cloud solutions and a look toward the future

Matteo Duranti

Istituto Nazionale Fisica Nucleare, INFN Perugia

• The AMS (but also DAMPE and HERD) experiment and its computing requirements

• The experience gained with federated cloud solutions

• The impact on / role of our main computing center (i.e. CNAF)

- AMS Perugia team:
 - V. Formato
 - M. Duranti
- DODAS Perugia team:
 - D. Spiga
 - M.Tracolli
 - D. Ciangottini
 - M. Mariotti
- support from CNAF:
 - D. Cesini
 - L. Morganti
 - •

- installed on the International Space Station, ISS, on May 19, 2011
- operations 24h/day, 365d/year, since the installation
- 300k readout channels + 1500 temperature sensors
- acquisition rate up to 2kHz
- more than 600 microprocessors to reduce the rate from 7 Gb/s to 10 Mb/s
- 4 Science Runs (DAQ start/stop + calibration) per orbit: I Science Run = ~ 23 minutes of data taking
- on May 2019, ~135 billion triggers acquired
- 35 TB/year of raw data

- First Production (a.k.a. "std", incremental)
 - Runs 365dx24h on freshly arrived data
 - Initial data validation and indexing
 - Usually available within 2 hours after flight data arriving
 - Used to produce calibrations for the second production as well as quick performance evaluation ("one-minute ROOT files", prescaled)
 - Used for non-critical on-line monitoring in the POCC
 - 100 cores (@ CERN) to keep up with the acquisition
- Second Production (a.k.a. "passN")
 - Every 6 months, incremental
 - Full reconstruction in case of major software update
 - Uses all the available calibrations, alignments, ancillary data...
 - 100 core-years per year of data

- First Production (a.k.a. "std", incremental)
 - Runs 365dx24h on freshly arrived data
 - Initial data validation and indexing
 - Usually available within 2 hours after flight data arriving
 - Used to produce calibrations for the second production as well as quick performance evaluation ("one-minute ROOT files", prescaled)
 - Used for non-critical on-line monitoring in the POCC
 - 100 cores (@ CERN) to keep up with the acquisition
- Second Production (a.k.a. "passN")
 - Every 6 months, incremental
 - Full reconstruction in case of major software update
 - Uses all the available calibrations, alignments, ancillary data...
 - 100 core-years per year of data

- In addition to ISS data, a full MC simulation of the detector with at least x10 statistics is needed:
 - To determine the Acceptance of the detector
 - To test the analysis flow
 - To test and train discriminating algorithms (for example MVA's)
 - To understand the irreducible background
 - The "beam" is unknown: in general all the CR species (at least according to their abundance), even if not directly under measurement, must be simulated (at all the energy, according to natural spectra [i.e. ~ power laws]) as possible source of background
 - MC based on Geant 4.10.1 (multi-thread, OPENMP) + custom simulations (digitization, capacitive coupling, ...)
 - As the detector understanding improves, new updated MC is required. Statistics that must follow the data statistics: 2015: ~ 8000 CPU-years, in 2016: ~11000 CPU-years, ...

For both ISS-Data and MC is necessary to produce:

- reduced dataset or "stream": not all the triggers but only the events that most likely will contain the signal of the analysis under consideration)
 - \rightarrow each "study group" has its own production and its own data format (directly the complete one or easily permitting the access to it)
- "mini-DST": ROOT ntuples with a lightweight data format (i.e. ROOT ntuples) and with not all the variables
 - ✓ small size to allow the download also on local desktop/laptop and to permit the processing with a low I/O throughput
 - × must be updated and extended on monthly base

the "std" production is done in the Scientific Operation Center, SOC,
 @CERN

 \rightarrow 200 cores fully dedicated to deframe, merge & deblock, reconstruct, ...

 the "one-minute ROOT file" production ("std" production prescaled and split in one-minute data files) is done in CERN OpenStack virtual machines

 \rightarrow 6 single-core machines fully dedicated to this production and to the delivery of the files to the ASIA-POCC

- the "passX" incremental production is done @CERN, on *lxbatch*)
- the "passX" full reproduction is done in the regional centers with <u>a</u> <u>high speed connection</u>
- MC production is done in the regional centers
- mini-DST (i.e. "ntuples") and analysis are done in the regional centers

the "std" production is done in the Scientific Operation Center, SOC,
 @CERN

 \rightarrow 200 cores fully dedicated to deframe, merge & deblock, reconstruct, ...

 the "one-minute ROOT file" production ("std" production prescaled and split in one-minute data files) is done in CERN OpenStack virtual machines

 \rightarrow 6 single-core machines fully dedicated to this production and to the delivery of the files to the ASIA-POCC

- the "passX" incremental production is done @CERN, on *lxbatch*)
- the "passX" full reproduction is done in the regional centers with <u>a</u> <u>high speed connection</u>
- MC production is done in the regional centers
- mini-DST (i.e. "ntuples") and analysis are done in the regional centers

M. Duranti – Workshop CCR 2019

M. Duranti – Workshop CCR 2019

- "std" production has a well established pipe-line production and requires a limited amount of CPU resources;
- the "passX" incremental production has a well established pipeline production and requires a limited amount of CPU resources;
- the full reproduction of the "passX" (i.e. the "passX+1") requires a big amount of resources, in a limited time, increasing with the mission time;
- the MC production must follow the "passX" statistics and sw and detector calibration updates;
- the "mini-DST" production and the analysis must follow the "passX" statistics and sw and detector calibration updates;

- "std" production has a well established pipe-line production and requires a limited amount of CPU resources;
- the "passX" incremental production has a well established pipeline production and requires a limited amount of CPU resources;
- the full reproduction of the "passX" (i.e. the "passX+I") requires a big amount of resources, in a limited time, increasing with the mission time;
- the MC production must follow the "passX" statistics and sw and detector calibration updates;
- the "mini-DST" production and the analysis must follow the "passX" statistics and sw and detector calibration updates;
- The "request" is intrinsically "peaky", due to the nature of the work
- The "offer", in terms of computing centers, can be partially "peaky" (see next slide)

- Stable, massive, resources:
 - CERN
 - CNAF
 - etc...
- Additional stable resources:
 - ASI (see next slides)
 - Small "farm di Sezione"
- Temporary "free" resources:
 - Chinese resources (see next slides)
 - Cloud resources obtained in the framework of grants, etc... (i.e. "Spiga resources")

- operating in space, on board a Chinese satellite, since Dec 17, 2015
- operations 24h/day, 365d/year, since the launch
- 75k readout channels + temperature sensors
- acquisition rate up to 100Hz
- ~ 15 GB per day transmitted to ground:
 - ~ 15 GB/day raw data
 - ~ 15 GB/day raw data + Slow Control and orbit informations (ROOT format)
 - ~ 70 GB/day reconstructed data (ROOT format)
 - \rightarrow ~ 100 GB/day (35 TB/year) in total

- operating in space, on board a Chinese satellite, since the 7, 2015
- operations 24h/day, 365d/year, single the Concernance
- 75k readout channels ted temperatures isors
- acquisition parts Go 100Hz nd
- ~ B GB per d Salehitted to grothe. DAS framewo
 - ~ 15 Play aw data
 - ~ 15 GB/day <u>current</u> Slow Control and orbinonstr informations (ROOT format)
 - ~ 70 GB/day reconstructed data (ROOT format)
 - \rightarrow ~ 100 GB/day (35 TB/year) in total

ited in

• The detector is designed to be "isotropic" and accept CR from all (5) the sides

- operating in space, on board the Chinese Space Station starting from 2024
- charged CR physics but also γ-ray physics
- ~ O(IM) read-out channels

M. Duranti – Workshop CCR 2019

INFN A typical job: ntuple production - requests

- the job is running a "custom" executable, reading the "official" AMS ROOT files (few GB, @CERN on the 'eosams' space): "input files";
- the executable is linked against some libraries, common to all the users (for example the libraries of the AMS patched ROOT), that are needed in a "shared" place: "common static libraries";
- the executable is linked against some libraries, specific for each user (for example the AMS-sw, that each user has in the required version and/or patched and other libraries from the same user sw framework), that are needed in a "shared" place: "user libraries";
- the job needs to read some text files (few KB, easy to transfer for every job) and "ancillary" ROOT files (few MB, @CNAF or @CERN on the user EOS space or 'eosams/user'): "ancillary input files";
- the job writes the "mini-DST" ntuples (few tens of MB, ~ 3TB for the total production) on the massive storage (i.e. CNAF storage): "output files";

- Short term:
 - ✓ Remote access (Input and Output) to TI storage (i.e. "gpfs_ams") via XRootD
 - previously EOS@CERN (eospublic, i.e. "CERNbox", or the eosams/user) was used
 - ✓ HTCondor client on UI-AMS
 - to use that machine and its storage to work and submit the jobs
- Mid/long term:
 - × Shared filesystem where to host the "libraries" (CVMFS?!)
 - HTCondor server on UI-AMS accessible from everywhere in the world and TI resources accessible via HTCondor (instead of LSF)
 - × Authentication mechanism

Currently we are in a transition, hybrid, situation:

- INDIGO-IAM token to interact with the HTCondor batch
 - the tokens, for now, are translated into X.509 certificates
- X.509 certificates (VOMS) to interact with the XRootD server @CNAF
- Kerberos to interact with the XRootD server @CERN
 - CERN IT (Paul Musset & al.) asked us a "mapping" between CERN username and the certificate DN, and when the XRootD Federation will be up&running we will use just the VOMS certificate

 \rightarrow of course we would like to move to a single authentication

- HTCondor client at CNAF to submit jobs from a working dir @CNAF
- ✓ XRootD@CNAF to
 - ✓ read AMS "official" files
 - ✓ read user/ancillary files
 - ✓ to write output
- ✓ CVMFS@CERN for experiment libraries
- ✓ IaaS (today OpenStack@PG) to manage PG and ASI resources (compute and soon storage)
- ~ CVMFS@PG for user libraries

At the end of 2018, the CNAF team put our gpfs space (i.e. 'gpfs_ams') under an XRootD server:

mduranti@ui02-ams:~> xrdfs root://ds-906.cr.cnaf.infn.it:8082/ ls -u /eos/ams/MC/AMS02/ root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2011B root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2014 root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2011A root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2009B

and this enables us to read our data ("official", also on XRootD@CERN, but also custom ones) and to write the output from gpfs, where we have the ~ 2PB

• XRootD@CNAF to read and write gpfs

mduranti@ui02-ams:~> xrdfs root://ds-906.cr.cnaf.infn.it:8082/ ls -u /eos/ams/MC/AMS02/ root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2011B root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2014 root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2011A root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2009B

• XRooD redirector

mduranti@ui02-ams:~> xrdfs root://ds-906.cr.cnaf.infn.it:8083/ ls -u /eos/ams/MC/AMS02/ root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2011B root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2014 root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2011A root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2009B

• XRootD@CNAF to read and write gpfs

mduranti@ui02-ams:~> xrdfs root://ds-906.cr.cnaf.infn.it:8082/ ls -u /eos/ams/MC/AMS02/ root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2011B root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2014 root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2011A root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2009B

• XRooD redirector

mduranti@ui02-ams:~> xrdfs root://ds-906.cr.cnaf.infn.it:8083/ ls -u /eos/ams/MC/AMS02/ root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2011B root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2014 root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2011A root://ds-906.cr.cnaf.infn.it:8082//eos/ams/MC/AMS02/2009B

• XRootD Federation with eosams@CERN (we hope next days)

mduranti@ui02-ams:~> xrdfs root://eosams.cern.ch ls -u /eos/ams/MC/AMS02 root://188.184.38.74:1094//eos/ams/MC/AMS02/2011B root://188.184.38.74:1094//eos/ams/MC/AMS02/2014 root://188.184.38.74:1094//eos/ams/MC/AMS02/2018 root://188.184.38.74:1094//eos/ams/MC/AMS02/Be.B1064 root://188.184.38.74:1094//eos/ams/MC/AMS02/Si.B1116

Our resources are managed by OpenStack:

- we need to maintain just the "bare metal"
- we can manage also hardware geo-distributed (i.e. ASI)

At the Space Scientific Data Center (SSDC) of the Italian Space Agency (ASI) we have an AMS farm:

- 384 cores
- **90TB**

now (in part) managed by the OpenStack@PG

(i) Non sicuro | openstack.fisica.unipg.it/horizon/project/instances/

☆ 💡 💏 🐵 🚺 🗢 🖬 🖻 🛞 😓 🔘 🐺 🚱 🛛 🍏

App S Condividi su Face	Tab - aper	te 🔲 Conferenze	AMS		HERD	Explotec	n 🔲 Sw	CERN	I INFN 🕅] Universita	Fis	ica 🔲 CNAF		izie 🔲 Bar	icne 🕤 Ul	time notizie	>	Altri Pre	reriti
FisGeo & INFN Perugia	≡ a	ms •																🔺 duranti 🝷	
Progetto							Non	ne istanza = 🔻			_		💁 AV	VIA ISTANZA	ELIN	11NA ISTANZI	MO	RE ACTIONS -	
COMPUTE		Nome Istan	za	Nome dell'Immagine	Indir	izzo IP	Dimensione	Coppia di chia	vi	S	stato	Zona di Disponibilità	Task	Stato attivazione	Tempo a pa creazione	artire dalla	Actions		
Panoramica		userimage- 155939428	316	ubuntu-16.04- multinet2	192.1	168.0.167	N/A	im-d2a20cec-8 0242ac120002	346d-11e9-9 2	238- A	ttivo	asi	None	In esecuzione	3 giorni, 21	ore	CREA IST	ANTANEA -)

COMPUTE		Nome Istanza	Nome dell'Immagine	Indirizzo IP	Dimensione	Coppia di chiavi	Stato	Zona di Disponibilità	Task	Stato attivazione	Tempo a partire dalla creazione	Actions
Panoramica		userimage- 155939428316	ubuntu-16.04- multinet2	192.168.0.167	N/A	im-d2a20cec-846d-11e9-9238- 0242ac120002	Attivo	asi	None	In esecuzione	3 giorni, 21 ore	CREA ISTANTANEA
Istanze		userimage- 155939428316	ubuntu-16.04- multinet2	192.168.0.165	N/A	im-d2a20cec-846d-11e9-9238- 0242ac120002	Attivo	asi	None	In	3 giorni, 21 ore	CREA ISTANTANEA
Immagini				ame not								
Accesso e sicurezza		userimage- 155939432068	ubuntu-16.04- multinet2	192.168.0.166	m1.medium	im-e8ff6782-846d-11e9-96bf- 0242ac120002	Attivo	nova	None	In esecuzione	3 giorni, 21 ore	
				infn- farm								CREA ISTANTANEA
ORCHESTRAZIONE				193.204.89.79								

M. Duranti – Workshop CCR 2019

In 2018 the HTCondor client on the AMS UI @CNAF was installed

mduranti@ui02-ams:~>	condor_								
condor_advertise	condor_continue	condor_gridshell	condor_negotiator	condor_procd	condor_restart	condor_set_shutdown	condor_store_cred	condor_transferd	condor_vacate
condor_aklog	condor_credd	condor_had	condor_off	condor_q	condor_rm condor_	_shadow conde	or_submit condor	_transfer_data condor_v	acate_job
condor_c-gahp	condor_dagman	condor_history	condor_on	condor_qedit	condor_root_switchboard	condor_sos	condor_submit_dag	condor_transform_ads	condor_version
condor_c-gahp_worker	_thread condor_drain	condor_hold	condor_ping	condor_qsub	condor_router_history	condor_ssh_to_jo	b condor_suspend	condor_update_mach	ne_ad condor_vm-gahp-vmware
condor_check_userlog	s condor_fetchlog	condor_init	condor_pool_job_i	report condor_recont	fig condor_router_q	condor_startd	condor_tail	condor_updates_stats	condor_vm_vmware
condor_cod	condor_findhost	condor_job_router_info	o condor_power	condor_release	condor_router_rm	condor_starter	condor_test_match	condor_userlog	condor_wait
condor_collector	condor_gather_info	condor_master	condor_preen	condor_replication	n condor_run	condor_stats	condor_testwritelog	condor_userlog_job_counter	condor_who
condor_config_val	condor_gridmanager	condor_master_s	condor_prio	condor_reschedu	le condor_schedd	condor_status	condor_top.pl	condor_userprio	
mduranti@ui02-ams:~>	mduranti@ui02-ams:~> condor_g -pool 90.147.102.22:9618 -name scheddpublic.localdomain -all								
Schedd: scheddpublic	.localdomain : <90.147.10	2.221:9618? @ 06/05/19	10:43:07						
OWNER BATCH_N	AME SUBMITTED D	ONE RUN IDLE HO	LD TOTAL JOB_IDS						
vformato Ntuples_v2r7	5/27 12:56 _ 67	188 I 9683 74630.0	84718.0						
spiga CMD: simple	5/31 17:52	250 75567.0 84	4450.0						
9933 jobs; 9677 comple	eted, 0 removed, 188 idle,	67 running, I held, 0 susp	ended						
mduranti@ui02-ams:~>	condor_status -pool 90	.147.102.22:9618							
Name OpSys A	Arch State Activity Lo	adAv Mem ActvtyTime							
06748b9b7a9a LINUX	X86_64 Claimed Bus	y 2.260 2000 0+00:00:	:02						
2d3fd12cc9d8 LINUX	X86_64 Claimed Busy	2.250 2000 0+00:00:	03						
3affa81182a9 LINUX	X86_64 Unclaimed Idle	2.510 2000 0+00:00:0	3						
3d80e8f54946 LINUX	X86_64 Claimed Bus	y 2.640 2000 0+00:00:	02						

This permitted us to use the very same workstation / working dir to submit on:

- LSF @CNAF-TI
- HTCondor @DODAS

The input files (TFile::Open()) are expressed as XRootD URLs:

root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305853512.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305855335.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305857186.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305859009.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305860862.0000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305862686.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305864537.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305867269.00500147.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305869092.0000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305870945.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305873136.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305874960.00235313.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305876813.00953700.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305878637.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305880488.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305882311.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305884164.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305885200.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305887023.0000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/13058888875.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305890698.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305892551.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305892551.01500013.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305894374.00000001.root root://eosams.cern.ch///eos/ams/Data/AMS02/2018/ISS.B1130/pass7/1305898050.00783168.root

M. Duranti - Workshop CCR 2019

INFN Changes to the user's workflow

#EOSROOTDIR="/eos/ams/user/m/mduranti/"; EOSHOST="root://eosams.cern.ch//" EOSROOTDIR="/mduranti/"; EOSHOST="root://80.158.5.211:32295//"

export AMSLOCALCVMFS=/cvmfs/ams.local.repo

#SSHPROXY=() #if the xrdfs is accessible SSHPROXY=(ssh xrootdbastion) #xrootdbastion is an 'Host' declared in ~/.ssh/config

overwrite the AMSDataDir env export AMSDataDir=/cvmfs/ams.cern.ch/Offline/AMSDataDir/

export ROOTSYS=\${AMSLOCALCVMFS}/AMSsoft modified/linux slc6 gcc64/root v5.34ams/ export XROOTD=\${AMSLOCALCVMFS}/AMSsoft modified/linux slc6 gcc64/xrootd/

function computejobs() {

|OBS=\$(condor g -pool 90.147.102.22:9618 -name scheddpublic.localdomain `whoami` | grep "Total for guery" | awk '{ print \$10 }')

function updateproduced() {

"\${\$\$HPROXY[@]}" xrdfs \${EO\$\$UBDHO\$T} Is \${EO\$\$UBDPATH} | grep root | awk -v \$UBD=\$\$UBD '{ print \$UBD"/"\$1 }' > prod temp

declare -a prerequisites=(`pwd`/TreeBuilder \$(Idd TreeBuilder | grep ntuple | awk '{ print \$3 }') \${LISTAFILE})

```
mkdir -p $SANDBOX
for pr in ${prerequisites[@]}
do
prnoslash=${pr%/}
rsync -Pavh -L --exclude='.svn*' ${prnoslash} $SANDBOX/
done
fi
```

```
export SANDBOXFULLPATH=${AMSLOCALCVMFS}/mduranti_Tree_sandboxes/${SANDBOX}
```

rsynctocvmfs \$SANDBOX /mduranti_Tree_sandboxes/

```
export PATH=${SANDBOXFULLPATH}:$PATH
export LD_LIBRARY_PATH=${SANDBOXFULLPATH}:$LD_LIBRARY_PATH
```

```
export LOCALLISTAFILE=${LISTAFILE}
export LISTAFILE=${SANDBOXFULLPATH}/${LOCALLISTAFILE}
```

condor_submit -pool 90.147.102.22:9618 -remote scheddpublic.localdomain ./\$TMPSCRIPT.sub

- Resources exploited:
 - 700k jobs (2-3 hours each → 1000 cores * 2 months ~ 15-20% of CNAF resources)
 - 30TB generated data (copied to CNAF)
- Used Infrastructures in the last 12 months:
 - HelixNebula Science Cloud (TSystem)
 - Google Cloud
 - Cloud@CNAF
 - ReCaS@Bari
 - OpenStack@PG
 - OpenStack@PG-ASI (few jobs so far)

- We (i.e. "astro-particle in space") are a community eager of resources and poor in terms of man-power for computing: we're willing to test any solution to increase our pool of resources and to keep up with the software infrastructure developments, with a limited amount of effort;
- Given the nature of the partners we have for the various projects (ASI, Chinese collaborators, ...) we can have small and/or temporary resources: merging them in a single batch system is a big added value;
- Once the "stable" resources (i.e. CNAF but also CERN) become "cloud"-like or go to newer paradigms we would be immediately ready

Backup

- Fundamental physics and antimatter:
 - primordial origin (signal: anti-nuclei)
 - "exotic" sources (signal: positrons, anti-p, anti-D, γ)
- Origin and composition of CRs in the GeV-TeV range
 - sources and acceleration: primaries (p, He, C, ...)
 - propagation in the ISM: secondaries (B/C, ...)
- Study of the solar and geomagnetical physics
 - effect of the solar modulation
 - geomagnetic cutoff

5 m x 4 m x 3m
7.5 tonnes

300k readout channels

 more than 600 microprocessors reduce the *rate* from 7 Gb/s to 10 Mb/s

total power
 consumption < 2.5 kW

August 2010: AMS-02 completely assembled and commissioned and ready to be shipped to Kennedy Space Center, KSC

Sezione di Perugia INFN Sistiuto Nazionale di Fisica Nucleare The AMS experiment and the AMS-02 detector

22/03/17

M. Duranti – Workshop CCR 2017

M. Duranti - Workshop CCR 2017

• the "std" production is done in the Scientific Operation Center, SOC, @CERN

 \rightarrow 200 cores fully dedicated to deframe, merge & deblock, reconstruct, ...

 the "one-minute ROOT file" production ("std" production prescaled and split in one-minute data files) is done in CERN OpenStack virtual machines

 \rightarrow 6 single-core machines fully dedicated to this production and to the delivery of the files to the ASIA-POCC

- the "passX" incremental production is done @CERN, on *lxbatch*)
- the "passX" full reproduction is done in the regional centers with an high speed connection
- MC production is done in the regional centers

 the "std" production is done in the Scientific Operation Center, SOC, @CERN

 \rightarrow 200 cores fully dedicated to deframe, merge & deblock, reconstruct, ...

 the "one-minute ROOT file" production ("std" production prescaled and split in one-minute data files) is done in CERN OpenStack virtual machines

 \rightarrow 6 single-core machines fully dedicated to this production and to the delivery of the files to the ASIA-POCC

- the "passX" incremental production is done @CERN, on *lxbatch*)
- the "passX" full reproduction is done in the regional centers with an high speed connection
- MC production is done in the regional centers

• Both the AMS and DAMPE production workflows need to be deployed in several and etherogeneous clusters

→ the workflow is, by design, lightweight and "simple" to allow to be adapted, by hand, to the various regional centers
 → deploying the workflow in "new" resources is not costless

- Both the AMS and DAMPE computing models are not fully compliant with the *cloud computing* paradigma

 →deploing the workflow in a modern computing infrastructure such as cloud laaS is not trivial
- Medium/small size collaborations, such as AMS and DAMPE have not the man power to re-design and re-implement their sw
 - \rightarrow the answer can come from: DODAS

- Fully-automated production cycle
 - Job acquiring, submission, monitoring, validation, transferring, and (optional) scratching
- Easy to deploy
 - Based on Perl/Python/sqlite3
- Customizable
 - Batch system (LSF, PBS, HTCondor...), storage, transferring, etc...
- Running at:
 - LXBATCH, JUROPA and RWTH, CNAF, IN2P3, NLAA, SEU, AS, ...

- CNAF joins the effort of the passX full reproduction
- CNAF joins the effort of the MC production
- RAW FRAMES and RAW are copied to tape@CNAF as the Master Copy of the Collaboration
 - Multi-threaded finite state automaton (written in Python) + state transition jobs (written in Perl)
 - It uses a database (Mysql/Oracle) for book-keeping
 - It relies on GRID's file transfer protocols.
 - Thanks to the direct srm to srm protocol, able to achieve 1.2Gbit/s throughput performance

Antihelium and AMS

At a signal to background ratio of one in one billion, detailed understanding of the instrument is required.

Detector verification is difficult.

- 1. The magnetic field cannot be changed.
- 2. The rate is ~1 per year.
- 3. Simulation studies:

Helium simulation to date: 2.2 million CPU-Days = 35 billion simulated helium events: Monte Carlo study shows the background is small

How to ensure that the simulation is accurate to one in one billion?

The few events have mass 2.8 GeV and charge -2 like ³He. Their existence has fundamental implication in physics.

It will take a few more years of detector verification and to collect more data to ascertain the origin of these events. 73

INFN and CNAF role in the Computing Network

- CNAF is also the main computing resource for the Italian Collaboration
 - ~ I2000 HS06
 - ~ 2 PB of storage on gpfs + 500 TB of storage on tape
 - queue for the production of the "Data Summary Tape" for the Italian analyses ("gold" users)
 - $^\circ~$ queues for the analysis (all users)
- Remote access of the data @ CNAF from the local farms in the various INFN structures
 - based on the use of the General Parallel File System (GPFS) and of the Tivoli Storage Manager (TSM) + a single, geographically-distributed namespace, characterized by automated data flow management between different locations has been defined (thanks to the Active File Management, AFM, of GPFS)
 - a "pre-selection" scheme permits the access to the full data format only transmitting the interesting events (or even just part of)

 Dark Matter indirect search (γ-rays and electrons in the GeV – 10 TeV energy range)

 Study of the composition and of the spectral features of CR's, in the GeV – 100 TeV range

• High energy photon astronomy

- operating in space, on board a Chinese satellite, since Dec 17, 2015
- operations 24h/day, 365d/year, since the launch
- 75k readout channels + temperature sensors
- acquisition rate up to 100Hz
- ~ I5 GB per day transmitted to ground:
 - ~ 15 GB/day raw data
 - ~ 15 GB/day raw data + Slow Control and orbit informations (ROOT format)
 - ~ 70 GB/day reconstructed data (ROOT format)
 - \rightarrow ~ 100 GB/day (35 TB/year) in total

• CHINA

- Purple Mountain Observatory, CAS, Nanjing
- Institute of High Energy Physics, CAS, Beijing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of Modern Physics, CAS, Lanzhou

• ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento

SWITZERLAND

- University of Geneva

Prof. Jin Chang

- Flight data handling reconstruction is done in the PMO cluster
 → 1400 cores that are designed to fully reprocess 3 years
 (expected mission duration) of DAMPE data within 1 month
- MC production is done in Europe (UniGe-DPNC cluster and, mainly, CNAF and ReCaS Bari)

 \rightarrow 2016: 400 core-years used to produce all the datasets corresponding to ~ I year of flight data

 Data transfer China ←→ Europe is based on gridftp and limited to 100 Mb/s (the PMO connection to the China Education and Research Network, CERNET)

 \rightarrow 6 cores @ PMO

→ during full reproductions: "by hand" (China to Europe and PMO to IHEP) protocol... \bigcirc

• Data transfer Italy $\leftarrow \rightarrow$ Geneva is based on *rsync*

 \rightarrow 10 cores @ CNAF

MC production workflow manger:

- light-weight production platform
- web-frontend and command tools based on the flask-web toolkit
- influenced by the Fermi-LAT data processing pipeline and the DIRAC computing framework
- NoSQL database using MongoDB

MC simulation:

- MC based on Geant + custom simulations (digitization, ...)
- run almost completely in Italy (CNAF and ReCaS Bari)

MC transfer:

- DAMPE server @ IHEP, Beijing and 'fast' transfer using the Orientplus link of the Geant Consortium
- IHEP \rightarrow PMO transfer done using the "by hand" protocol \odot

- China and Europe essentially decoupled for connection limitations
- In Europe, MC and flight data are accessible via an XRootD federation (UniGe-DPNC, CNAF and ReCaS).
- The data analysis is done "locally": each institution is using its National resources
- Each study group is defining, producing and using its own "mini-DST" reduced dataset

- CNAF is the "mirror" of the flight data outside China
 - \rightarrow 100 TB on gpfs (200TB for 2018)
 - \rightarrow 0 on tape (100TB for 2018)
- CNAF and ReCaS are the main MC production sites
- CNAF is also the main computing resource for the Italian Collaboration

 \rightarrow 3k HS06 pledged... Obtained 13k HS06, mainly used for MC production (8k HS06 per 2018)

• ReCaS is also the XRootD redirector

19th May 2011: AMS-02 installed on the ISS Start of the 365d-24h data taking

Payload Operation Control Center, POCC inside the BFCR (Blue Flight Control Room) at the MCC-H (Mission Control Center, Houston)

Flight Operations Ground Operations

TDRS Satellites

Ku-Band High Rate (down): Events <10Mbit/s> ~17 billion triggers, 35 TB of raw data per year

S-Band Low Rate (up & down): Commanding: 1 Kbit/s Monitoring: 30 Kbit/s

White Sands Ground Terminal, NM

AMS Payload Operations Control and Science Operations Centers (POCC, SOC) at CERN

AMS Computers at MSFC, AL

22/03/17

M. Duranti – Workshop CCR 2017

- RAW data from the NASA Marshal Space Flight Center, MSFC (Huntsville, AL) are packed in fixed-size FRAMES, uniquely identified by the triplet (APID, Time, SeqNo).
- The data format and protocol are decided by Consultative Committee for Space Data System (CCSDS).

- RAW data from the NASA Marshal Space Flight Center, MSFC (Huntsville, AL) are packed in fixed-size FRAMES, uniquely identified by the triplet (APID, Time, SeqNo).
- The data format and protocol are decided by Consultative Committee for Space Data System (CCSDS).
- The FRAMES contain, as payload, the real AMS RAW data, the AMS-BLOCKS
- Deframing/Merging
 - FRAMES are unpacked (deframed) to extract AMS-Blocks
 - AMS-Blocks are *merged* to build-up AMS Science Runs
 - Holes and transmission errors or corruptions are identified at merging time
 - ightarrow playback from AMS Laptop on ISS

RAW (FRAMES)
35 TB/year
RAW
35 TB/year

Reconstruction

- RAW data (i.e. sequences of AMSBlocks) are decoded to extract detector RAW signals
- Reconstruction applied: High level objects are created from the RAW signals
- ROOT files with the 'final' data format are created

M. Duranti - Workshop CCR 2017