Una strategia per la rivelazione dei neutrini solari da ciclo CNO con l'esperimento Borexino

IFAE 2019 – Napoli – 08/Apr/19

Davide Basilico per la collaborazione Borexino UniMi e INFN Milano

UNIVERSITÀ DEGLI STUDI DI MILANO

Istituto Nazionale di Fisica Nucleare

Neutrini solari

- Reazioni di fusione nucleare \rightarrow emissione di neutrini
- "Fotografia" dell'interno del Sole
- Catena pp: dominante nel Sole (99%)

Neutrini solari

- Reazioni di fusione nucleare \rightarrow emissione di neutrini
- "Fotografia" dell'interno del Sole
- Catena pp: dominante nel Sole (99%)

Ciclo CNO: 1% luminosità solare

Neutrini solari

- Reazioni di fusione nucleare \rightarrow emissione di neutrini
- "Fotografia" dell'interno del Sole
- Catena pp: dominante nel Sole (99%)

Ciclo CNO: 1% luminosità solare

Neutrini solari: il ciclo CNO

Principale nelle stelle più calde

Problema della metallicità solare:

il flusso di neutrini da CNO dipende fortemente dalla presenza di metalli (alta o bassa metallicità solare)

Laboratori Nazionali del Gran Sasso

Borexino

Borexino

- Dal 2007 @ LNGS
- Misura di ν solari di bassa energia: 300 ton di scintillatore liquido ultrapuro
- Bassissimo fondo radioattivo (~10⁻¹⁸g/g)
- Rivelazione con scattering elastico $\nu_{\chi} + e^- \rightarrow \nu_{\chi} + e^- \quad x = e, \mu, \tau$
- 2000 fotomoltiplicatori:
 - Posizione \rightarrow tempi di arrivo fotoni
 - Energia \rightarrow numero fotoni

Borexino

- Dal 2007 @ LNGS
- Misura di ν solari di bassa energia: 300 ton di scintillatore liquido ultrapuro
- Bassissimo fondo radioattivo (~10⁻¹⁸g/g)
- Rivelazione con scattering elastico $\nu_{\chi} + e^- \rightarrow \nu_{\chi} + e^- \quad x = e, \mu, \tau$
- 2000 fotomoltiplicatori:
 - Posizione \rightarrow tempi di arrivo fotoni
 - Energia \rightarrow numero fotoni

Borexino – Selezione dati

• Spettro grezzo rivelato, nessun taglio

Borexino – Selezione dati

- Spettro grezzo rivelato, nessun taglio
- Spettro dopo taglio muoni

Borexino – Selezione dati

- Spettro grezzo rivelato, nessun taglio
- Spettro dopo taglio muoni
- Spettro dopo selezione di Volume Fiduciale

Spettro energetico a bassa energia: fit simultaneo

Fit simultaneo delle componenti a bassa energia (pp, 7Be, pep + limite CNO)

Due fit multivariati complementari: Analitico / Monte Carlo

"First Simultaneous Precision Spectroscopy of pp, pep, and 7Be Solar Neutrinos" Nature 562, 505–510 (2018)

- Misura simultanea dei flussi di tutte le componenti della catena pp
- Limite superiore al flusso da CNO: $\Phi(\text{CNO }\nu) < 7.9 \cdot 10^8 \text{ cm}^{-2} \text{ s}^{-1}$ (95 % C.L.)

Spettro energetico a bassa energia: fit simultaneo

1)

Fit simultaneo delle componenti a bassa energia (pp, 7Be, pep + limite CNO)

Due fit multivariati complementari: Analitico / Monte Carlo

Limite superiore al flusso da CNO: $\Phi(\text{CNO }\nu) < 7.9 \cdot 10^8 \text{ cm}^{-2} \text{ s}^{-1}$ (95 % C.L.)

forma

2) Nessuna caratteristica "di spicco" dello spettro

```
3) Anticorrelazione con <sup>210</sup>Bi e di pep v
```


• Dati di Borexino

- Dati di Borexino
- CNO v, spettro atteso

Tassi di interazione:

- R(CNO v)_{expected} ~ **3-5** cpd/100ton
- R(²¹⁰Bi) ~ **20** cpd/100ton
- [R(pep) ~ 2.7 cpd/100ton]

- Dati di Borexino
- CNO v, spettro atteso
- ²¹⁰Bi, spettro
- pep v, spettro

Stretta anticorrelazione tra CNO v, pep v, ²¹⁰Bi

Senza vincoli sui tassi di interazione, il fit spettrale fornisce solo la somma dei tre!

Anticorrelazione CNO v – pep v – ²¹⁰Bi

Servono due vincoli indipendenti dal fit spettrale

- 1. pep v: vincolo di luminosità solare
- 2. ²¹⁰Bi: identificazione del ²¹⁰Po

Analisi di conteggio (+ forma spettri)

i : componente di segnale o di fondo

- *R_i*: tasso di interazione
- σ_i : incertezza su R_i
- f_i : frazione di eventi per i

$$N_{tot} \propto R_{CNO} f_{CNO} + R_{210Bi} f_{210Bi} + R_{pep} f_{pep}$$
$$\sigma_{CNO} \propto \frac{\sigma_{N_{tot}}}{f_{CNO}} \oplus \frac{f_{210Bi}}{f_{CNO}} \sigma_{210Bi} \oplus \frac{f_{pep}}{f_{CNO}} \sigma_{pep}$$

Assunzioni di base:

- Il Sole è alimentato solo da reazioni della catena pp e del ciclo CNO
- Il Sole è in equilibrio dinamico in tempi di scala di 10⁵ anni ($L_{\odot} = \text{cost.}$)

Vincolo al ²¹⁰Bi: dal ²¹⁰Po al ²¹⁰Bi

Stima indipendente del tasso di interazione del ²¹⁰Bi

Analisi ²¹⁰Bi-²¹⁰Po: Estrarre il tasso di decad. del ²¹⁰Bi dallo studio dei decadimenti del ²¹⁰Po

²¹⁰Pb
$$\xrightarrow{\beta^{-}}_{32 \text{ y}}$$
 ²¹⁰Bi $\xrightarrow{\beta^{-}}_{7.23 \text{ d}}$ ²¹⁰Po $\xrightarrow{\alpha}_{199.1 \text{ d}}$ ²⁰⁶Pb

Vincolo al ²¹⁰Bi: dal ²¹⁰Po al ²¹⁰Bi

Stima indipendente del tasso di interazione del ²¹⁰Bi

Analisi²¹⁰**Bi-**²¹⁰**Po:** Estrarre il tasso di decad. del ²¹⁰Bi dallo studio dei decadimenti del ²¹⁰Po

²¹⁰Pb
$$\xrightarrow{\beta^{-}}_{32 \text{ y}}$$
 ²¹⁰Bi $\xrightarrow{\beta^{-}}_{7.23 \text{ d}}$ ²¹⁰Po $\xrightarrow{\alpha}_{199.1 \text{ d}}$ ²⁰⁶Pb

²¹⁰Po è più "facile" da identificare rispetto al ²¹⁰Bi:

- Monoenergetico \rightarrow picco "gaussiano"
- Decadimento $\alpha \rightarrow$ forma del segnale in tempo

Vincolo al ²¹⁰Bi: dal ²¹⁰Po al ²¹⁰Bi

Stima indipendente del tasso di interazione del ²¹⁰Bi

Analisi ²¹⁰Bi-²¹⁰Po: Estrarre il tasso di decad. del ²¹⁰Bi dallo studio dei decadimenti del ²¹⁰Po

²¹⁰Po è più "facile" da identificare rispetto al ²¹⁰Bi:

²¹⁰Pb $\xrightarrow{\beta^{-}}_{32 \text{ y}}$ ²¹⁰Bi $\xrightarrow{\beta^{-}}_{7.23 \text{ d}}$ ²¹⁰Po $\xrightarrow{\alpha}_{199.1 \text{ d}}$ ²⁰⁶Pb

- Monoenergetico \rightarrow picco "gaussiano"
- Decadimento $\alpha \rightarrow$ forma del segnale in tempo

Se il ²¹⁰Bi è in equilibrio con il ²¹⁰Po, una misura indipendente del tasso di interazione di quest'ultimo permette di ricavare il tasso del ²¹⁰Bi

Evoluzione del tasso di ²¹⁰Po nel tempo

Andamento decrescente: ²¹⁰Po fuori dall'equilibrio!

(~1400 cpd/100ton nel 2012)

Andamenti irregolari/ "oscillatori" : dovuti alle variazioni di temperatura dello scintillatore (correlate con la stagione)

 $\tau_{\rm Po} \approx 200 {\rm ~giorni}$

A: "termine non supportato", fuori dall'equilibrio
B: "termine supportato", legato al ²¹⁰Bi

Capire la validità di questa reazione e quantificare il termine B!

Diffusione e convezione

Il ²¹⁰Po si muove nello scintillatore a causa dei gradienti termici

Un puro decadimento esponenziale è impedito per via dei forti moti convettivi (viola) dovuti al cambio di temperatura **nelle diverse stagioni**.

Polonio in movimento tramite convezione

$$\partial_t \rho(r) = D \nabla^2 \rho(r) - \frac{\rho(r)}{\tau_{\rm Po}} \longrightarrow \rho(r) = \rho_0 \frac{\sinh(r/\lambda)}{r/\lambda}$$

Lunghezza di diffusione $\lambda = \sqrt{D \ \tau_{Po}} \approx 20 \ \mathrm{cm}$

Come smorzare i gradienti termici?

Isolamento termico

- Doppio strato di lana di roccia
- Sistema attivo di stabilizzazione
- Stabilizzazione termica in Sala C dei LNGS

Come smorzare i gradienti termici?

Monitoraggio della temperatura

- Doppio strato di lana di roccia
- Sistema attivo di stabilizzazione
- Stabilizzazione termica in Sala C dei LNGS

Come smorzare i gradienti termici?

Monitoraggio della temperatura

Simulazioni fluidodinamiche

- Doppio strato di lana di roccia
- Sistema attivo di stabilizzazione
- Stabilizzazione termica in Sala C dei LNGS

²¹⁰Po nel tempo – Effetti dell'isolamento termico

tempo

²¹⁰Po nel tempo – Effetti dell'isolamento termico

²¹⁰Po nel tempo – Dal 2015 ad oggi

²¹⁰Po nel tempo – Dal 2015 ad oggi

Dal 2016:

- Decrescita globale del tasso
- Effetti al secondo ordine / oscillazioni
- Meno moti convettivi, meno disomogeneità

Sensitività alla rivelazione dei CNO v

= di che precisione abbiamo bisogno nella misura di ²¹⁰Bi e pep?

- Bassa metallicità solare analisi di conteggio
 Bassa metallicità solare analisi di conteggio+forma
 Alta metallicità solare analisi di conteggio
 Alta metallicità solare analisi di conteggio+forma
- Sensitività valutata tramite test di ipotesi basate su profiled likelihood
- Vincoli sulle forme spettrali particolarmente efficienti in caso di vincoli deboli sui tassi di interazione
- (L'alta metallicità aiuterebbe!)

Per un'evidenza a 3 σ , con un tasso di ²¹⁰Bi \approx 15-20 cpd/100t, servirebbe almeno $\sigma_{210Bi} \approx$ 10%

Conclusioni

• In linea di principio, Borexino è un rivelatore adatto alla rivelazione del flusso di CNO v; studi di sensitività mostrano che per un'evidenza a 3 σ l'obiettivo è $\sigma_{210Bi} \approx 10\%$

Grazie!

Backup

Risultati dei fit

v solari	Rate (cpd/100 t)	Flusso (cm ⁻² s ⁻¹)	Flux –SSM predictions B16 (cm ⁻² s ⁻¹)
рр	$134 \pm 10^{+6}_{-10}$	$(6.1 \pm 0.5^{+0.3}_{-0.5}) \times 10^{10}$	$5.98(1. \pm 0.006) \times 10^{10}$ (HZ) $6.03(1. \pm 0.005) \times 10^{10}$ (LZ)
⁷ Be	$48.3 \pm 1.1 \substack{+0.4 \\ -0.7}$	$(4.99 \pm 0.11^{+0.06}_{-0.08}) \times 10^9$	$4.93(1.\pm0.06) \times 10^9$ (HZ) $4.50(1.\pm0.06) \times 10^9$ (LZ)
pep (HZ)	$2.43 \pm 0.36^{+0.15}_{-0.22}$	$(1.27 \pm 0.19^{+0.08}_{-0.12}) \times 10^8$	$1.44(1.\pm0.009) \times 10^{8}$ (HZ) $1.46(1.\pm0.009) \times 10^{8}$ (LZ)
pep (LZ)	$2.65 \pm 0.36^{+0.15}_{-0.24}$	$(1.39 \pm 0.19^{+0.08}_{-0.13}) \times 10^8$	$1.44(1.\pm0.009) \times 10^{8}$ (HZ) $1.46(1.\pm0.009) \times 10^{8}$ (LZ)
⁸ B	$0.223\substack{+0.015+0.006\\-0.016-0.006}$	$(5.68^{+0.39+0.03}_{-0.41-0.03}) \times 10^{6}$	$5.46(1.\pm0.12) \times 10^{6}$ (HZ) $4.50(1.\pm0.12) \times 10^{6}$ (LZ)
CNO	< 8.1 (95 % C.L.)	< 7.9 × 10 ⁸ (95 % C.L.)	$4.92(1.\pm0.11) \times 10^8$ (HZ) $3.52(1.\pm0.10) \times 10^8$ (LZ)
hep	<0.002 (90% C.L.)	<2.2 × 10 ⁵ (90 % C.L.)	$7.98(1.\pm0.30) \times 10^3$ (HZ) $8.25(1.\pm0.12) \times 10^3$ (LZ)

[cpd/100ton: conteggi al giorno per 100 tonnellate di scintillatore]

- Risultati compatibili rispetto alla Fase 1 e precisione migliorata
- Assenza di neutrini pep rigettata ad oltre 5σ / Limite su CNO
- La simultaneità del fit a bassa E limita possibili correlazioni tra le specie di neutrini

Fit per neutrini da ⁸B

- Analisi separata
- Esposizione 11.5 volte Fase 1
- Fit **radiale** in due finestre di energia separate per la gestione del fondo: **3.2-5 MeV** e **5-17 MeV**
- Precisione sul flusso: 8%

Implicazioni: metallicità solare

Metallicità solare: abbondanza di elementi più massivi di He Fondamentale per la costruzione di modelli solari

- v da ⁷Be e ⁸B: modello con differenze del 9% e 18% a seconda dell'alta o bassa metallicità
- Incertezza dominante: teorica, su modelli solari

Indicazione debole verso alta met. (bassa met. sfavorita a 1.5σ)

Metallicità solare – Fit globale

- v da ⁷Be e ⁸B: differenze del 9% e 18% a seconda dell'alta o bassa metallicità
- Fit globale: esperimenti su neutrini solari + KamLand

Implicazioni: fusione solare

 Ramificazioni della catena pp (da Flussi da pp e da ⁷Be)

 $R = \frac{<^{3} He +^{4} He >}{<^{3} He +^{3} He >}$

• Test sperimentale per la fusione solare

Predizione teorica: R(HZ)= 0.18 ± 0.01 R(LZ)= 0.16 ± 0.01

Borexino: R= 0.18 ± 0.02

Implicazioni: probabilità di sopravvivenza v_e

- Rate di interazione \rightarrow probabilità di sopravvivenza v_e a diverse energie $P(v_e \rightarrow v_e)$
- Test a bassa E che ad alta E e confronto con predizione oscillazione v_e secondo MSW-LMA
 - Bassa E: miglior precisione finora
 - Alta E: accordo con SK e SNO

In accordo con oscillazione con parametri MSW-LMA