The proton radius puzzle – 9 years later

Jan C. Bernauer

FCCP, August 2019

Stony Brook University

What is "stuff"?

The matter around us is described by non-perturbative quantum chromodynamics. npQCD is hard. Simplest QCD system to study: Protons

What is "stuff"?

The matter around us is described by non-perturbative quantum chromodynamics. npQCD is hard. Simplest QCD system to study: Protons

100 years of protons!

What is "stuff"?

The matter around us is described by non-perturbative quantum chromodynamics. npQCD is hard. Simplest QCD system to study: Protons

100 years of protons! Proton is a composite system. It must have a size! How big is it?

Motivation: "Normal" Hydrogen Spectroscopy

» $E_{nS} \simeq -\frac{R_{\infty}}{n^2} + \frac{L_{1S}}{n^3}$

1S — $L_{1S} = 8171.626(4) + 1.5645 \langle r_{D}^2 \rangle$ MHz

Motivation: "Normal" Hydrogen Spectroscopy

Motivation: "Normal" Hydrogen Spectroscopy

» $E_{nS} \approx -\frac{R_{\infty}}{n^2} + \frac{L_{13}}{n^3}$ » Two transitions for two unknowns: » Rydberg constant R_{∞} » 1S Lamb shift \Longrightarrow radius » Direct Lamb shift $2S \rightarrow 2P$

1S — $L_{1S} = 8171.626(4) + 1.5645 \langle r_p^2 \rangle$ MHz

"Normal" Hydrogen Spectroscopy Results

Elastic lepton-proton scattering

Method of choice: Lepton-proton scattering

- » Point-like probe
- » No strong force
- » Lepton interaction "straight-forward"

Measure cross sections and reconstruct form factors.

Cross section for elastic scattering

$$\frac{\left(\frac{\partial\sigma}{\partial\Omega}\right)}{\left(\frac{d\sigma}{\partial\Omega}\right)_{\text{Mott}}} = \frac{1}{\varepsilon\left(1+\tau\right)} \left[\varepsilon G_E^2\left(Q^2\right) + \tau G_M^2\left(Q^2\right)\right]$$

with:

$$\tau = \frac{Q^2}{4m_p^2}, \quad \varepsilon = \left(1 + 2\left(1 + \tau\right)\tan^2\frac{\theta_e}{2}\right)^{-1}$$

- » Rosenbluth formula
- » Electric and magnetic form factor encode the shape of the proton
- Fourier transform (almost) gives the spatial distribution, in the Breit frame

How to measure the proton radius

$$\left\langle r_{E}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}G_{E}}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0} \quad \left\langle r_{M}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}\left(G_{M}/\mu_{P}\right)}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0}$$

11

History of unpolarized electron-proton scattering

High-precision p(e,e')p measurement at MAMI

Johannes Gutenberg University of Mainz

Image © 2015 GeoBásis-DE/BKG Image © 2015 DigitalGlobe Image © 2015 AeroWest

Google earth

Imagery Date: 7/31/2013 50°00'20.12" N 8°19'50.19" E elev 352 ft eye alt 17.20 ml 🚺

High-precision p(e,e')p measurement at MAMI

Mainz Microtron » cw electron beam » 10 μA polarized, 100 μA unpolarized » MAMI A+B: 180-855 MeV » MAMI C: 1.6 GeV

Image © 2015 GeoBasi Image © 2015 Digita Image © 2015 Aerc

Imagery Date: 7/31/2013 50°00'20.12" N 8°19'50.19" E elev 352 ft eye alt 17.20 ml

High-precision p(e,e')p measurement at MAMI

Mainz Microtron » cw electron beam » 10 μA polarized, 100 μA unpolarized » MAMI A+B: 180-855 MeV » MAMI C: 1.6 GeV

Johannes Gutenberg Uni

A1 3-spectrometer facility » 28 msr acceptance » angle resolution: 3 mrad » momentum res.: 10⁻⁴

> Image © 2015 GeoBasis-DE/BKG Image © 2015 DigitalGlobe Image © 2015 AeroWest

Google earth

Imagery Date: 7/31/2013 50°00'20.12" N 8°19'50.19" E elev 352 ft eye alt 17.20 ml

Measured settings

1422 settings

JCB et al., Phys. Rev. Lett. 105 (2010) 242001, M. O. Distler, JCB, Th. Walcher, Phys. Lett. B 696, 343 (2011) JCB et al., Phys. Rev. C90 (2014) 015206

Cross sections

Muonic Hydrogen Spectroscopy

- » Replace electron with muon
- » 200 times heavier \Longrightarrow 200 times smaller orbit
- » Probability to be "inside" 200³ higher!

PSI setup (CREMA)

Muonic Hydrogen Spectroscopy Results

Muonic Hydrogen Spectroscopy Results

The Proton Radius puzzle

The Proton Radius puzzle

Theory / Fitting

- » Many people have checked spectroscopy theory
 - » generally seems robust, but few papers pop up with criticism
- » We are sure we are measuring the same thing: G. Miller, Phys. Rev. C 99, 035202
- » For scattering, radiative corrections might be problematic
- » Fitting: Many people fit data and get different results.

Theory / Fitting

- » Many people have checked spectroscopy theory
 - » generally seems robust, but few papers pop up with criticism
- » We are sure we are measuring the same thing: G. Miller, Phys. Rev. C 99, 035202
- » For scattering, radiative corrections might be problematic
- » Fitting: Many people fit data and get different results.
- » BSM physics? Still alive and kicking, E.g.: Liu, Cloet, Miller Nucl. Phys. B 944 114638 (also explains $g_{\mu} 2$)

The face puzzle that launched a thousand ships experiments

Spectroscopy:

- » MPQ
- » York University
- » Paris
- » + measurements on d^3 He,⁴ He,...

Scattering:

- » PRad (Jefferson Lab)
- » Mainz: ISR, H-TPC, Next-gen FF
- » Muon Hydrogen-TPC, CERN
- » PRAE Paris
- » ELPH Japan
- » MUSE

New hydrogen results: MPQ (A. Beyer et al., Science 358, 79 (2017))

New results: Paris (Fleurbaey et al., Phys. Rev. Lett. 120, 183001

More spectroscopy

There are more spectroscopy results coming.

» AFAIK, all give something in agreement with small radius!

More spectroscopy

There are more spectroscopy results coming.

- » AFAIK, all give something in agreement with small radius!
- » Some ready to declare victory.
- » I think it's to early. We should at least understand want has gone wrong in Paris!

ISR method

- » Use initial state radiation to reduce effective beam energy
- » Have to subtract FSR

ISR at MAMI

- » Published: PLB 771:194-198
- » Radiative correction correct on the 1% level deep in the tail!
- Radius extraction not competitive in precision
- » In principle: Larger scattering angle for *G_M*

Updated analysis of ISR

- » arXiv:1905.11182
- » Focuses on cs instead of FF
- » $r_p = 0.870 \pm 0.014_{stat}$ $\pm 0.024_{sys} \pm 0.003_{mod}$ fm
- » Slightly prefers large radius

Slides provided by E. Pasyuk, presented at MENU 2019

PRAD slides removed on request of PRAD collaboration.

The missing piece

Measure radius with muon-proton scattering!

MUSE - Muon Scattering Experiment at PSI

- » Beam of $e^+/\pi^+/\mu^+$ or $e^-/\pi^-/\mu^-$ on liquid H_2 target
 - » Species separated by ToF, charge by magnet
- » Absolute cross sections for ep and μp
- » Ratio to cancel systematics
- » Charge reversal: test TPE
- » Momenta 115-210 MeV/c \Rightarrow Rosenbluth G_E, G_M

Experiment layout

 » Secondary beam ⇒ track beam particles
» Low flux (5 MHz) ⇒ large acceptance
» Mixed beam ⇒ PID in trigger

R. Gilman et al., arXiv:1303.2160 (nucl-ex)

MUSE in the air

What do we know about G_M

What do we know about G_M

What do we know about G_M

Next generation experiments at Mainz

- » Initial State Radiation
- » Next-gen Rosenbluth-type with improved systematics at MAMI and MESA
- » Active target: high pressure Hydrogen TPC

Mainz future plans

- Cluster jet target to kill major contributions to systematic errors
- » Repeat ISR with new target (mainly G_E)
- » Use new target also for classical approach
- » Already had test beam. Construct active veto and collimator for further background reduction

Summary

- » After 9 years, the puzzle still stands
- » Spectroscopy has many new results, mixed, but with weight behind the smaller radius
 - » unknown what causes difference in spectroscopy results
- » Scattering; First values released / about to be released. Situation still unclear
- » More scattering data in the pipeline
- » Don't forget about magnetic radius!

Backup slides

Timeline of proton radius results

Comments on some newer fitting results 2010: >0.870 Hill, Paz: old data, z expansion with disp. bounds

» Bounds on infinite exp. \rightarrow bounds for truncated exp.? 2012: 0.840(10) Lorenz, Hammer, Meissner: Disp. relation fit.

» Same value but a lot more data. Probably model dominated.
2014: 0.84 Lorenz, Meissner: z expansion without bounds

» Fit did not converge. In real minimum, large radius is found.

2014: 0.8989(1) Gracyk/Juszczak: Bayesian estimation

» Interesting technique, unbelievable? small errors

2016: 0.84? Higinbotham: F-Test to select max. order

» Misunderstood F-test. Absence of proof \neq proof of absence.

2016: 0.84? Horbatsch/Hessels/Griffioen/Carlson/Maddox... Low-Q

» Low-Q fits with low order don't work.

2018: XXX Yan/Higinbotham/...

» Small radius fraction finally does bias testing

MUSE: Predicted performance

 Absolute radius extraction uncertainties similar to current exp's.

MUSE: Predicted performance

- Absolute radius extraction uncertainties similar to current exp's.
- » Difference: Common uncertainties cancel!
- » \longrightarrow factor two more sensitivity

MUSE can verify 7σ effect with similar significance!

Mainz: Volume of Data

