

Istituto Nazionale di Fisica Nucleare Sezione di Genova

The ATLAS tracking system for HL-LHC

Alessandro Lapertosa (on behalf of the ITk community)

8-10 Aprile 2019

The future of ATLAS: Run 3 and HL-LHC

<u>LHC proton-proton collisions</u> $\sqrt{s} = 7/8/13$ TeV (2011-2018) + 13/14 TeV (2021-2023) <u>High Luminosity LHC (HL-LHC)</u> $\sqrt{s} = 14$ TeV (2026-20XX)

Instantaneous Luminosity a factor 5 to 7 higher than LHC: $\mathcal{L} = 7.5 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Expect up to 200 pile-up events

At HL-LHC, harder conditions for the ATLAS detector (especially for the tracking system):

- ➤ increase in occupancy → finer granularity
- ➤ larger readout bandwidth → faster detector readout
- \succ radiation damage \rightarrow better radiation hardness

The current ATLAS tracking system

The future ATLAS tracking system: Inner Tracker (ITk)

Inner Tracker detector layout

8-10 Aprile 2019

A. Lapertosa

Layout, material budget, pseudorapidity coverage

8-10 Aprile 2019

A. Lapertosa

6

Track efficiency (extended) and fake rate (lower)

Despite the increase in complexity of the project and the tougher conditions

- > ITk detector will maintain good track reconstruction efficiency (up to $|\eta| = 4$)
- And lower fake rates compared to the Run 2 Inner Detector performance

Simulation on tt events at HL-LHC ($\langle \mu \rangle = 200$) compared to LHC Run 2 ($\langle \mu \rangle = 20$)

Pixel detector Outer EndCap

Two EndCaps

8-10 Aprile 2019

Two Half Cilinders

> 11+8+9 Rings (x 2 Half Rings)

Layer	Radius [mm]	Z [mm]	Rings	Sensors per Ring
2	154.50	1145-2850	11	32 (8 quad)
3	214.55	1145-2850	8	44 (11 quad)
4	274.60	1145-2850	9	52 (13 quad)

Effort shared by Italian and UK institutes

Italy: Milano, Udine, Trento, Genoa, Bologna, Frascati, Lecce

Half Ring (support and cooling):

- Sandwiches of carbon-fiber, carbon foam and titanium cooling pipe
- Modules directly attached on Half Rings

A. Lapertosa

Pixel Detector module

Planar/3D sensor + RD53 chip

8-10 Aprile 2019

Data rates and radiation fluences

Primary vertex reconstruction, Vertexing resolution

From simulation studies: expect better efficiency and higher resolution in tracking and vertexing

Primary vertex reconstruction efficiency for tt events

Resolution on z coordinate of the primary vertex for tt events

8-10 Aprile 2019

Tougher conditions:

need to ensure

high quality

tracking performance

A. Lapertosa

Pile-up jet rejection, b-tagging performance

Tougher conditions: need to ensure high quality tracking performance

From simulation studies: expect similar or improved pile-up rejection and b-tagging performance

Pile-up jets rejection as a function of the jet reconstruction efficiency

B-tagging performance (light-jet rejection) as a function of b-jet efficiency

8-10 Aprile 2019

Pixel detector R&D phase: prototyping and tests

Outer EndCap: Rings

Inner EndCap Rings

Inner System Barrel: Staves Staves for layers 0 and 1 Inner system ring with temperature sensors

Summary and outlook

<u>The current Tracking System of the ATLAS experiment (ID: Inner Detector) will be replaced by a</u> <u>new all-silicon detector (ITk: Inner Tracker) to cope with the harsher HL-LHC conditions</u>

- > A challenging detector with Strips (160 m²) + Pixels (13 m²)
- > Layout is being refined, carefully checking the tracking performance
 - New results form simulation: <u>ATLAS-PHYS-PUB-2019-014</u>
- > ITk detector is expected to have similar or better tracking performance compared to ID
 - Comparable tracking efficiency, lower fake rate
 - > Lower material budget, higher pseudorapidity coverage (up to $|\eta| = 4$)
 - Improved primary vertex reconstruction, better vertexing resolution
 - > Higher pile-up jets rejection, comparable b-tagging performance
- > The ITk Pixel detector will be composed by hybrid Pixel modules (sensor + FE chip)
- \succ Reduced pixel size (50x50 or 25x100 μ m²) and thickness (100-150 μ m) compared to ID mod.
 - Confirmed hit detection efficiency higher than 97% after 10¹⁶ n_{eq} / cm² irradiation
- New Front-End chip: RD53A prototype being tested, RD53B being designed
 - High speed links (4 x 1.28 Gb/s), low consumption
- > For ITk Pixel detector, 3 main sections are identified: Inner System, Outer Barrel & EndCaps
 - R&D effort is shared by many institutes: currently prototyping and testing
 - The Italian community is committed to build one EndCap