

Achim Denig Institute for Nuclear Physics PRISMA⁺ Cluster of Excellence

Johannes Gutenberg University Mainz

Status of hadronic R Measurements (including ISR)

Precision Physics, Fundamental Interactions and Structure of Matter Workshop on Flavour Conserving and Changing Processes (FCCP2019) Anacapri, August 29, 2019

Outline

$$R = \frac{\sigma^{(0)}(e^+e^- \rightarrow \text{hadrons})}{\sigma^{(0)}(e^+e^- \rightarrow \mu^+\mu^-)}$$

- Motivation for R measurements: $(g-2)_{\mu}$, $\alpha_{em}(M_Z^2)$
- Two-Pion Channel
- Higher Multiplicity States and $K\overline{K}$
- Inclusive R Measurements
- Conclusions and Outlook

Muon Magnetic Moment: $(g-2)_{\mu}$

⁵*Hadronic Contribitutions to* $(g-2)_{\mu}$ and $\alpha_{em}(M_Z^2)$

- $\sigma_{had} = \sigma(e^+e^- \rightarrow hadrons)$
- → HVP: Hadronic Vacuum Polarization (692.3 ± 4.2) · 10⁻¹⁰

Most relevant channels at low energies

< -- > *exclusive* measurements

Achim Denig

< -- > exclusive measurements

< --> inclusive R measurements !

6

Initial State Radiation (ISR) vs. Energy Scan

7

Initial State Radiation (ISR) vs. Energy Scan

ISR(a)KLOE: $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$

Publication	Mode	Normalization	Int. Luminosity*
Phys.Lett. B606 (2005) 12	untagged	Radiator	141 pb ⁻¹
Phys.Lett. B670 (2009) 285	untagged	Radiator	240 pb ⁻¹
Phys.Lett. B700 (2011) 102	tagged	Radiator	232 pb ⁻¹
Phys.Lett. B720 (2013) 336	untagged	μ⁺μ⁻γ	240 pb ⁻¹

Achim Denig

*full KLOE statistics 2,500 pb⁻¹

NEW Combination of KLOE Results

Goal: Combination of three KLOE analyses

KLOE-2, JHEP1803 (2018)

Requires systematic treatment of statistical and systematic uncertainties in 195x195 covariance matrix \rightarrow final result obtained by itiratively minimizing a χ^2 function

Analysis flow for 3 analyses

11

Pion Form Factor: Current Situation

U

Pion Form Factor: Current Situation

Energy Scan: CMD-3 / SND at VEPP-2000

F_{π} @ CMD3: Eagerly waiting for

Achim Denig

Higher Multiplicity States and *KK*

BES III: $e^+e^- \rightarrow 3\pi$ Measurement (ISR) JGU

BESIII confirms ω(1420), ω(1650) resonances

PRELIM

• World's best J/ψ branching ratio BR $(J/\psi \rightarrow 3\pi) = (2.179\pm0.024\pm0.023\pm0.045_{\Gamma ee(J/\psi)})\%$

PDG: (2.10 ± 0.08)%

- Existing precision data from CMD-2, SND (< 1.4 GeV), and BABAR (>1.05 GeV)
- BESIII: tagged and untagged ISR measurement
- Spectrum dominated by narrow ω, φ, J/ψ resonances
- World's highest statistics above 1.4 GeV/c²
 Systematic error: ~2% on ω and φ peaks

BES III: $e^+e^- \rightarrow 3\pi$ Measurement (ISR) ^{JG}U

Parameters	PDG [6]	BABAR	Fitted results
χ^2/NDF	-	146/148	443/390
$m_{\omega} \; ({ m MeV}/c^2)$	782.65 ± 0.12	782.45 ± 0.24	$783.20 \pm 0.07 \pm 0.24$
$m_{\phi} \; ({\rm MeV}/c^2)$	1019.46 ± 0.02	1018.86 ± 0.20	$1020.00 \pm 0.06 \pm 0.41$
$m_{\omega(1420)} \; ({\rm MeV}/c^2)$	$1400 \sim 1450$	$1350\pm20\pm20$	$1388 \pm 39 \pm 55$
$m_{\omega(1650)} \; ({\rm MeV}/c^2)$	1670 ± 30	$1660\pm10\pm2$	$1699 \pm 9 \pm 7$

Status of hadronic R Measurements

16 JGU NEW S BABAR: $e^+e^- \rightarrow \pi^+\pi^-3\pi^0/\pi^+\pi^-2\pi^0\eta$

- Combined analysis of both channels
- Kinematic fit:
 - Constrain 2 of the π^0 candidates to π^0 mass
 - $m_{\gamma\gamma}$ of 3rd used for η or π^0 signal extraction
 - Constrain entire event to e^+e^- 4-momentum
- First precision measurements of both channels
- Detailed studies of internal structures and of J/ψ branching ratios

Invariant-mass $m_{\gamma\gamma}$ of 3rd photon pair shows clear π^0 and η peaks

(provided also for intermediate resonances)

Results from VEPP-2000

Energy range is 0.32-2.0 GeV unique optics – "round beams" Design luminosity is $L=10^{32}/cm^2s@s=2$ GeV Experiments with detectors CMD-3 and SND

1. $e^+e^- \rightarrow \pi^0\pi^0\gamma$, Phys.Rev.D, (2013) 2. $e^+e^- \rightarrow nn$, Phys.Rev.D,(2014) 3. $e^+e^- \rightarrow NN+6\pi$, JETP Lett.,(2014) 4. $e^+e^- \rightarrow \eta\gamma$, Phys.Rev.D,(2014) 5. $e^+e^- \rightarrow \eta'$, Phys.Lett.B,(2015) 6. $e^+e^- \rightarrow \eta \pi^+\pi^-$, Phys.Rev.D,(2015) 7. $e^+e^- \rightarrow \pi^+\pi^-\pi^0$, JETP,(2015) 8. $e^+e^- \rightarrow \eta$ JETP Lett.,(2015) 9. $e^+e^- \rightarrow \omega \eta \pi^0$, Phys.Rev.D,(2016) 10. $e^+e^- \rightarrow \omega \eta$, Phys.Rev.D,(2016) 11. $e^+e^- \rightarrow \pi^0 \gamma$, Phys.Rev.D,(2016) 12. $e^+e^- \rightarrow \pi^0\pi^0\gamma$, Phys.Rev.D, (2016) Phys. Rev. D, (2016) 13. $e^+e^- \rightarrow K^+K^-$

✓ Published (or submitted): $e+e- \rightarrow pp$, Phys.Lett. B75 $e^+e^- \rightarrow \eta'$ Phys.Lett. B74 $2(\pi^+\pi^-), 3(\pi^+\pi^-), Phys.Lett. B76$ $u\eta, \eta\pi^+\pi^-\pi^0, Phys.Lett. B77$ $3(\pi^+\pi^-)\pi^0, arXiv:1902.06449$ $K^+K^-, K_SK_L, Phys.Lett. B770$ $K^+K^-\pi^+\pi^-$ Phys.Lett. B750

Phys.Lett. B759 (2016) 634-640

Phys.Lett. B740 (2015) 273-277

Phys.Lett. B768 (2017) 345-350 Phys.Lett. B723 (2013) 82-89

Phys.Lett. B773 (2017) 150-158

arXiv:1902.06449, submitted to PLB

Phys.Lett. B760 (2016) 314-319 Phys.Lett. B779 (2018) 64-71

Phys.Lett. B756 (2016) 153-160

Achim Denig

CMD-3: $e^+e^- \rightarrow K^+K^-$

21

NEW

- Measurement 1.010 1.060 GeV
- 2.0% systematic uncertainty (BABAR 0.72 – 1.41 % in that range)
- Similar fit to cross section as for K_SK_L Parameters:
- New CMD-3 data above CMD-2 / BABAR ???

NEW SES III: Energy Scan 2.0 – 4.6 GeV JGU

26

Inclusive R_{had} Measurements

Status of R measurement (below open charm threshold):

- Event selection
- Measurement of integrated luminosity with <1% accuracy
- Radiative corrections with <1.5% accuracy
- Subtraction of QED background
- Tuning of *hadronic MC generator* (Lund model) for efficiency determination

1.84-3.05 GeV $R = 2.225 \pm 0.020 \pm 0.047 \ (R_{pQCD} = 2.18 \pm 0.02)$ V.V. Anashin et al., Phys. Lett. B770 (2017) 174 3.05-3.72 GeV $R_{uds} = 2.204 \pm 0.013 \pm 0.030 \ (R_{pQCD} = 2.16 \pm 0.01)$ V.V. Anashin et al., Phys. Lett. B753 (2016) 533; arXiv:1805.06235 Total (syst. error) 3.9% (2.4%) at low, 2.6% (1.9%) at high \sqrt{s} R measurement from 5 to 7 GeV in progress

33

Achim Denig

Conclusions

and Outlook

Conclusions

- Steady progress in R_{had} measurements
 → ISR and energy scan methods !
- In 2013 whitepaper arxiv:1311.2198 (Blum et al.) reduction of HVP uncertainty down to ±2.6 · 10⁻¹⁰ formulated as a goal → mission accomplished?
- However, accuracy of HVP contribution to (g-2)_μ limited by 2pi channel
 → overcoming KLOE-BABAR-BESIII puzzle is a major challenge
 Once this issue will be solved → full interpretation of FNAL g-2 measurement
- Improved value of α_{em}(M²_Z) highly desirable in view of precision EW measurements at LHC, Mainz, JLAB, ... → needs improved value of R_{had}
 → Do we have all systematics under control for hadronic event generators?

R_{had} measurements via ISR

••