

Marco Taoso INFN-Torino

Status of indirect Dark Matter searches

IFAE 2019 Napoli, 8-10 April 2019

The dark matter landscape

Overwhelming evidence for dark matter at many scales but its properties are largely unconstrained

In this talk: brief review of the status of indirect searches.

Primordial black-holes

- PBHs can be produced in the early Universe Hawl

Hawking (1971), Zeldovich,Novikov (1966), Hawking Carr (1974)

- Mechanism: collapse of primordial inhomogeneities from inflation or of topological defects or from phase-transitions

As an example: mass function from inflationary model in Ballesteros, M.T. 2018 PBHs mass function can be very different in other models!

Accretion of matter around PBHs can alter the ionization history of the Universe. Strong bounds from CMB anisotropies.

Dynamical constraints: wide binaries, ultra-faint dwarfs $M_{\text{PBH}} [M_{\odot}]$ 10^{-16} 10^{-12} 10^{-8} **10⁻⁴** 10⁴ 1 NS **10**⁻¹ YEGB WD X-rays EROS 10⁻² $\Omega_{\text{PBH}}/\Omega_{\text{DM}}$ HSC 10⁻³ CMB, **10⁻⁴** 10⁻⁵ **10⁻⁶** 10¹⁶ 10²⁰ 10²⁴ 10²⁸ 10³² 10³⁶ *М*_{РВН} [g]

LIGO and PBHs

Interactions of 3 or more PBHs lead to the formation of binaries, which can merge much later Nakamura et al. 1997, Kinugawa et al. 2014

Given the LIGO merger rate PBHs of O(10) M_{\odot} can only be subdominant DM

Recent computations of merger rate: Sasaki et al. 2017, Ali-Haimoud et al. 2017, Kavanagh et al. 2018, Chen et al. 2018, Raidal et al. 2019 For the role of the clustering on the merger rate see Desjacques, Riotto 2018; Ballesteros, Serpico, M.T. 2018

Future prospects

Future prospects includes

Gravitational Waves Talk by Drago

Exp: LIGO, VIRGO, LISA, Einstein Telescope

- Golden channel: detection of BHs below the Chandrasekhar mass
- BHs mergers at high z
- Indirect probe: stochastic GW back associated with formation of PBHs

Microlensing

Exp: WFIRST, JWST, Euclid

Pulsar Timing array

Exp: SKA Detect background of GWs and transient sources

```
How to probe window at 10^{\text{-16}}\text{--}10^{\text{-11}}~\text{M}_{\odot}\,?
```

Femtolensing Katz et al. 2018 GW background with LISA (indirect way) e.g. Cai et al. 2018, Bartolo et al.2018 Microlensing with X-ray pulsars Bai et al. 2018 Other ideas?

For PBHs in the 1–100 $\rm M_{\odot}$ range see Astro2020 White Paper 1903.04424

Particle dark matter: astrophysical signals

Signals

Search for DM annihilations or decays products:

Targets

In this talk: focus on photon signals from Galactic Center and dwarfs

Other interesting searches in this Conference with charged cosmic-rays: talk by Donnini + Serini, Nadir, Dimiccili, Catanzari 21 cm searches talk by Mitridate

The Galactic Center GeV excess

Signal and properties

Axion-like particles v. WIMPs M_{PL} Primordial black holes N 10⁻²⁰ 10⁻¹⁰ 1 10¹⁰ 10²⁰ 10³⁰ eV

 10^{-25}

Excess of GeV photons from inner galaxy (up to 10 degrees) Almost spherically symmetric Peaked at few GeVs

Vitale and Morsell 2009, Godenough, Hooper 2009; Hooper, Linden 2011; Abazajian Kaplinghat 2012; Hooper, Slatyer 2013;

Gordon, Macias 2013; Huang, Urbano, Xue 2013; Abazajian et al.

2014; Daylan et al. 2014;Calore et al. 2014; Calore,Cholis,Weniger 2014; Zhou et al. 2015; Fermi Collaboration 2017, + ...

Interpretations

Diffuse emission electrons at the GC: Burst-like injections Enhanced SFR

Population of unresolved milli-second pulsars

DM annihilations

Cirelli, Gaggero, Giesen, MT, Urbano 2014

 10^{0}

 $M_{\rm DM} = 37.8 \, {\rm GeV}$

60

 $M_{\rm DM}$ [GeV]

 $10^6 \times E_\gamma^2 \, \mathrm{d}\Phi/\mathrm{d}E_\gamma \mathrm{d}\Omega \, [\mathrm{GeV} \, \mathrm{cm}^{-2} \, s^{-1}]$

 $\chi^2_{\rm min}/{\rm dof} = 1.44$

 10^{1}

80

 E_{γ} [GeV]

 $\langle \sigma v \rangle = 2.10 \times 10^{-26} \text{ cm}^3 s^{-1}$

 10^{2}

100

Dwarf spheroidal galaxies

Main uncertainties:

- J-factors
- background mis-modeling

Impact on the limits around factor 2-3

Bonnivard et al. 2015, Geringer–Sammeth et al. 2015, Hayashi 2016, Klop 2017 Calore et al. 2018

Support for milli-second pulsar hypothesis

Fluctuations analysis

Bartels et al. 2015, Lee et al. 2015

Evidence for an emission profile tracing the stellar mass in nuclear buldge Bartels et al. 2018, Macias et al. 2018

Future prospects

Limits from dwarfs: factor few improvements Better statistic, new dwarfs discovered with SDSS, DES, LSST,...

MSPs can be discovered with radio observations tens of sources detectable with MeerKAT

Calore et al. 2016

Future directions with gamma-rays

In the E > TeV domain limits from HESS, MAGIC, VERITAS and more recently HAWC

Significant improvement (around factor 10) with CTA in the near future (2022–2025)

Lefranc et al. 2015 See also Silverwood et al. 2015, Carr et al. 2015

Direct detection

In this Conference with charged cosmic-rays: see talk by Picciau, Cappella, Di Gangi + Alexandrov, Di Lorenzo, Pinci

Direct detection

New ideas to extend the reach in the sub-GeV range, e.g.

Superconductors (Hochberg et al. 2016) Superfluid He (Knapen et al. 2017) Graphene (Hochberg 2016) Crystal defects (Kadribasic et al. 2017)...

Direct detection

Example of complementarity DD & ID for wimps: pure EW multiplet DM **Higgsino**, **Wino**, **Minimal DM**

TeV gamma-ray lines

Current bounds from HESS obs of dwarfs not yet competitive GC constraints potentially much stronger but dependent on the DM density profile

Future with CTA

In this Conference talk by Saviano

keV dark matter

Primordial WIMPs M black holes M Axion-like particles ν, 10⁻²⁰ 10⁻¹⁰ 10^{10} 10^{20} 10³⁰ eV 1

3.5 keV line detected in multiple targets (clusters, M31, GC) and with different instruments (XMM-Newton, Chandra, Suzaku) consistent with DM decay, e.g. sterile neutrino Bulbul et al. 2014, Boyarsky et al. 2014, Urban et al. 2014, Cappelluti et al. 2017, ...

Also null detections from various targets. Recently strong constraints from null detection in XMM-Newton blank sky observations Dessert et al. 2018

Future tests:

Micro-X X-RISM (2021) Athena (2028)

Neronov et al. 2016

Abazajian et al. 2017

ALP

In this Conference talk by Di Luzio + Rettorali

Sensitivity of future radio surveys to decays of ALP and conversion inside astrophysical objects

Conclusions

Huge range of possibilities for dark matter

Different methods and energy ranges to explore the landscape of DM candidates

DM signals are faint but many opportunities exist!

