Experimental input and cross checks for HLbL contribution to muon g-2 A.Kupsc Uppsala U.

FCCP2019, Anacapri, 2019-08-29

D.Hertzog, arXiv:1512.00928

Hadronic contribution

 a_u^{BNL} = (116 592 091±63) · 10⁻¹¹

 $a_{\mu}^{exp} - a_{\mu}^{SM} = (249 \pm 87) \cdot 10^{-11}$ (3 σ)

hadronic vacuum polarization (HVP) hadronic light-by-light scattering (HLbL)

 a_u^{HVP} =(6 923 ± 42)·10⁻¹¹

 $a_{\mu}^{exp} - a_{\mu}^{SM} : 4\% HVP$

M

 $a_u^{HLbL} = (116 \pm 40) \cdot 10^{-11}$

215% HLbL (1% of leptonic LbL)

Hadronic Light by Light

"must be calculated using hadronic models that correctly reproduce properties of QCD"

 $a_{\mu}^{
m HLbL} = 10.5(2.6) \times 10^{-10}$

Slide: J. Bijnens, A.Nyffeler

Data driven dispersive HLbL

Data for dispersive HLbL

 $\pi\pi$, π K, $\eta\pi$, KK phase shifts

π^0 , n, n' Transition Form Factors (TFF)

Radiative widths of η, π^0

 $\eta: 5 \times 10^{-19} \text{ s}; \Gamma=1.3 \text{ keV} \qquad \eta \to \gamma \gamma$ $\pi^{0}: 8 \times 10^{-17} \text{ s}; c\tau=25 \text{ nm} \qquad \pi^{0} \to \gamma \gamma$

Two exp. techniques: $e^+e^-: \gamma\gamma \rightarrow \pi^0$

 $\gamma Z \rightarrow \eta, \pi^0$ Primakoff

PrimEx PRL 106,162303(2011)

PrimEx-II:

 $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.80 \text{eV} \pm 0.7\% \text{ stat.} \pm 1.5\% \text{ syst.}$

KLOE-2 Taggers 5fb⁻¹ => $\delta\Gamma(\pi^0 \rightarrow \gamma\gamma)$

Details: [EPJC 72, 1917 (2012)]

VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT					
0.515 ± 0.018	OUR FIT	$\delta \Gamma(n_{-})$	some)	~3 5%						
0.516 ± 0.018	OUR AVERAGE	01 (1]	~ { } }) '	~3.378						
$0.520 \pm 0.020 \pm 0.013$		BABUSCI	2013A	KLOE	$e^+~e^- ightarrow e^+ e^- \eta$					
$0.51 \pm 0.12 \pm 0.05$	36	BARU	1990	MD1	$e^+~e^- ightarrow e^+ e^- \eta$					
$0.490 \pm 0.010 \pm 0.048$	2287	ROE	1990	ASP	$e^+~e^- ightarrow e^+ e^- \eta$					
$0.514 \pm 0.017 \pm 0.035$	1295	WILLIAMS	1988	CBAL	$e^+~e^- ightarrow e^+ e^- \eta$					
$0.53 \pm 0.04 \pm 0.04$		BARTEL	1985E	JADE	$e^+~e^- ightarrow e^+ e^- \eta$					
••• We do not use the following data for averages, fits, limits, etc. •••										
0.476 ± 0.062	1	RODRIGUES	2008	CNTR	Reanalysis					
$0.64 \pm 0.14 \pm 0.13$		AIHARA	1986	TPC	$e^+ \; e^- ightarrow e^+ e^- \eta$					
0.56 ± 0.16	56	WEINSTEIN	1983	CBAL	$e^+~e^- ightarrow e^+ e^- \eta$					
0.324 ± 0.046		BROWMAN	1974B	CNTR	Primakoff effect					
1.00 ± 0.22	2	BEMPORAD	1967	CNTR	Primakoff effect					

η, π^0 single off shell TFF

Data: CELLO, NA60, CB-MAMI, CMD-2, SND

$\sigma(e+e- \rightarrow \pi^0\gamma, \eta\gamma)$

Data: CMD-2, SND

The first search above 1.4 GeV, preliminary No signal above the background

The first measurement above 1.4 GeV, Phys. Rev. D90 (2014) 032002 Dominated by the $\rho(1450)$ and $\phi(1680)$ mesons

Data: CMD-2, SND

⇒BESIII

Search for e+e- $\rightarrow \eta'(958)$

SND+CMD-3

Slide: E.Solodov CMD-2,SND

$V \rightarrow P\gamma^*$ and $e+e- \rightarrow PV$ processes

Belle $(\bar{B}^0 \rightarrow D^{*+} \omega \pi^-)$, D. Matvienko et al., Phys. Rev. 92 (2015) 012013 NA60 studied inclusively $\omega \rightarrow \pi^0 \mu^+ \mu^-$

 $\gamma^* \rightarrow \pi^0 \omega$

A2 Phys.Rev. C95 (2017) 025202

DP: e+e- $\rightarrow \pi + \pi - \pi^0$ to π^0 TFF

 $\pi\pi$ phase shifts + e+e- \rightarrow 3 π data Eur.Phys.J. C74 (2014) 3180

Slide: Bastian Kubis

BESIII: PRD98, 112007(2018)

TABLE III. Predictions and fit results for the \mathcal{F} parametrizations. The predictions are from Danilkin *et al.* [4], Niecknig et al. [5], and Terschlüsen et al. [19]. Theoretical predictions without incorporating crossed-channel effects are indicated by w/o and those with crossed-channel effects by w.

				Experiment			
		Ref.	[4]	Ref. [5]			
	Para. $\times 10^3$	w/o	w	w/o	w	Ref. [19]	BESIII
Fit I	α	136	94	(137,148)	(84,96)	202	$132.1 \pm 6.7 \pm 4.6$
Fit II	α	125	84	(125,135)	(74,84)	190	$120.2 \pm 7.1 \pm 3.8$
	β	30	28	(29,33)	(24,28)	54	$29.5 \pm 8.0 \pm 5.3$

Goal of COMPASS experiment

 \triangleright Test ChPT predictions for pion-photon reactions $\pi^- \gamma \to X^-$ with various final states X^-

 $\pi^{-} + \gamma^{(*)} \rightarrow \begin{cases} \pi^{-} + \gamma & \text{Compton reaction, pion polarisabilities} \\ \pi^{-} + \pi^{0} & \text{single-pion production, chiral anomaly} \\ \pi^{-} + \pi^{0} + \pi^{0} & \text{double-pion prod., chiral tree \& loop} \end{cases}$

Dominik Steffen

g-2 workshop Mainz

19 06 2018

COMPASS has acquired large Primakoff data set

- \triangleright Measurements from channel $\pi^- + \gamma^{(*)} \rightarrow \pi^- \pi^0$:
 - Chiral anomaly $\gamma \rightarrow 3\pi$
 - Radiative width of light-quark isovector mesons $(\rho(770)^- \rightarrow \pi^- \gamma)$
- ▷ Data from run 2009 give consistent picture:
 - Fit in good agreement with data
 - Normalizing to radiative width of $\rho(770)$ yields value for $F_{3\pi}$ in agreement with theoretical result
- ▷ 4x larger data set to come from 2012 data
- ▷ Possibility to extend analysis to measure radiative couplings of excited ρ states

TFF from radiative processes (ex $\eta \rightarrow \pi^+\pi^-\gamma$)

WASA PLB707 (2012) 243

KLOE PLB718 (2013) 910

Model independent parametrization:

$$\frac{d\Gamma}{ds} = |A(1 + \alpha s + ...)F_V(s)|^2 K_P(s)$$
PLB707 (2012) 184
$$e^+e^- \rightarrow \pi^+\pi^-$$

a=1.31±0.08_{stat}±0.40_{syst} GeV⁻²

a=1.89±0.25_{stat}±0.59_{syst} GeV⁻²

More precise result \Rightarrow first observation of the $\rho(1700)$ in $\eta \pi^+ \pi^-$ J.P. Lees et al., Phys. Rev. D97 (2018) 052007

DP Similar strategy for η as for π^0 From e+e- $\rightarrow \pi + \pi - \eta$ to η TFF arXiv:1509.02194

Analysis based on 0.9 x 10⁶ n' $\rightarrow \pi + \pi - \gamma$

 $\gamma^{(\star)} \gamma^{(\star)} \rightarrow \pi\pi; \eta\pi; KK$

γγ→π<mark>π,</mark> KK, ηη, πη (Belle: 07,08, 09,10, ..) γγ*→ππ, πη (BESIII in progress)

- Low energy: pion polar., ChPT
- Primakoff: $\gamma \pi \rightarrow \gamma \pi$ at COMPASS, JLAB
- Scattering: $e^+e^- \rightarrow e^+e^-\pi\pi$, $e^+e^- \rightarrow \pi\pi\gamma$
- **Decays:** $\omega, \phi \to \pi \pi \gamma$

Slide: G. Colangelo, I.Danilkin

Data driven DR HLbL determination:

Transition Form Factors of π^0 , η , η'

- Direct measurements
- Input and checks for DR approach to TFF
 Pion and Kaon Form Factors...
 Two photon production of PS pairs

HLbL error: - input experiments - high energy behavior => error budget