B-physics anomaly and U(2) flavour symmetry

Kei Yamamoto (Hiroshima University/University of Zurich)

FCCP2019@Capri, Italy 30 Aug. 2019

In collaboration with Javier Fuentes-Martín, Gino Isidori and Julie Pagès (University of Zurich)

Lepton Flavour Universality Violation in semileptonic B decays

$$b \rightarrow c\tau\nu \qquad R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{SM}$$

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \rightarrow D^{(*)}\tau\nu)}{\mathcal{B}(B \rightarrow D^{(*)}\ell\nu)}$$
Tree-level in SM
LFUV in τ vs μ/e

$$W \neq \tau$$

$$v_{\tau}$$

$$b \rightarrow s\ell\ell \qquad R_{K^{(*)}}^{exp} < R_{K^{(*)}}^{SM}$$

$$R_{P}^{0} \rightarrow R_{P}^{0} \rightarrow R_{$$

$$\mathcal{L}_{ ext{eff}} = rac{4G_F}{\sqrt{2}} V_{ts} V_{tb}^* \sum_i C_i \, O_i$$

$$O_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{b}_{L}\gamma_{\mu}s_{L})(\bar{\ell}\gamma^{\mu}\ell)$$

$$O_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{b}_{L}\gamma_{\mu}s_{L})(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

$$O_{7\gamma} = \frac{e}{16\pi^{2}} m_{b}\bar{b}_{R}\sigma^{\mu\nu}s_{L}F_{\mu\nu}$$

$$B Q_{9V,10Z}$$

 $O_{7\gamma} = \frac{c}{16\pi^2} m_b \bar{b}_R \sigma^{\mu\nu} s_L F_{\mu\nu}$

Banomalies $R_{D^{(*)}} = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu)}{\mathscr{B}(B \to D^{(*)}\ell\nu)}$

What is $\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}$ decay ?

Tree-level decay (b→c charged current) in SM

Test of lepton flavour universality τ/μ ,e in semi-leptonic B decays

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} \ell \nu)} \qquad (\ell = e, \mu)$$

Theoretically clean, as hadronic uncertainties (form factors, Vcb) largely cancel in ratio

Banomalies
$$R_{D^{(*)}} = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu)}{\mathscr{B}(B \to D^{(*)}\ell\nu)}$$

Experiment [spring 2019]

$$R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{SM}$$

 R_D : Barbar, Belle R_{D^*} : Babar, Belle and LHCb

B anomalies
$$R_{D^{(*)}} = \frac{\mathscr{B}(B \to D^{(*)}\tau\nu)}{\mathscr{B}(B \to D^{(*)}\ell\nu)}$$

Related observables \rightarrow NP model discrimination

* Polarisation

1 Recent Belle result is slightly above the SM

* Other LFUV ratios : $R_{J/\psi}, R_{\Lambda_c}, R_{D_s}, , ,$

Banomalies $R_{K^{(*)}} = \frac{\mathscr{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathscr{B}(B \to K^{(*)}e^+e^-)}$ $\rightarrow K_{\text{hat is}}^{*0}\mu_B^+\mu_{K^{(*)}\mu^+\mu^-}^- \text{decay }?$

Loop-level decay (b→s neutral current) in SM

$$\begin{split} \mathcal{L}_{e^{\text{Test of lepton flaves}}\sum_{i} \overline{\mathcal{L}}_{e^{\text{Test of la$$

Banomalies $R_{K^{(*)}} = \frac{\mathscr{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathscr{B}(B \to K^{(*)}e^+e^-)}$

Lepton Flavour Universality Violation in semileptonic B decays

$$b \to c\tau\nu \qquad R_{D^{(*)}}^{exp} > R_{D^{(*)}}^{SM}$$

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$
Tree-level in SM
LFUV in τ vs μ/e

$$b \to s\ell\ell \qquad R_{K^{(*)}}^{exp} < R_{K^{(*)}}^{SM}$$

$$B_{R^{(*)}} \to \frac{\mathcal{B}(B \star 0^{*}K_{L}^{(*)}\mu^{\pm}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{\pm}e^{-})}$$
loop-level in SM
LFUV in μ vs e

$$\frac{q}{q} \to \frac{q}{q}$$

$$LFUV in \mu$$

$$LFUV in \mu$$

$$combined explanation in NP :$$

$$L_{eff} = \frac{4G_{F}}{\sqrt{2}} V_{ts}V_{tb}^{*}\sum_{i}C_{i}O_{i}$$
NP in $b \to c\tau\nu_{\tau} \gg$
NP in $b \to c\tau\nu_{\tau}$

 $O_9 \stackrel{e}{=} \frac{e^{\gamma}}{16\pi^2} (\bar{b}_L \gamma_\mu s_L) (\bar{\ell} \gamma^\mu \ell)$ $O_{10} = \frac{e^2}{16\pi^2} (\bar{b}_L \gamma_\mu s_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell)$ $O_{7\gamma} = rac{e}{16\pi^2} m_b \overline{b}_R \sigma^{\mu
u} s_L F_{\mu
u}$ $Q_{9V,10A}$ (B)

 $\boldsymbol{\mu}$

Lepton Flavour Universality Violation in semileptonic B decays

Lepton Flavour Universality Violation in semileptonic B decays

NP hint in SM flavor puzzle?

SM Yukawa sector is characterised by 13 parameters

[3 lepton masses + 6 quark masses + 3+1 CKM parameters] ← fixed by data

1st
$$e$$
 u d 2nd μ c s 2nd τ t b 3rd τ t

Striking hierarchy

Flavor theory?

Barbieri, Isidori, Jones-Perez, Lodone, Straub [1105.2296]

SM Yukawa respect approximate U(2) symmetry

Mass matrix CKM $M_{u,d} \sim \begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix} V_{CKM} \sim \begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix} U(2)_q \times U(2)_u \times U(2)_d$

U(2) flavour symmetry \rightarrow provides natural link to the Yukawa couplings

Unbroken symmetry

$$Y_{u} = y_{u} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \overset{U(2)_{q}}{\longrightarrow} \begin{pmatrix} \Delta_{u} & V_{q} \\ -\overline{0} & \overline{0} & \overline{1} & 1 \end{pmatrix} \qquad U(2) \text{ breaking term} \\ \begin{pmatrix} \Delta_{u} & V_{q} \\ -\overline{0} & \overline{0} & \overline{1} & 1 \end{pmatrix} \qquad U(2) \text{ breaking term} \\ |V_{q}| \sim |V_{ts}| \sim \mathcal{O}(10^{-1}) \\ |\Delta_{u}| \sim y_{c} \sim \mathcal{O}(10^{-2}) \\ U(2)_{u} \end{pmatrix}$$

Barbieri, Isidori, Jones-Perez, Lodone, Straub [1105.2296]

Under $U(2)^3 = U(2)_q \times U(2)_u \times U(2)_d$ symmetry

	$Q^{(2)} = (Q^1, Q^2) \sim (2, 1, 1)$	$Q^3 \sim (1, 1, 1)$
quark	$u^{(2)} = (u^1, u^2) \sim (1, 2, 1)$	$t \sim (1, 1, 1)$
	$d^{(2)} = (d^1, d^2) \sim (1, 1, 2)$	$b \sim (1, 1, 1)$

Spurion
$$V_q \sim (2,1,1), \ \Delta_u \sim (2,\bar{2},1), \ \Delta_d \sim (2,1,\bar{2})$$

U(2) breaking Order :
$$|V_q| \sim \mathcal{O}(10^{-1})$$
, $|\Delta_{u,d}| \sim \mathcal{O}(10^{-2})$

NP lagrangian is invariant under U(2) symmetry apart from breaking terms proportional to spurions

$$\mathscr{L}_{\text{eff}} = C \left[(\bar{t}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma_\mu \nu_L^{\tau}) + V_q (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma_\mu \nu_L^{\tau}) \right] \qquad V = |V| \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

NP in 3rd : $\mathcal{O}(1) > NP$ in 2nd : $\mathcal{O}(10^{-1})$

Structure of Yukawa is fixed under U(2) symmetry

→ elements in diagonal matrixes are described by CKM elements & fermions masses

$$Y_{f} = \begin{pmatrix} \Delta_{f} & V_{q} \\ \bar{0} & \bar{0} & \bar{1} \end{pmatrix} \qquad Q_{L} \to L_{d}^{\dagger}Q_{L} \\ Q_{R} \to R_{d}^{\dagger}d_{R} \end{pmatrix} \qquad \text{diag}(Y_{f}) = L_{f}^{\dagger}Y_{f}R_{f} \quad (f = u, d)$$

where

$$L_{d} \approx \begin{pmatrix} c_{d} & -s_{d} e^{i\alpha_{d}} & 0 \\ s_{d} e^{-i\alpha_{d}} & c_{d} & s_{b} \\ -s_{d} s_{b} e^{-i(\alpha_{d} + \phi_{q})} & -c_{d} s_{b} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix} \qquad \text{with} \qquad \frac{s_{d}}{c_{d}} = \frac{|V_{td}|}{|V_{ts}|}, \ \alpha_{d} = \arg\left(\frac{V_{td}^{*}}{V_{ts}^{*}}\right)$$

$$R_{d} \approx \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{m_{s}}{m_{b}} s_{b} \\ 0 & -\frac{m_{s}}{m_{b}} s_{b} e^{-i\phi_{q}} & e^{-i\phi_{q}} \end{pmatrix}$$

$$\begin{aligned} \mathscr{L}_{\text{eff}} &= C \Big[(\bar{t}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma_\mu \nu_L^\tau) + V_q (\bar{c}_L \gamma_\mu b_L) (\bar{\tau}_L \gamma_\mu \nu_L^\tau) \Big] \\ & \downarrow \text{ mass basis} \end{aligned}$$
$$\begin{aligned} \mathscr{L}_{\text{eff}} &= C \ V_{CKM}^{ik} \begin{pmatrix} 0 & 0 & \frac{s_d}{c_d} e^{i\alpha_d} c_d V_q \\ 0 & 0 & c_d V_q \\ 0 & 0 & 1 \end{pmatrix}^{kj} (\bar{u}_L^i \gamma_\mu b_L^j) (\bar{\tau}_L \gamma_\mu \nu_L^\tau) \end{aligned}$$

For $b \to c \text{ vs } b \to u$

$$\frac{b \to u}{b \to c} = \frac{V_{ub}}{V_{cb}}$$

Relations between different flavour transitions under U(2) symmetry

Operator with right handed light quark can be assumed to be suppressed under U(2)

U(2) flavour symmetry \rightarrow provides natural link to the Yukawa couplings

Features :

- NP in 3rd : $\mathcal{O}(1) > NP$ in 2nd : $\mathcal{O}(10^{-1}) \rightarrow$ Favored by B anomaly
- Relations between different flavour transitions under U(2) symmetry
- Operator with right handed light fermion can be assumed to be suppressed under U(2) \rightarrow NP helicity structure

What we did

With or without U(2)? Probing non-standard flavor and helicity structures in semileptonic B decays $U(2)^5 \equiv U(2)_q \times U(2)_\ell \times U(2)_u \times U(2)_d \times U(2)_e$

 $K \to \ell \bar{\ell}' \quad \tau \to \mu \gamma$

Effective theory for semileptonic decay

Relevant semileptonic operators in SMEFT ($\mu_{\rm EW} < \mu < \mu_{\rm NP}$)

$$\mathscr{L}_{\rm EFT} = -\frac{1}{v^2} \sum_{k,[ij\alpha\beta]} C_k^{[ij\alpha\beta]} \mathcal{O}_k^{[ij\alpha\beta]} + h.c.$$

 $\begin{aligned} \mathcal{O}_{\ell q}^{(1)} &= (\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}) (\bar{q}_{L}^{i} \gamma_{\mu} q_{L}^{j}) \,, \\ \mathcal{O}_{\ell q}^{(3)} &= (\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \tau^{I} \ell_{L}^{\beta}) (\bar{q}_{L}^{i} \gamma_{\mu} \tau^{I} q_{L}^{j}) \,, \\ \mathcal{O}_{\ell d} &= (\bar{\ell}_{L}^{\alpha} \gamma^{\mu} \ell_{L}^{\beta}) (\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}) \,, \\ \mathcal{O}_{q e} &= (\bar{q}_{L}^{i} \gamma^{\mu} q_{L}^{j}) (\bar{e}_{R}^{\alpha} \gamma_{\mu} e_{R}^{\beta}) \,, \end{aligned}$

$$\mathcal{O}_{ed} = (\bar{e}_{R}^{\alpha} \gamma^{\mu} e_{R}^{\beta}) (\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}) ,$$

$$\mathcal{O}_{\ell e d q} = (\bar{\ell}_{L}^{\alpha} e_{R}^{\beta}) (\bar{d}_{R}^{i} q_{L}^{j}) ,$$

$$\mathcal{O}_{\ell e q u}^{(1)} = (\bar{\ell}_{L}^{a, \alpha} e_{R}^{\beta}) \epsilon_{ab} (\bar{q}_{L}^{a, i} u_{R}^{j}) ,$$

$$\mathcal{O}_{\ell e q u}^{(3)} = (\bar{\ell}_{L}^{a, \alpha} \sigma_{\mu\nu} e_{R}^{\beta}) \epsilon_{ab} (\bar{q}_{L}^{b, i} \sigma^{\mu\nu} u_{R}^{j})$$

Effective theory for semileptonic decay

Relevant semileptonic operators in SMEFT ($\mu_{\rm EW} < \mu < \mu_{\rm NP}$)

$$\mathscr{L}_{\rm EFT} = -\frac{1}{v^2} \sum_{k, [ij\alpha\beta]} C_k^{[ij\alpha\beta]} \mathcal{O}_k^{[ij\alpha\beta]} + h.c.$$

$$\begin{split} \mathcal{O}_{\ell q}^{(1)} &= (\bar{\ell}_L^{\alpha} \gamma^{\mu} \ell_L^{\beta}) (\bar{q}_L^i \gamma_{\mu} q_L^j) \,, \\ \mathcal{O}_{\ell q}^{(3)} &= (\bar{\ell}_L^{\alpha} \gamma^{\mu} \tau^I \ell_L^{\beta}) (\bar{q}_L^i \gamma_{\mu} \tau^I q_L^j) \,, \\ \mathcal{O}_{\ell d} &= (\bar{\ell}_L^{\alpha} \gamma^{\mu} \ell_L^{\beta}) (\bar{d}_R^i \gamma_{\mu} d_R^j) \,, \\ \mathcal{O}_{q e} &= (\bar{q}_L^i \gamma^{\mu} q_L^j) (\bar{e}_R^{\alpha} \gamma_{\mu} e_R^{\beta}) \,, \end{split}$$

contribute at tree-level only to $b \rightarrow s\tau\bar{\tau}$ which is currently poorly constrained \rightarrow do not consider for simplicity $\mathcal{O}_{ed} = (\bar{e}_{R}^{\alpha} \gamma^{\mu} e_{R}^{\beta}) (\bar{d}_{R}^{i} \gamma_{\mu} d_{R}^{j}) ,$ $\mathcal{O}_{\ell edq} = (\bar{\ell}_{L}^{\alpha} e_{R}^{\beta}) (\bar{d}_{R}^{i} q_{L}^{j}) ,$ $\mathcal{O}_{\ell equ}^{(1)} = (\bar{\ell}_{L}^{a,\alpha} e_{R}^{\beta}) \epsilon_{ab} (\bar{q}_{L}^{a,i} u_{R}^{j}) ,$ $\mathcal{O}_{\ell equ}^{(3)} = (\bar{\ell}_{L}^{a,\alpha} \sigma_{\mu\nu} e_{R}^{\beta}) \epsilon_{ab} (\bar{q}_{L}^{b,i} \sigma^{\mu\nu} u_{R}^{j})$

Operator with right handed light fermion can be assumed to be suppressed under U(2)

Effective theory for charged-current semileptonic decay

$$\mathcal{L}_{\rm EFT} = -\frac{1}{v^2} \left[C_{V_1} \Lambda_{V_1}^{[ij\alpha\beta]} \mathcal{O}_{\ell q}^{(1)} + C_{V_3} \Lambda_{V_3}^{[ij\alpha\beta]} \mathcal{O}_{\ell q}^{(3)} + (2 C_S \Lambda_S^{[ij\alpha\beta]} \mathcal{O}_{\ell edq} + \text{h.c.}) \right]$$

parametrisation of flavour structure

$$\begin{split} \Lambda_{S}^{[ij\alpha\beta]} &= (\Gamma_{L}^{\dagger})^{\alpha j} \times \Gamma_{R}^{i\beta}, \quad \Lambda_{V_{i}}^{[ij\alpha\beta]} = (\Gamma_{L}^{V_{i}^{\dagger}})^{\alpha j} \times (\Gamma_{L}^{V_{i}})^{i\beta} \\ L_{d}^{\dagger}\Gamma_{L}L_{e} &= e^{i\phi_{q}} \begin{pmatrix} \Delta_{q\ell}^{de} & \Delta_{q\ell}^{d} & \lambda_{q}^{d} \\ \Delta_{q\ell}^{se} & \Delta_{q\ell}^{s\mu} & \lambda_{q}^{s} \\ \lambda_{\ell}^{e} & \lambda_{\ell}^{\mu} & x_{q\ell}^{b\tau} \end{pmatrix} \approx e^{i\phi_{q}} \begin{pmatrix} 0 & 0 & \lambda_{q}^{d} \\ 0 & \Delta_{q\ell}^{s\mu} & \lambda_{q}^{s} \\ \lambda_{\ell}^{e} & \lambda_{\ell}^{\mu} & 1 \end{pmatrix} \qquad R_{d}^{\dagger}\Gamma_{R}R_{e} \approx e^{i\phi_{q}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\frac{m_{s}}{m_{b}}s_{b} \\ 0 & -\frac{m_{\mu}}{m_{t}}s_{\tau} & 1 \end{pmatrix} \\ \lambda_{q}^{s} &= \mathcal{O}(\mid V_{q} \mid), \lambda_{\ell}^{\mu} = \mathcal{O}(\mid V_{\ell} \mid), \Delta_{q\ell}^{s\mu} = \mathcal{O}(\lambda_{q}^{s}\lambda_{\ell}^{\mu}) \\ & \frac{\lambda_{q}^{d}}{\lambda_{q}^{s}} = \frac{\Delta_{q\ell}^{d\alpha}}{\Delta_{q\ell}^{s\ell}} = \frac{V_{td}^{*}}{V_{ts}^{*}}, \quad \frac{\lambda_{\ell}^{e}}{\lambda_{\ell}^{\mu}} = \frac{\Delta_{q\ell}^{ie}}{\Delta_{q\ell}^{i\mu}} = s_{e} \end{split}$$

Parameters: C_V , C_S and spurion $|V_{q,\ell}|$

* Assume $C_{V_1} = C_{V_2} \equiv C_V$ to avoid constraint from $b \to s \nu \bar{\nu}$ (ϕ_b : not affect discussion, s_b : $|s_b| \leq 0.1 \ \mathcal{O}(V_q)$ to avoid constraints from $\Delta F = 2$)

U_1 Leptoquark

$$\mathcal{L}_{\rm EFT} = -\frac{1}{v^2} \left[C_{V_1} \Lambda_{V_1}^{[ij\alpha\beta]} \mathcal{O}_{\ell q}^{(1)} + C_{V_3} \Lambda_{V_3}^{[ij\alpha\beta]} \mathcal{O}_{\ell q}^{(3)} + (2 C_S \Lambda_S^{[ij\alpha\beta]} \mathcal{O}_{\ell edq} + \text{h.c.}) \right]$$

nicely matches the structure in U1 LQ

Leptoquark(LQ) solution (scalar and vector) is the best solution for B anomaly so far. Especially, $U_1 = (2,1,2/3)$ vector LQ can access both $R_{D^{(*)}} \& R_{K^{(*)}}$

$$\begin{split} \mathscr{L}_{U_1} &= \frac{g_U}{\sqrt{2}} \left[\beta_L^{i\alpha} \left(\bar{q}_L^i \gamma_\mu \mathscr{C}_L^\alpha \right) + \beta_R^{i\alpha} \left(\bar{d}_R^i \gamma_\mu e_R^\alpha \right) \right] U_1^\mu + \text{h.c.} \\ \Gamma_L^{V_1} &= \Gamma_L^{V_3} = \Gamma_L, C_V \equiv C_{V_1} = C_{V_3} = \frac{g_U^2 v^2}{4M_U^2} > 0 \\ \frac{C_S}{C_V} &= -2 \beta_R \ , \lambda_q^s = \beta_L^{s\tau} \ , \lambda_\ell^\mu = \beta_L^{b\mu} \ , \Delta_{q\ell}^{s\mu} = \beta_L^{s\mu} \end{split}$$

EFT approach & U_1 LQ

$b \rightarrow c$ and $b \rightarrow u$ under U(2)

For convenience, re-define effective couplings as $\mathscr{A}^{\mathrm{SM}} \to (1 + C_V^{u,c}) \mathscr{A}^{\mathrm{SM}}$

for $b \rightarrow c$	for $b \rightarrow u$ in mass basis with $q_L^i = \begin{pmatrix} V_{ji}^* u_j \\ d_i \end{pmatrix}$
$C_{V(S)}^{c} \equiv \frac{1}{V_{cb}} C_{V(S)} \left[(V_{CKM})_{ci} \Lambda_{V(S)}^{[ib\tau\tau]} \right]$ $= C_{V(S)} \left(1 - \lambda_q^s \frac{V_{tb}^*}{V_{ts}^*} \right)$	$C_{V(S)}^{u} \equiv \frac{1}{V_{ub}} C_{V(S)} \left[(V_{CKM})_{ui} \Lambda_{V(S)}^{[ib\tau\tau]} \right]$ $= C_{V(S)} \left(1 - \lambda_q^s \frac{V_{tb}^*}{V_{ts}^*} \right) = C_{V(S)}^c$
$b \to c \operatorname{vs} b \to u$ $C^c_{V(S)}$	$= C^{u}_{V(S)}$
scalar and vector $\frac{C_S^c}{C_V^c} = \frac{C_S^c}{C_V^c}$	$\frac{d_{S}}{d_{V}} = \frac{C_{S}}{C_{V}}$ flavor blind & depend on only NP helicity structure

Numerical formula for observables

 $b \rightarrow c$

$$\frac{R_D}{R_D^{\text{SM}}} \approx |1 + C_V^c|^2 + 1.50 \,\text{Re}[(1 + C_V^c) \,\eta_S \,C_S^{c^*}] + 1.03 \,|\eta_S \,C_S^c|^2$$

$$\frac{R_{D^*}}{R_{D^*}^{\text{SM}}} \approx |1 + C_V^c|^2 + 0.12 \operatorname{Re}[(1 + C_V^c) \eta_S C_S^{c^*}] + 0.04 |\eta_S C_S^c|^2$$

$$\frac{F_L^{D^*}}{F_{L,\text{SM}}^{D^*}} \approx 1 + 0.14 \,\eta_S \, C_S^c (1 - C_V^c) + 0.03 \,\eta_S^2 \, C_S^{c^2}$$

$$\frac{P_{\tau}^{D}}{P_{\tau,SM}^{D}} \approx 1 + 3.1 \,\eta_{S} C_{S}^{c} (1 - C_{V}^{c}) - 2.6 \,\eta_{S}^{2} C_{S}^{c^{2}}$$
$$\frac{P_{\tau}^{D^{*}}}{P_{\tau,SM}^{D^{*}}} \approx 1 - 0.34 \,\eta_{S} C_{S}^{c} (1 - C_{V}^{c}) - 0.08 \,\eta_{S}^{2} C_{S}^{c^{2}}$$

where $\eta_S \approx 1.7$ arises by running of scalar operator from TeV scale down to mb

Numerical formula for observables

$$\frac{\mathscr{B}(B_c^+ \to \tau^+ \nu)}{\mathscr{B}(B_c^+ \to \tau^+ \nu_{\tau})_{\rm SM}} = \left| 1 + C_V^c + \frac{m_{B_c}^2}{m_{\tau} \left(\overline{m}_b + \overline{m}_c\right)} C_S^c \right|^2 \approx 4.33$$

$$\approx 4.33$$
Chiral enhancement factor

 $b \rightarrow u$

$$\frac{R_{\pi}}{R_{\pi}^{\text{SM}}} = |1 + C_V^u|^2 + 1.13 \operatorname{Re}\left[(1 + C_V^u)C_S^{u^*}\right] + 1.36 |C_S^u|^2$$

$$\frac{\mathscr{B}(B^+ \to \tau^+ \nu)}{\mathscr{B}(B^+ \to \tau^+ \nu_{\tau})_{\rm SM}} = \left| 1 + C_V^u + \frac{m_{B^+}^2}{m_{\tau} \left(\overline{m}_b + \overline{m}_u \right)} C_S^u \right|^2 \approx 3.75$$

 $b \to s \tau \bar{\tau}$

$$\frac{\mathscr{B}(B_s \to \tau\bar{\tau})}{\mathscr{B}(B_s \to \tau\bar{\tau})_{\rm SM}} = \left| 1 + \frac{2\pi\,\lambda_q^s}{\alpha\,V_{tb}V_{ts}^*\,C_{10}^{\rm SM}} \left(C_V + \chi_s\,\eta_S\,C_S \right)^2 + \left(1 - \frac{4m_\tau^2}{m_{B_s}^2} \right) \left| \frac{2\pi\,\lambda_q^s}{\alpha\,V_{tb}V_{ts}^*C_{10}^{\rm SM}}\,\chi_s\,\eta_S\,C_S \right|^2 \right|^2$$

 $\frac{\mathscr{B}(B_s \to \tau \bar{\tau})}{\mathscr{B}(B_s \to \tau \bar{\tau})_{\rm SM}} < 8.8 \times 10^3 \quad (95 \% \text{ CL})$

 C_S vs C_V

C_S dependence i) $\Delta R_D - \Delta R_{D^*}$ vs polarisations

$$\frac{R_D}{R_D^{\text{SM}}} \approx |1 + C_V^c|^2 + 1.50 \,\text{Re}[(1 + C_V^c) \,\eta_S \,C_S^{c^*}] + 1.03 \,|\eta_S \,C_S^c|^2$$

$$\frac{R_{D^*}}{R_{D^*}^{\text{SM}}} \approx |1 + C_V^c|^2 + 0.12 \operatorname{Re}[(1 + C_V^c) \eta_S C_S^{c^*}] + 0.04 |\eta_S C_S^c|^2$$

 $\Delta R_D - \Delta R_{D^*} \approx 1.4 \ \eta_S \ \mathrm{Re} C_S^c$

$$\left(\Delta O_X = \frac{O_X}{O_X^{\rm SM}} - 1\right)$$

$$\frac{F_L^{D^*}}{F_{L,SM}^{D^*}} \approx 1 + 0.14 \,\eta_S \, C_S^c (1 - C_V^c) + 0.03 \,\eta_S^2 \, C_S^{c^2}$$

$$\frac{P_{\tau}^{D}}{P_{\tau,SM}^{D}} \approx 1 + 3.1 \,\eta_{S} \, C_{S}^{c} (1 - C_{V}^{c}) - 2.6 \,\eta_{S}^{2} \, C_{S}^{c2} \qquad \text{scalar } C_{S}^{c} \, \text{dominant} \\ \frac{P_{\tau}^{D^{*}}}{P_{\tau,SM}^{D^{*}}} \approx 1 - 0.34 \,\eta_{S} \, C_{S}^{c} (1 - C_{V}^{c}) - 0.08 \,\eta_{S}^{2} \, C_{S}^{c2} \qquad \longrightarrow \Delta R_{D} - \Delta R_{D^{*}} \, \text{vs } \Delta P_{X}$$

C_S dependence i) $\Delta R_D - \Delta R_{D^*}$ vs polarisations

- : Chi2 w $R_{D^{(*)}}, B^+$

D transition (ΔP_{τ}^{D}) : ~ 40% enhance *D** transition ($\Delta P_{\tau}^{D*}, F_{L}^{D*}$) : few %

not possible to reach $\left.F_L^{D^{(*)}}\right|_{\exp}$

$$C_S$$
 dependence ii) $\Delta R_D - \Delta R_{D^*}$ vs R_{π}, B^+, B_c^+

$$\frac{\mathscr{B}(B_c^+ \to \tau^+ \nu)}{\mathscr{B}(B_c^+ \to \tau^+ \nu_{\tau})_{\rm SM}} = \left| 1 + C_V^c + \frac{m_{B_c}^2}{m_{\tau} \left(\overline{m}_b + \overline{m}_c\right)} C_S^c \right|^2 \approx \left| 1 + C_V^c + 4.33 C_S^c \right|$$

$$\frac{\mathscr{B}(B_u^+ \to \tau^+ \nu_{\tau})_{\rm SM}}{\mathscr{B}(B^+ \to \tau^+ \nu_{\tau})_{\rm SM}} = \left| 1 + C_V^u + \frac{m_{B^+}^2}{m_{\tau} \left(\overline{m}_b + \overline{m}_u\right)} C_S^u \right|^2 \approx \left| 1 + C_V^u + 3.75 C_S^u \right|$$

$$\frac{\mathscr{B}(B_u^- \to \tau \bar{\nu})_{\rm SM}}{\mathscr{B}(\bar{B}_u^- \to \tau \bar{\nu})_{\rm SM}} \approx \frac{\mathscr{B}(\bar{B}_c^- \to \tau \bar{\nu})}{\mathscr{B}(\bar{B}_c^- \to \tau \bar{\nu})_{\rm SM}}$$

$$\frac{R_{\pi}}{R_{\pi}^{\text{SM}}} = |1 + C_V^u|^2 + 1.13 \operatorname{Re} \left[(1 + C_V^u) C_S^{u^*} \right] + 1.36 |C_S^u|^2$$

$$\longrightarrow \Delta R_D - \Delta R_{D^*} \operatorname{VS} \frac{O}{O^{\text{SM}}}$$

C_S dependence ii) $\Delta R_D - \Delta R_{D^*}$ vs R_{π}, B^+, B_c^+

- : Chi2 w $R_{D^{(*)}}, B^+$

 $R_{\pi}/R_{\pi}^{\rm SM} \lesssim 1.3$

 $R_{\pi}^{\text{SM}} = 0.641 \pm 0.016$ $R_{\pi}^{\text{exp}} \simeq 1.05 \pm 0.51$ \rightarrow Belle II $R_{\pi}^{\text{BelleII}} = 0.641 \pm 0.071$ Tanaka and Wtanabe [1608.05207] $b \rightarrow s$ under U(2)

$$\mathcal{H}_{\text{WET}}^{b \to s} \supset -\frac{4G_F}{\sqrt{2}} \frac{\alpha}{4\pi} V_{tb} V_{ts}^* \sum_{i=9,10,S,P} C_i^{\ell} \mathcal{O}_i^{\ell}$$

$$\begin{split} \mathcal{O}_{9}^{\ell} &= (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \mathcal{O}_{10}^{\ell} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \\ \mathcal{O}_{S}^{\ell} &= (\bar{s}P_{R}b)(\bar{\ell}\ell), \mathcal{O}_{P}^{\ell} = (\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell) \\ C_{i} &= C_{i}^{\mathrm{SM}} + \Delta C_{i} \end{split}$$

$$\Delta C_{9}^{\mu} = -\Delta C_{10}^{\mu} = -\frac{2\pi}{\alpha V_{tb} V_{ts}^{*}} C_{V} \Delta_{q\ell}^{s\mu} \lambda_{\ell}^{\mu^{*}}, \quad C_{S}^{\mu} = -C_{P}^{\mu} = \frac{2\pi}{\alpha V_{tb} V_{ts}^{*}} \frac{m_{\mu}}{m_{\tau}} C_{S}^{*} \Delta_{q\ell}^{s\mu} s_{\tau}$$

 $R_{K^{(*)}}$

$$R_K \approx R_{K^*} \approx 1 + 0.47 \,\Delta C_9^{\mu} \qquad \Delta C_9^{\mu} = -0.43 \pm 0.11$$

 $\mathscr{B}(B_s \to \mu \bar{\mu})$

$$\frac{\mathscr{B}(B_{s} \to \mu\bar{\mu})}{\mathscr{B}(B_{s} \to \mu\bar{\mu})_{\rm SM}} = \left| 1 - \frac{\Delta R_{K^{(*)}}}{0.47 \, C_{10}^{\rm SM}} \left(1 - \chi_{s} \eta_{S} \frac{s_{\tau}}{\lambda_{\ell}^{\mu}} \frac{C_{S}}{C_{V}^{*}} \right) \right|^{2} + \left(1 - \frac{4m_{\mu}^{2}}{m_{B_{s}}^{2}} \right) \left| \frac{\Delta R_{K^{(*)}}}{0.47 \, C_{10}^{\rm SM}} \, \chi_{s} \eta_{S} \frac{s_{\tau}}{\lambda_{\ell}^{\mu}} \frac{C_{S}}{C_{V}^{*}} \right|^{2}$$

 $\Delta R_{K^{(*)}}$ vs $\mathscr{B}(B_{s} \to \mu \bar{\mu})$

Others

$$\begin{split} b \to s\tau\bar{\mu} \\ \mathscr{B}(B_s \to \tau^-\mu^+) &\approx \frac{\tau_{B_s}m_{B_s}f_{B_s}^2G_F^2}{8\pi}m_\tau^2 \left(1 - \frac{m_\tau^2}{m_{B_s}^2}\right)^2 \Delta_{q\ell}^{s\mu}|^2 \left|C_V + 2\chi_s\eta_S C_S^*\right|^2 \\ &= \text{few } 10^{-6} \\ @C_{S(V)} = O(10^{-2}), \Delta_{q\ell}^{s\mu} = O(10^{-2}) \\ & \mathcal{B}(B_s \to \tau^\pm\mu^\mp) < 4.2 \times 10^{-5} \text{ (95\% CL)} \\ & \to \text{LHCb} \\ \hline \frac{\mathscr{B}(B \to \pi\mu\bar{\mu})_{[\Delta q_{\text{perl}}^2]}}{\mathscr{B}(B \to \pi e\bar{e})_{[\Delta q_{\text{perl}}^2]}} \approx R_{K^{(*)}} \\ & \text{deviation} \sim 2\sigma \ \mathscr{B}(B \to \pi\mu\bar{\mu})_{[1,6]} = 0.91(21) \times 10^{-9} \\ & \mathscr{B}(B \to \pi\mu\bar{\mu})_{15,221}^{\text{SM}} = 0.72(7) \times 10^{-9} \\ \hline \frac{\mathscr{B}(B_d \to \mu\bar{\mu})}{\mathscr{B}(B_d \to \mu\bar{\mu})_{\text{SM}}} \approx \frac{\mathscr{B}(B_s \to \mu\bar{\mu})}{\mathscr{B}(B_s \to \mu\bar{\mu})_{\text{SM}}} \\ & \mathscr{B}(B_d \to \mu\bar{\mu})_{\text{SM}} \approx \frac{\mathscr{B}(B_s \to \mu\bar{\mu})}{\mathscr{B}(B_s \to \mu\bar{\mu})_{\text{SM}}} \\ & \mathscr{B}(B_d \to \mu\bar{\mu})_{\text{SM}} = 1.06(9) \times 10^{-10} \\ \end{array}$$

→ LHCb

Others

 $\tau
ightarrow \mu \gamma$

$$\begin{split} \mathcal{B}(\tau \to \mu \gamma) &\approx \frac{1}{\Gamma_{\tau}} \frac{\alpha}{256\pi^4} \frac{m_{\tau}^3 m_b^2}{v^4} |C_S \lambda_{\ell}^{\mu *}|^2 \\ &= \text{few } 10^{-9} \\ @C_S &= O(10^{-2}), \lambda_{\ell}^{\mu} = O(10^{-1}) \\ & \qquad \mathcal{B}(\tau \to \mu \gamma)_{\exp} < 0.0(3.0) \times 10^{-8} \\ & \qquad \rightarrow \text{Belle II} \end{split}$$

Kaon decay

constraints obtained from K decays do not yield significant bounds to our framework

B anomalies suggest NP coupled dominantly to 3rd generation

- U(2) flavour symmetry

non-standard flavor and helicity structures in semileptonic B decays

 $b \rightarrow C\tau \nu_{\tau}$ B anomaly $R_{D^{(*)}} = \frac{B \rightarrow D^{(*)} \tau \nu_{\tau}}{B \rightarrow D^{(*)} \ell \nu_{\ell}}$ $B_{c} \rightarrow \tau \nu_{\tau}$ polarizations $b \rightarrow S\ell \bar{\ell}$ B anomaly $R_{K^{(*)}} = \frac{B \rightarrow K^{(*)} \mu \bar{\mu}}{B \rightarrow K^{(*)} \mu \bar{\mu}}$ $R_{S} \rightarrow \tau \bar{\tau}, \mu \bar{\mu}, \tau \bar{\mu}$ $K \rightarrow \ell \bar{\ell}' \quad \tau \rightarrow \mu \gamma$ $b \rightarrow U\tau \nu_{\tau}$ $R_{\pi} = \frac{B \rightarrow \pi \tau \nu_{\tau}}{B \rightarrow \pi \ell \nu_{\ell}}$ $B^{+} \rightarrow \tau \bar{\nu}_{\tau}, \mu \bar{\nu}$ $b \rightarrow d\ell \bar{\ell}$ $B_{d} \rightarrow \mu \bar{\mu}$

updated Belle II & LHCb data