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¥ Hadronic contributions fo the anomalous magnetic moment of the muon: leading-
order hadronic vacuum polarization (HVP) and hadronic light-by-light (HLbL)

3 Focus on a novel approach based on dispersion relations for the first data-driven
determination of the hadronic light-by-light contribution

¥ Basic features of the formalism and first numerical results

¥ Summary and outlook

In collaboration with Gilberto Colangelo, Martin Hoferichter and Peter Stoffer



Introduction
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3 Tantalizing deviation of the high-precision measurement of a, = (g — 2),/2
by the BNL E821 experiment

aS® =116592089(63) x 10~

: . pe SM
from its SM evaluation: a;[* —a;™ ~ (3 —4)o

¥ Presently quoted theoretical and experimental uncertainties are comparable but
concrete goal for Fermilab experiment E989 to reduce the error by a factor of 4

B> calls for improved theory predictions with controlled uncertainties



Introduction
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¥ The crucial limiting factor in the accuracy of SM predictions for a,, is control over
hadronic contributions, responsible for most of the theory uncertainty.
The two major sources of uncertainty are the leading-order hadronic vacuum
polarization contribution (HVP) and the hadronic light-by-light (HLbL)

HVP HLbL hadrons Low-energy strong interaction

effects: non-perturbative

hadrons

3 Two most prominent strategies for an improved determination of these contributions
with controlled errors: lattice QCD and dispersion relations



HVP: dispersive approach
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The most precise determination of the LO-HVP relies on a dispersive approach:
P> Gauge invariance: i/d4x eiq'x<O\T{jzm(x)j§m(0)}\0> = —(¢*9 — quq) 11(q7)

parameterized in terms of a single scalar function of one kinematic variable

2 00
P> Analyticity: I (¢2) = T1(¢2) — TI(0) q_/ s . Im II(s)

T Ar s — q° — ie)

discontinuity along a branch cut corresponding to physical processes

B> Unitarity (optical theorem):

x otot(eTe” — hadrons)

hadrons hadrons



HVP: dispersive approach
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The most precise determination of the LO-HVP relies on a dispersive approach:

P> Gauge invariance: i/d4x eiq'x<O\T{jzm(x)j§m(0)}\0> = —(¢*9 — quq) 11(q7)
parameterized in terms of a single scalar function of one kinematic variable

2

P> Analyticity: I (¢2) = T1(¢2) — TI(0) q_/ s . Im II(s)

s — q° — ie)

:47'('

discontinuity along a branch cut corresponding to physical processes

B> Unitarity (optical theorem):

ImII(s) = m atot(e+e_ — hadrons) =



HVP: dispersive approach
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¥ LO-HVP is obtained by integrating the hadronic R-ratio weighted with a
perturbative QED kernel:

_ 1 raN2 [ ds N
CLLO HVP _ § (_) / —K(S) Rh d(S)
4

m2 S
dominated by the low-energy region (in particular mm contribution)

¥ Dedicated e¢'e™ program (Belle II, BES-III, KLOE, BaBar, SND, CMD-3, SND, KEDR)
with the goal to improve the presently quoted sub-percent accuracy.
New data are being collected and improved error analyses have been performed

P The HLbL contribution is emerging as a potential roadblock



Hadronic light-by-light
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¥ Hadronic light-by-light (HLbL) is more problematic:
until recently only model calculations and
some high-energy and low-energy constraints

aﬂLbL in 10— 11 units

Contribution . BPP HKS

KN MV BP PdRV ~ N/JN
70 n,n 85+13  82.7+6.4 83+12 114#+10 — 114413 99416
7, K loops —19+13 —4.548.1 — - — —19419 —19+13
7, K loops + other subleading in N, — — — 0410 — — —
axial vectors 2.54+1.0 1.7+1.7 — 22+5 — 15+10 2245
scalars —6.842.0 — — — — —7+7 —-T7£2
quark loops 21+3 9.7+11.1 — — — 2.3 21+ 3
total | 83432  89.6+15.4 | 80440 136425 110440 105426 116439

Two global evaluations: Bijnens, Pallante, Prades (1995, 1996) and Hayakawa, Kinoshita, Sanda (1995, 1996)

KN = Knecht, Nyffeler; MV = Melnikov, Vainshtein; PdRV = Prades, de Rafael, Vainshtein; IN= Jegerlehner, Nyffeler
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¥ Hadronic light-by-light (HLbL) is more problematic:
until recently only model calculations and
some high-energy and low-energy constraints

aﬂLbL in 10— 11 units

Contribution BPP HKS KN MV BP PdRV ~ N/JN
‘ 70 n,n ’ 85+13  82.7+6.4 83+12 114410 — 1144+13 99+16
7, K loops —194+13 —4.548.1 — — — —19419 —194+13
7, K loops + other subleading in N, — — — 0410 — — —
axial vectors 2.5+1.0 1.7£1.7 — 22+5 — 15+10 2245
scalars —6.842.0 — — — — 77 —7%2
quark loops 21+3 9.7+11.1 — — — 2.3 21+ 3

total 83+32  89.6+15.4  80+£40 136£25 110440 105+26 116439




Hadronic light-by-light
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¥ Hadronic light-by-light (HLbL) is more problematic:
until recently only model calculations and
some high-energy and low-energy constraints

aﬂLbL in 10— 11 units

Contribution BPP HKS KN MV BP PdRV ~ N/JN

70 n,n 85+13  82.7+6.4 83+12 114#+10 — 114413 99416

‘TF,K loops ’ —194+13 —4.54£8.1 — - — —19419 —19+13

7, K loops + other subleading in N, — — — 0410 — — —

axial vectors 2.5+1.0 1.7+£1.7 — 22+ 5 — 1510 2245

scalars —6.842.0 — — — — —7t7 —T£2

quark loops 21+ 3 9.7+11.1 — — — 2.3 21+ 3

total 83+32  89.64+15.4 80440 136+25 110+40 105426 116+39

The lightest infermediate states dominate

T, K+




Hadronic light-by-light
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¥ Hadronic light-by-light (HLbL) is more problematic:
until recently only model calculations and
some high-energy and low-energy constraints

aﬂLbL in 10— 11 units

Contribution BPP HKS KN MV BP ( PdRV N/JN
7r0, n,n 85+13 82.7+6.4 83+12 114410 — 1144+13 99+16
7, K loops —19+13 —4.5+8.1 — — — —19+19 —19+13 Jegerlehner (2015)
7, K loops + other subleading in N, — — — 0410 — — —
axial vectors 2.54+1.0 1.7+1.7 — 22+ 5 — 15+10 @ — =~ 843
scalars —6.842.0 — — — — —T7+£7 —T7%2
quark loops 21+3 9.7+11.1 — — — 2.3 21+ 3
total 83+32  89.6+15.4  804+40 136425 110+40 ¢05i26 <«—— 102139

The two most often quoted estimates: Prades, de Rafael, Vainshtein (2009) and Jegerlehner, Nyffeler (2009)



Hadronic light-by-light
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¥ Hadronic light-by-light (HLbL) is more problematic:
until recently only model calculations and
some high-energy and low-energy constraints

Quoted uncertainties are guesstimates!

P a reliable uncertainty estimate for HLbL is still an open issue

¥ How to reduce model dependence and get small and reliable uncertainties?

P lattice QCD: first computations at physical pion masses with leading
disconnected contributions performed (with large systematic errors due to
finite volume and finite lattice spacing) RrRBc/UKQCD (Blum et al., 2015-2017)

Mainz lattice group: pion-pole contribution (Gerardin, Meyer, Nyffeler, 2019)

P> dispersion theory to make the evaluation as data-driven as possible



Dispersive approach to HLbL

""—""—"“ —

¥ Exploits fundamental principles:
P> gauge invariance and crossing symmetry
P> unitarity and analyticity

to relate HLbL to experimentally accessible quantities

¥ Much more challenging task than for the hadronic vacuum polarization due to the
complexity of the HLbL tensor, which is the key object of our analysis

¥ Defines and relates single contributions to HLbL to form factors and cross sections

Colangelo, Hoferichter, Procura, Stoffer, JHEP 1505 (2015), JHEP 1704 + PRL 118 (2017)
Colangelo, Hoferichter, Procura, Stoffer, JHEP 1409 (2014)
Colangelo, Hoferichter, Kubis, Procura, Stoffer, PLB 738 (2014)



OUR FORMALISM :

¥ The HLbL tensor: gauge invariance and crossing symmetry

¥ Master formula for the HLbL contribution to (g-2).

¥ Dispersive representation of scalar functions at fixed photon virtualities



The HLbL tensor
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¥ The fully off-shell HLbL tensor :

27 (q1, g2, 43) = —i / d'z dtydtz e\ TRV OIT{GE (2) jin (y)dom (2)78m (0)}0)

¥ Mandelstam variables:

s=(p+@)t=(@+a¢) u=(@+q¢)

HLbL

.+ qa — 0 afterwards

¥ In order to extract a



Lorentz structure of HLbL tensor
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3 Based on Lorentz covariance the HLbL tensor can be decomposed in 138 structures

H/,u/)\a _ g,ul/g)\a Hl + gu)\gyo H2 + guagl/A H3

+ > ad Tyt Y ¢PGa G+ Y 9" diar 1T

k=1,2,4 j=1,3.4 =1,3,4
=1,2,3 =1,2,3 k::1,2 4
A K o TT7 vo MU ATT8 Ao 1 v 179
+ Z 9 4; 4 Hzl+ E : g qzquzk‘+ Z 9 4; 4; Hzg
1=2,3,4 1=2,3,4 1=2,3,4
[=1,2,3 k=1,2,4 j=1,3,4
v A o1r7l0
+ 2 : § : q; 45 9k szk:l
1=2,3,4 k=1,2,4
Jj=1,3,41=1,2,3

¥ Scalar functions encode the hadronic dynamics and depend on é kinematic variables

3 In 4 space-time dimensions there are 2 linear relations among these 138 structures
Eichmann, Fischer, Heupel, Williams (2014)

¥ This set of functions is hugely redundant: Ward identities imply 95 linear relations
among these scalar functions (kinematic zeros)



Lorentz structure of HLbL tensor

W
¥ Following Bardeen and Tung (1968) - "BT”- we contracted the HLBL tensor with

Ko v A O
iy =g - 2O po— o i

q1 g2 q3 * 44

P> 95 structures project to zero
¥ 1/¢1-¢2 and 1/¢s - ¢4 poles eliminated by taking linear combinations of structures

¥ This procedure introduces kinematic singularities in the scalar functions:
degeneracies in these BT Lorentz structures, e.g. as ¢ -¢2 = 0,¢3-q1 — 0

Z CZTIQLV)\G = q - Q2XZHV>\U + g3 - q4y;/,w)\a
k



Lorentz structure of HLbL tensor
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¥ Following Tarrach (1975) we extended BT set to incorporate X7, Y}’
to obtain a ("BTT") generating set of structures even for ¢, ¢ — 0, g3 - qs — 0

12 (q1, g2, 43) ZTW“ 5,t,u; )

.

P> Lorentz structures are manifestly gauge invariant

B crossing symmetry is manifest (only 7 genuinely different structures, the
remaining ones being obtained by crossing)

P the BTT scalar functions are free of kinematic singularities and zeros:
their analytic structure is dictated by dynamics only.
This makes them suitable for a dispersive freatment



OUR FORMALISM :

¥ The HLbL tensor: gauge invariance and crossing symmetry

¥ Master formula for the HLbL contribution to (g-2).

¥ Dispersive representation of scalar functions at fixed photon virtualities



Master formula for a HtbL

L e = ~— —

HLbL
¥ FromII,,», to a, :

By expanding the photon-muon vertex function around ¢, = 0,

a, "t = - Tr ((p + mp) v, 771 + mp)T g™ (p))
48m,,
Aldin, Brodsky, Dufner, Kinoshita (1970)
where p° = m? and

HLDL () _ 6 d'qy d'qa , P+d, +m)  P—dy, )
Foo™(p) = / eni et wral—m2) o-g@?E_md

1 0

X ILxo(91,92,94 — q1 — q2)
?q2 (g1 + ¢2)2 0gf "

q4+=0



Master formula for a HtbL
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¥ FromII,, ., to aHLbL

By expanding the photon-muon vertex function around ¢, = 0,

P = o T ((p 4 m) BN T )

¥ Since there are no kinematic singularities in the BTT scalar functions,
the limit ¢4 — 0 can be taken explicitly

HLbL _ € / d*q1 d'qo 1 1 1
: 48my, ) (2m)* (2m)* ¢iq5(q1 + q2)? (P + q1)? —m2 (p — q2)? —m?

< Tr ((wmuw PP+ )V + )7 (p = gy + )

X Z (WT/ZV)\O- d1,42,44 — 41 — QQ))

1,(q1, 92, —q1 — q2)
q4=0



Master formula for a HtbL
e ———

¥ We obtained a general master formula

" o ’ 12 B
/ o] / 40, [ drv/1—r2QG2 Y T, Ca, TI(O1. o, )
=1

¥ Q7 =—¢’ are Euclidean momenta and Q; - Q2 = Q1 Q2 7: space-like kinematics

¥ We calculated the integration kernels T; .
The scalar functions 1I; are linear combinations of the BTT II,

¥ Our goal: dispersive representation of HLbL scalar functions at fixed photon
virtualities to be evaluated at the reduced kinematics in the master formula,

S = _Qg — _Q% — 2@1@27_ — Q%a t= _an u = _Q%a
G=-Q, @G=-0Q35 @G=-0Q3=-0Q1-2Q1Q27r—Q3, q; =0



OUR FORMALISM :

¥ The HLbL tensor: gauge invariance and crossing symmetry

¥ Master formula for the HLbL contribution to (g-2).

3 Dispersive representation of scalar functions at fixed photon virtualities



Mandelstam representation
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¥ Analytic properties of scalar functions at fixed photon virtualities: contributions
from unitarity in s-, t-, u-channel, in the form of poles and branch cuts.
For example, a fixed-t dispersion relation :

Hﬁ(s, t,u) = c§ +

Pi. s Piu 1 / oy Im ITE (s, t, o)) N 1 /OO du,lmuﬂg(s’,t,u’)
4M2 4

+ + =
s—M?2  u—M?2 s’ —s M2 u — u

¥ By symmetrizing over all channels, the Mandelstam representation is obtained

:_/det S _Sstf/)_w—'_(tHU)—'_(SHU)

¥ Very complex analytic structure: approximations are required. The lightest states
are expected to be the most important (in agreement with model calculations)



One- and two-pion intermediate states 5

¥ When exploiting unitarity, we considered the 2 lowest-lying contributions:
one- and two-pion intermediate states in all channels

__ rm2-pole box o
HHVAU o H,uz/)\a H,ul/)\a H/WAU
e ———

one-pion intermediate state :




One- and two-pion intermediate states 5

¥ When exploiting unitarity, we considered the 2 lowest-lying contributions:
one- and two-pion intermediate states in all channels

L 7T0-p0|e box
IIHVAU'_'IIMVAU 1

UV AO IIMVAU

\—




One- and two-pion intermediate states 5

¥ When exploiting unitarity, we considered the 2 lowest-lying contributions:
one- and two-pion intermediate states in all channels

L 7T0-p0|e box
HHVAU o H,uz/)\a H,ul/)\a H/WAU

two-pion state only in the direct channel:




One- and two-pion intermediate states 5

¥ When exploiting unitarity, we considered the 2 lowest-lying contributions:
one- and two-pion intermediate states in all channels

L 7T0-p0|e box
HHVAU o H,uz/)\a H,ul/)\a H/WAU

/

higher intermediate states: ongoing work




The pion-pole contribution
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¥ From the unitarity relation with only m0 intermediate state, the pole residues in
each channel are given by products of doubly-virtual and singly-virtual pion
transition form factors ( F,«y0 and Fo«yr0 , input for our analysis)

0 2 3 > > ! =’ 168
ap P = / dQ / dQ / dry/'1=72Q3Q3 (T1(Q1, Q2. )T P*(Q1, @2, 7) + Ta(Q1, Q2 TG P(Q1, Qa, 7))
37T 0 0 -1

with

ﬁwo-pole B Fﬂow*v* (— %, —Q%)Fﬂ.o,y*,y* (—Q§, O) ﬁ?ro—pole B f}ro,y*,y* (— %, —Q%)fﬁo,y*,y* (—Q%, O)




The pion-pole contribution

¥ From the unitarity relation with only m0 intermediate state, the pole residues in
each channel are given by products of doubly-virtual and singly-virtual pion
transition form factors ( F,«y0 and Fo«yr0 , input for our analysis)

¥ These form factors can be reconstructed dispersively using

B> pion vector form factor

» ~* — 37 amplitude

P elastic mm scattering amplitude

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

0
— CLZ —pole _ 62.613% x 10711 Hoferichter, Hoid, Kubis, Leupold, Schneider (2018)

¥ Pseudoscalar poles with higher masses can be treated analogously



Pion-box contribution

W

¥ Defined by simultaneous two-pion cuts in two channels

¥ Contribution to scalar functions as dispersive integral of double spectral functions

:_/ds’dt St/t’zt)_k(tﬁu)—l—(sﬁu)

¥ Dependence on ¢- carried by the pion vector FFs for each off-shell photon

¥ One-loop SQED projected onto the BTT structures fulfills the same Mandelstam
representation of the pion box, the only difference being the pion vector FFs :

|
|
N RN S
X ! ! R R
R - -1
| | I - ol
! | ! | T
- I I
L | -




Numerics for the pion-box contribution

¥ The only input: pion vector form factor in the space-like region

1

0.9

« NA7
08— Qur fit
07— VMD

0.6 4 Volmer et al.

0.5}

rad

0.4r
0.3

0.2

0.1

0

16 14 12 1 08 06 04 02 0

s [GeV?]

¥ Numerical results: o] "> =—-15.9(2) x 107" vs aff P VMP ~ 05 x 1071

¥ Rapid convergence: Qma = {1,1.5}GeV = a7 = {95,99}% of full result
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¥ Two-pion cut only in the direct channel:

The remaining mirm contribution

LH cut due fo multi-particle intermediate
states in the crossed channel neglected

¥ Unitarity relates this contribution to the subprocess v*y*) — 7r

By generalizing previous analyses of vy — mm and yy* — 7w Moussallam et al. (2010, 2013)
our goal is a dispersive reconstruction (based on analyticity, unitarity and crossing)
of helicity partial waves for v*y* — T Colangelo, Hoferichter, MP, Stoffer (2014)

The solution of the resulting coupled set of dispersion
relations involves elastic mm phase shifts, which allows fo ...
for the summation of nm rescattering effects in the
direct channel (effects of resonances coupling to )




The remaining mirm contribution g

¥ Contribution to ), """ from v*7* — 77 helicity partial waves:

|
mh’, (s B 2. 0) = 2 p h 0 )1
Yy (507,05:05,0) = 16 J++(S a5, q2) J+ (S q3, ) |
\\I—//

projecting onto BTT basis determines Im II;, from which 1I; for master formula.

¥ We solved dispersion relations for v*v* — 7w S-waves taking:

P> pion pole as only LH singularity and phenomenological it phase shifts

ay*tin 107" units
wm,m-pole LHGC 11
A 1GeV 1.5GeV 2GeV oo a, j—0 = —8(1) x 10
fo(500) —— /= —9.2 —9.5 —9.3 -88

I = 2.0 1.3 1.1 0.9




Outlook for dispersive a,HLbL
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A more precise, data-driven SM evaluation of HLbL using dispersion relations is feasible!

Ongoing and future work:

¥ Rescattering contributions for higher partial waves fto account for prominent
features in the cross sections for photon-photon to two mesons.

Extension of the solution of partial-wave dispersion relations for v*7v* — 77
to D-waves to capture effects of f2(1270) beyond narrow width approximation

Hoferichter and Stoffer (2019)

¥ Contributions from higher intermediate states

¥ Systematic study of all short-distance constraints on HLbL



Summary and outlook about HLbL
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3¢ Dispersive approach to HLbL scattering based on general principles: gauge
invariance and crossing symmetry, unitarity and analyticity

3 Derivation of a set of BTT structures free of kinematic singularities and zeros

HLbL

I in terms of BTT functions

¥ Derivation of a general master formula for a

¥ Single- and double-pion intermediate states are taken into account.
Results can be extended to other pseudoscalar poles and two-meson states

¥ Numerical results for pion box and S-wave 1 rescattering: small uncertainties

3 Next: Refined analysis of two-meson states (include kaons, coupled channel 77/KK
system, include D-waves, generalize to heavier LH cuts).
Study higher intermediate states in the direct channel (3 pions, axials).
Investigate and incorporate QCD short-distance constraints.

¥ First step towards a reduction of model dependence of HLbL: relations with
experimentally accessible (or dispersively reconstructed) quantities



Additional slides
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A roadmap for HLbL

Pion transition form factor
2 2
Fﬂ-O,.Y*,.Y* (ql’ q2)

Pion vector
form factor F{}

Partial waves for
,Y*,Y* g ete” wete nrr
Gion polarizabilitie

Artwork by M. Hoferichter



